

1

APPLIED MACHINE LEARNING
LAB ACTIVITIES (LAB 1)

03/10/19

LOADING ML DATA AND DESCRIPTIVE STATISTICS

This workbook is designed to guide you through the activities proposed for today’s lab. As you will
be working independently, feel free to proceed through the text at your own pace, spending more time
on the parts that are less familiar to you. The workbook contains both hands-on tasks and links to
learning materials such as tutorials, articles and videos. When you are unsure about something, feel
free to ask your teaching assistant or use Internet resources to look for a solution. At the end of each
section, there will be questions and exercises to verify your understanding of the presented
information. You may need to do some research to answer the questions.

1. CSV Files

You must be able to load your data before you can start your machine learning project. The most
common format for machine learning data is CSV files. There are a number of ways to load a CSV
file in Python. In the first section of this lab you will learn three ways that you can use to load your
CSV data in Python:

1. Load CSV Files with the Python Standard Library.
2. Load CSV Files with NumPy.
3. Load CSV Files with Pandas.

There are a number of considerations when loading your machine learning data from CSV files. For
reference, you can learn a lot about the expectations for CSV files by reviewing the CSV request for
comment titled Common Format and MIME Type for Comma-Separated Values (CSV) Files (URL:
https://tools.ietf.org/html/rfc4180)		

File Header. Does your data have a file header? If so this can help in automatically assigning
names to each column of data. If not, you may need to name your attributes manually. Either way,
you should explicitly specify whether or not your CSV file had a file header when loading your
data.

Comments. Does your data have comments? Comments in a CSV file are indicated by a hash (#) at
the start of a line. If you have comments in your file, depending on the method used to load your
data, you may need to indicate whether or not to expect comments and the character to expect to
signify a comment line.

Delimiter. The standard delimiter that separates values in fields is the comma (,) character. Your
file could use a different delimiter like tab or white space in which case you must specify it
explicitly.

Quotes. Sometimes field values can have spaces. In these CSV files the values are often quoted.
The default quote character is the double quotation marks character. Other characters can be used,
and you must specify the quote character used in your file.

Pima Indians Dataset

The Pima Indians dataset is used to demonstrate data loading in this lab. It will also be used in
many of the labs to come. This dataset describes the medical records for Pima Indians and whether
or not each patient will have an onset of diabetes within five years. As such it is a classification
problem. It is a good dataset for demonstration because all of the input attributes are numeric and
the output variable to be predicted is binary (0 or 1).

2

Below lists the eight attributes for the dataset:

1. Number of times pregnant.
2. Plasma glucose concentration 2 hours in an oral glucose tolerance test.
3. Diastolic blood pressure (mm Hg).
4. Triceps skin fold thickness (mm).
5. 2-Hour serum insulin (mu U/ml).
6. Body mass index (BMI).
7. Diabetes pedigree function.
8. Age (years).
9. Class, onset of diabetes within five years.

Given that all attributes are numerical makes it easy to use directly with machine learning
algorithms that expect numerical inputs and output values. This dataset will also be used for the
first few labs in the module, so keep it handy. Below is a sample of the dataset showing the first 5
rows of the 768 instances:

The baseline accuracy if all predictions are made as no onset of diabetes is 65.1%. Top results on
the dataset are in the range of 77.7% accuracy using 10-fold cross-validation. You can learn more
about the dataset below.

https://www.kaggle.com/uciml/pima-indians-diabetes-database

The Python API provides the module CSV and the function 𝑟𝑒𝑎𝑑𝑒𝑟() that can be used to load CSV
files. Once loaded, you can convert the CSV data to a NumPy array and use it for machine learning.
For example, you can download the Pima Indians dataset into your local directory with the filename
pima-indians-diabetes.data.csv. All fields in this dataset are numeric and there is no header line.

Before running the below code block, you will need to create a Jupyter notebook and upload the
Pima Indians dataset (download it from Moodle). First, open Anaconda Navigator in your PC. Click
the Launch button on Jupyter notebook.

Creating a new Jupyter Notebook is easy. Just use the New dropdown menu and select option
Python 3 to open a new Jupyter Notebook for Python.

To upload the dataset, just use the Upload button.

The notebook itself consists of cells. A first empty cell is already available after having created the
new notebook.

Copy the below code block and past on to the first cell.

Load CSV Using Python Standard Library
import csv
import numpy
filename = 'pima-indians-diabetes.data.csv'
raw_data = open(filename, 'rt')
reader = csv.reader(raw_data, delimiter=',', quoting=csv.QUOTE_NONE)
x = list(reader)
data = numpy.array(x).astype('float')
print(data.shape)

3

For open mode, please refer to below.

Character Meaning
'r' open for reading (default)
'w' open for writing, truncating the file first
'x' open for exclusive creation, failing if the file already exists
'a' open for writing, appending to the end of the file if it exists
'b' binary mode
't' text mode (default)
'+' open a disk file for updating (reading and writing)
'U' universal newlines mode (deprecated)

In csv.reader module, no automatic data type conversion is performed unless the
QUOTE_NONNUMERIC format option is specified (in which case unquoted fields are
transformed into floats).

.astype method will copy of the array, cast to a specified type.

The above code block loads an object that can iterate over each row of the data and can easily be
converted into a NumPy array. Running the code block prints the shape of the array as below.

(768, 9)

You can load your CSV data using NumPy and the 𝑛𝑢𝑚𝑝𝑦. 𝑙𝑜𝑎𝑑𝑡𝑥𝑡() function. This function
assumes no header row and all data has the same format. The example below assumes that the file
pima-indians-diabetes.data.csv is in your current working directory.

Load CSV using NumPy
from numpy import loadtxt
filename = 'pima-indians-diabetes.data.csv'
raw_data = open(filename, 'rt')
data = loadtxt(raw_data, delimiter=",")
print(data.shape)

Running the above code block will load the file as a 𝑛𝑢𝑚𝑝𝑦. 𝑛𝑑𝑎𝑟𝑟𝑎𝑦	and print the shape of the
data.

This can be modified to load the same dataset directly from a URL as follows:

Load CSV from URL using NumPy
from numpy import loadtxt
from urllib import urlopen
url = 'https://goo.gl/XXXXX'
raw_data = urlopen(url)
dataset = loadtxt(raw_data, delimiter=",")
print(dataset.shape)

For more information on the numpy.loadtxt() function see below the API documentation.

https://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.loadtxt.html

You can load your CSV data using Pandas and the 𝑝𝑎𝑛𝑑𝑎𝑠. 𝑟𝑒𝑎𝑑_𝑐𝑠𝑣() function. This function is
very flexible and is perhaps my recommended approach for loading your machine learning data.
The function returns a 𝑝𝑎𝑛𝑑𝑎𝑠. 𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒 that you can immediately start summarising and
plotting. The example below assumes that the pima-indians-diabetes.data.csv file is in the current
working directory.

For more information on the pandas.DataFrame see below the API documentation.

4

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html

Load CSV using Pandas
from pandas import read_csv
filename = 'pima-indians-diabetes.data.csv'
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)
print(data.shape)

Note that in this code block we explicitly specify the names of each attribute to the 𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒.

We can also modify this example to load CSV data directly from a URL.

Load CSV using Pandas from URL
from pandas import read_csv
url = 'https://goo.gl/XXXXXXX'
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(url, names=names)
print(data.shape)

To learn more about the 𝑝𝑎𝑛𝑑𝑎𝑠. 𝑟𝑒𝑎𝑑_𝑐𝑠𝑣() function you can refer to below the API
documentation.

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

Verify your understanding:
(a) How many instances and variables in the Pima Indian dataset?
(b) Are the variables all numeric? If not what would you do?

5

2. Descriptive Statistics

There is no substitute for looking at the raw data. Looking at the raw data can reveal insights that
you cannot get any other way. It can also plant seeds that may later grow into ideas on how to better
pre-process and handle the data for machine learning tasks. You can review the first 20 rows of
your data using the ℎ𝑒𝑎𝑑() function on the Pandas DataFrame.

View first 20 rows
from pandas import read_csv
filename = "pima-indians-diabetes.data.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)
peek = data.head(20)
print(peek)

You can see that the first column lists the row number, which is handy for referencing a specific
observation.

Output of reviewing the first few rows of data.

Dimensions of your data

You must have a very good handle on how much data you have, both in terms of rows and columns.

• Too many rows and algorithms may take too long to train. Too few and perhaps you do not
have enough data to train the algorithms.

• Too many features and some algorithms can be distracted or suffer poor performance due to
the curse of dimensionality (will be explained in the next lecture).

You can review the shape and size of your dataset by printing the shape property on the Pandas
DataFrame.

Dimensions of your data
from pandas import read_csv
filename = "pima-indians-diabetes.data.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)
shape = data.shape
print(shape)

The results are listed in rows then columns. You can see that the dataset has 768 rows and
9 columns.

6

Data Type for Each Attribute

The type of each attribute is important. Strings may need to be converted to floating point values or
integers to represent categorical or ordinal values. You can get an idea of the types of attributes by
peeking at the raw data, as above. You can also list the data types used by the DataFrame to
characterise each attribute using the dtypes property.

Data Types for Each Attribute
from pandas import read_csv
filename = "pima-indians-diabetes.data.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)
types = data.dtypes
print(types)

You can see that most of the attributes are integers and that 𝑚𝑎𝑠𝑠 and 𝑝𝑒𝑑𝑖 are floating point types.

Output of reviewing the data types of the data

Descriptive Statistics

Descriptive statistics can give you great insight into the shape of each attribute. Often you can
create more summaries than you have time to review. The describe() function on the Pandas
DataFrame lists 8 statistical properties of each attribute. They are:

• Count.
• Mean.
• Standard Deviation.
• Minimum Value.
• 25th Percentile.
• 50th Percentile (Median).
• 75th Percentile.
• Maximum Value.

Statistical Summary
from pandas import read_csv
from pandas import set_option
filename = "pima-indians-diabetes.data.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)
set_option('display.width', 100)
set_option('precision', 3)
description = data.describe()
print(description)

You can see that you do get a lot of data. You will note some calls to pandas.set_option() in the
recipe to change the precision of the numbers and the preferred width of the output. This is to make
it more readable for this example. When describing your data this way, it is worth taking some time

7

and reviewing observations from the results. This might include the presence of 𝑁𝐴 values for
missing data or surprising distributions for attributes.

For more information on pandas.set_option() please see below.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.set_option.html

Output of reviewing a statistical summary of the data.

Class Distribution (Classification only)

On classification problems you need to know how balanced the class values are. Highly imbalanced
problems (a lot more observations for one class than another) are common and may need special
handling in the data preparation stage of your project. You can quickly get an idea of the
distribution of the class attribute in Pandas.

Class Distribution
from pandas import read_csv
filename = "pima-indians-diabetes.data.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)
class_counts = data.groupby('class').size()
print(class_counts)

You can see that there are nearly double the number of observations with class 0 (no onset of
diabetes) than there are with class 1 (onset of diabetes).

Output of reviewing a class breakdown of the data

Correlations between Attributes

Correlation refers to the relationship between two variables and how they may or may not change
together. The most common method for calculating correlation is Pearson’s Correlation
Coefficient, that assumes a normal distribution of the attributes involved. A correlation of -1 or 1
shows a full negative or positive correlation respectively. Whereas a value of 0 shows no
correlation at all. Some machine learning algorithms like linear and logistic regression can suffer
poor performance if there are highly correlated attributes in your dataset. As such, it is a good idea
to review all of the pairwise correlations of the attributes in your dataset. You can use the 𝑐𝑜𝑟𝑟()
function on the Pandas 𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒 (a multi-dimensional array where the rows and the columns
can be labelled) to calculate a correlation matrix.

Pairwise Pearson correlations
from pandas import read_csv
from pandas import set_option
filename = "pima-indians-diabetes.data.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

8

data = read_csv(filename, names=names)
set_option('display.width', 100)
set_option('precision', 3)
correlations = data.corr(method='pearson')
print(correlations)

The matrix lists all attributes across the top and down the side, to give correlation between all pairs
of attributes (twice, because the matrix is symmetrical). You can see the diagonal line through the
matrix from the top left to bottom right corners of the matrix shows perfect correlation of each
attribute with itself.

Skew of Univariate Distributions

Skew refers to a distribution that is assumed Gaussian (normal or bell curve) that is shifted or
squashed in one direction or another. Many machine learning algorithms assume a Gaussian
distribution. Knowing that an attribute has a skew may allow you to perform data preparation to
correct the skew and later improve the accuracy of your models. You can calculate the skew of each
attribute using the 𝑠𝑘𝑒𝑤() function on the Pandas 𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒.

Skew for each attribute
from pandas import read_csv
filename = "pima-indians-diabetes.data.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(filename, names=names)
skew = data.skew()
print(skew)

The skew result show a positive (right) or negative (left) skew. Values closer to zero show less
skew.

Output of reviewing skew of attribute distribution in the data.

Verify your understanding:
(c) Is the dataset balanced?
(d) Does any variable have unusual distribution? If yes what could be the problem?
(e) What do you think should be done to rectify the situation?
(f) Are there any variables have similar information? If yes then what should be done?

9

3. References

[1]. Géron, A., 2017. Hands-on machine learning with Scikit-Learn and TensorFlow: concepts,

tools, and techniques to build intelligent systems. " O'Reilly Media, Inc.".
[2]. Raschka, S., 2015. Python machine learning. Packt Publishing Ltd.
[3]. Grus, J., 2019. Data science from scratch: first principles with python. O'Reilly Media.
[4]. Müller, A.C. and Guido, S., 2016. Introduction to machine learning with Python: a guide for

data scientists. " O'Reilly Media, Inc.".
[5]. Brownlee, J., 2014. Machine learning mastery.
[6]. Raschka, S., 2015. Python machine learning. Packt Publishing Ltd.

