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APPLIED MACHINE LEARNING 
LAB ACTIVITIES (LAB 1) 

03/10/19 

LOADING ML DATA AND DESCRIPTIVE STATISTICS 
 
This workbook is designed to guide you through the activities proposed for today’s lab. As you will 
be working independently, feel free to proceed through the text at your own pace, spending more time 
on the parts that are less familiar to you. The workbook contains both hands-on tasks and links to 
learning materials such as tutorials, articles and videos. When you are unsure about something, feel 
free to ask your teaching assistant or use Internet resources to look for a solution. At the end of each 
section, there will be questions and exercises to verify your understanding of the presented 
information. You may need to do some research to answer the questions. 
 
1. CSV Files 
 
You must be able to load your data before you can start your machine learning project. The most 
common format for machine learning data is CSV files. There are a number of ways to load a CSV 
file in Python. In the first section of this lab you will learn three ways that you can use to load your 
CSV data in Python:  

1. Load CSV Files with the Python Standard Library.  
2. Load CSV Files with NumPy. 
3. Load CSV Files with Pandas. 

There are a number of considerations when loading your machine learning data from CSV files. For 
reference, you can learn a lot about the expectations for CSV files by reviewing the CSV request for 
comment titled Common Format and MIME Type for Comma-Separated Values (CSV) Files (URL: 
https://tools.ietf.org/html/rfc4180)		

File Header. Does your data have a file header? If so this can help in automatically assigning 
names to each column of data. If not, you may need to name your attributes manually. Either way, 
you should explicitly specify whether or not your CSV file had a file header when loading your 
data. 

Comments. Does your data have comments? Comments in a CSV file are indicated by a hash (#) at 
the start of a line. If you have comments in your file, depending on the method used to load your 
data, you may need to indicate whether or not to expect comments and the character to expect to 
signify a comment line. 

Delimiter. The standard delimiter that separates values in fields is the comma (,) character. Your 
file could use a different delimiter like tab or white space in which case you must specify it 
explicitly. 
 
Quotes. Sometimes field values can have spaces. In these CSV files the values are often quoted. 
The default quote character is the double quotation marks character. Other characters can be used, 
and you must specify the quote character used in your file. 
 
Pima Indians Dataset 
 
The Pima Indians dataset is used to demonstrate data loading in this lab. It will also be used in 
many of the labs to come. This dataset describes the medical records for Pima Indians and whether 
or not each patient will have an onset of diabetes within five years. As such it is a classification 
problem. It is a good dataset for demonstration because all of the input attributes are numeric and 
the output variable to be predicted is binary (0 or 1).  
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Below lists the eight attributes for the dataset:  

1. Number of times pregnant. 
2. Plasma glucose concentration 2 hours in an oral glucose tolerance test.  
3. Diastolic blood pressure (mm Hg). 
4. Triceps skin fold thickness (mm). 
5. 2-Hour serum insulin (mu U/ml). 
6. Body mass index (BMI). 
7. Diabetes pedigree function. 
8. Age (years). 
9. Class, onset of diabetes within five years. 

 
Given that all attributes are numerical makes it easy to use directly with machine learning 
algorithms that expect numerical inputs and output values. This dataset will also be used for the 
first few labs in the module, so keep it handy. Below is a sample of the dataset showing the first 5 
rows of the 768 instances: 
 

 
 
The baseline accuracy if all predictions are made as no onset of diabetes is 65.1%. Top results on 
the dataset are in the range of 77.7% accuracy using 10-fold cross-validation. You can learn more 
about the dataset below.  
 
https://www.kaggle.com/uciml/pima-indians-diabetes-database 
 
The Python API provides the module CSV and the function 𝑟𝑒𝑎𝑑𝑒𝑟() that can be used to load CSV 
files. Once loaded, you can convert the CSV data to a NumPy array and use it for machine learning. 
For example, you can download the Pima Indians dataset into your local directory with the filename 
pima-indians-diabetes.data.csv. All fields in this dataset are numeric and there is no header line. 
 
Before running the below code block, you will need to create a Jupyter notebook and upload the 
Pima Indians dataset (download it from Moodle). First, open Anaconda Navigator in your PC. Click 
the Launch button on Jupyter notebook.   
 
Creating a new Jupyter Notebook is easy. Just use the New dropdown menu and select option 
Python 3 to open a new Jupyter Notebook for Python. 
 
To upload the dataset, just use the Upload button.  
 
The notebook itself consists of cells. A first empty cell is already available after having created the 
new notebook. 
 
Copy the below code block and past on to the first cell.  
 
# Load CSV Using Python Standard Library 
import csv 
import numpy 
filename = 'pima-indians-diabetes.data.csv' 
raw_data = open(filename, 'rt') 
reader = csv.reader(raw_data, delimiter=',', quoting=csv.QUOTE_NONE)  
x = list(reader) 
data = numpy.array(x).astype('float') 
print(data.shape) 
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For open mode, please refer to below.  
 
Character   Meaning 
'r' open for reading (default) 
'w' open for writing, truncating the file first 
'x' open for exclusive creation, failing if the file already exists 
'a' open for writing, appending to the end of the file if it exists 
'b' binary mode 
't' text mode (default) 
'+' open a disk file for updating (reading and writing) 
'U' universal newlines mode (deprecated) 
 
In csv.reader module, no automatic data type conversion is performed unless the 
QUOTE_NONNUMERIC format option is specified (in which case unquoted fields are 
transformed into floats). 
 
.astype method will copy of the array, cast to a specified type. 
 
The above code block loads an object that can iterate over each row of the data and can easily be 
converted into a NumPy array. Running the code block prints the shape of the array as below. 
 
(768, 9) 
 
You can load your CSV data using NumPy and the 𝑛𝑢𝑚𝑝𝑦. 𝑙𝑜𝑎𝑑𝑡𝑥𝑡() function. This function 
assumes no header row and all data has the same format. The example below assumes that the file 
pima-indians-diabetes.data.csv is in your current working directory. 
 
# Load CSV using NumPy 
from numpy import loadtxt 
filename = 'pima-indians-diabetes.data.csv'  
raw_data = open(filename, 'rt') 
data = loadtxt(raw_data, delimiter=",")  
print(data.shape) 

 
Running the above code block will load the file as a 𝑛𝑢𝑚𝑝𝑦. 𝑛𝑑𝑎𝑟𝑟𝑎𝑦	and print the shape of the 
data. 
 
This can be modified to load the same dataset directly from a URL as follows: 
 
# Load CSV from URL using NumPy 
from numpy import loadtxt 
from urllib import urlopen 
url = 'https://goo.gl/XXXXX' 
raw_data = urlopen(url) 
dataset = loadtxt(raw_data, delimiter=",")  
print(dataset.shape) 

 
For more information on the numpy.loadtxt() function see below the API documentation.  
 
https://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.loadtxt.html 
 
You can load your CSV data using Pandas and the 𝑝𝑎𝑛𝑑𝑎𝑠. 𝑟𝑒𝑎𝑑_𝑐𝑠𝑣() function. This function is 
very flexible and is perhaps my recommended approach for loading your machine learning data. 
The function returns a 𝑝𝑎𝑛𝑑𝑎𝑠. 𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒 that you can immediately start summarising and 
plotting. The example below assumes that the pima-indians-diabetes.data.csv file is in the current 
working directory. 
 
For more information on the pandas.DataFrame see below the API documentation.  
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http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html 
 
# Load CSV using Pandas 
from pandas import read_csv 
filename = 'pima-indians-diabetes.data.csv' 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']  
data = read_csv(filename, names=names) 
print(data.shape) 
 
Note that in this code block we explicitly specify the names of each attribute to the 𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒.  
 
We can also modify this example to load CSV data directly from a URL. 
 
# Load CSV using Pandas from URL 
from pandas import read_csv 
url = 'https://goo.gl/XXXXXXX' 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']  
data = read_csv(url, names=names) 
print(data.shape) 
 
To learn more about the 𝑝𝑎𝑛𝑑𝑎𝑠. 𝑟𝑒𝑎𝑑_𝑐𝑠𝑣() function you can refer to below the API 
documentation. 
 
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html 
 
 
Verify your understanding: 
(a) How many instances and variables in the Pima Indian dataset? 
(b) Are the variables all numeric? If not what would you do? 
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2. Descriptive Statistics 
 
There is no substitute for looking at the raw data. Looking at the raw data can reveal insights that 
you cannot get any other way. It can also plant seeds that may later grow into ideas on how to better 
pre-process and handle the data for machine learning tasks. You can review the first 20 rows of 
your data using the ℎ𝑒𝑎𝑑() function on the Pandas DataFrame. 
 
# View first 20 rows 
from pandas import read_csv 
filename = "pima-indians-diabetes.data.csv" 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']  
data = read_csv(filename, names=names) 
peek = data.head(20) 
print(peek) 

 
You can see that the first column lists the row number, which is handy for referencing a specific 
observation. 
 

 
Output of reviewing the first few rows of data. 

 
Dimensions of your data 
 
You must have a very good handle on how much data you have, both in terms of rows and columns. 

• Too many rows and algorithms may take too long to train. Too few and perhaps you do not 
have enough data to train the algorithms. 

• Too many features and some algorithms can be distracted or suffer poor performance due to 
the curse of dimensionality (will be explained in the next lecture). 

You can review the shape and size of your dataset by printing the shape property on the Pandas 
DataFrame. 
 
# Dimensions of your data 
from pandas import read_csv 
filename = "pima-indians-diabetes.data.csv" 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']  
data = read_csv(filename, names=names) 
shape = data.shape 
print(shape) 

 
The results are listed in rows then columns. You can see that the dataset has 768 rows and 
9 columns. 
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Data Type for Each Attribute 
 
The type of each attribute is important. Strings may need to be converted to floating point values or 
integers to represent categorical or ordinal values. You can get an idea of the types of attributes by 
peeking at the raw data, as above. You can also list the data types used by the DataFrame to 
characterise each attribute using the dtypes property. 
 
# Data Types for Each Attribute 
from pandas import read_csv 
filename = "pima-indians-diabetes.data.csv" 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']  
data = read_csv(filename, names=names) 
types = data.dtypes 
print(types) 
 
You can see that most of the attributes are integers and that 𝑚𝑎𝑠𝑠 and 𝑝𝑒𝑑𝑖 are floating point types. 
 

 
Output of reviewing the data types of the data 

 
Descriptive Statistics 
 
Descriptive statistics can give you great insight into the shape of each attribute. Often you can 
create more summaries than you have time to review. The describe() function on the Pandas 
DataFrame lists 8 statistical properties of each attribute. They are: 
 

• Count. 
• Mean. 
• Standard Deviation. 
• Minimum Value. 
• 25th Percentile. 
• 50th Percentile (Median).  
• 75th Percentile. 
• Maximum Value. 

 
# Statistical Summary 
from pandas import read_csv 
from pandas import set_option 
filename = "pima-indians-diabetes.data.csv" 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']  
data = read_csv(filename, names=names) 
set_option('display.width', 100) 
set_option('precision', 3) 
description = data.describe() 
print(description) 

 
You can see that you do get a lot of data. You will note some calls to pandas.set_option() in the 
recipe to change the precision of the numbers and the preferred width of the output. This is to make 
it more readable for this example. When describing your data this way, it is worth taking some time 
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and reviewing observations from the results. This might include the presence of 𝑁𝐴 values for 
missing data or surprising distributions for attributes. 
 
For more information on pandas.set_option() please see below. 
 
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.set_option.html  
 

 
Output of reviewing a statistical summary of the data.  

 
Class Distribution (Classification only) 
 
On classification problems you need to know how balanced the class values are. Highly imbalanced 
problems (a lot more observations for one class than another) are common and may need special 
handling in the data preparation stage of your project. You can quickly get an idea of the 
distribution of the class attribute in Pandas. 
 
# Class Distribution 
from pandas import read_csv 
filename = "pima-indians-diabetes.data.csv" 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']  
data = read_csv(filename, names=names) 
class_counts = data.groupby('class').size() 
print(class_counts) 
 
You can see that there are nearly double the number of observations with class 0 (no onset of 
diabetes) than there are with class 1 (onset of diabetes). 
 

 
Output of reviewing a class breakdown of the data 

 
Correlations between Attributes 
 
Correlation refers to the relationship between two variables and how they may or may not change 
together. The most common method for calculating correlation is Pearson’s Correlation 
Coefficient, that assumes a normal distribution of the attributes involved. A correlation of -1 or 1 
shows a full negative or positive correlation respectively. Whereas a value of 0 shows no 
correlation at all. Some machine learning algorithms like linear and logistic regression can suffer 
poor performance if there are highly correlated attributes in your dataset. As such, it is a good idea 
to review all of the pairwise correlations of the attributes in your dataset. You can use the 𝑐𝑜𝑟𝑟() 
function on the Pandas 𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒 (a multi-dimensional array where the rows and the columns 
can be labelled) to calculate a correlation matrix. 
 
# Pairwise Pearson correlations 
from pandas import read_csv 
from pandas import set_option 
filename = "pima-indians-diabetes.data.csv" 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] 
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data = read_csv(filename, names=names) 
set_option('display.width', 100) 
set_option('precision', 3) 
correlations = data.corr(method='pearson') 
print(correlations) 
 
The matrix lists all attributes across the top and down the side, to give correlation between all pairs 
of attributes (twice, because the matrix is symmetrical). You can see the diagonal line through the 
matrix from the top left to bottom right corners of the matrix shows perfect correlation of each 
attribute with itself. 
 

 
 
Skew of Univariate Distributions 
 
Skew refers to a distribution that is assumed Gaussian (normal or bell curve) that is shifted or 
squashed in one direction or another. Many machine learning algorithms assume a Gaussian 
distribution. Knowing that an attribute has a skew may allow you to perform data preparation to 
correct the skew and later improve the accuracy of your models. You can calculate the skew of each 
attribute using the 𝑠𝑘𝑒𝑤() function on the Pandas 𝐷𝑎𝑡𝑎𝐹𝑟𝑎𝑚𝑒. 
 
# Skew for each attribute 
from pandas import read_csv 
filename = "pima-indians-diabetes.data.csv" 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']  
data = read_csv(filename, names=names) 
skew = data.skew() 
print(skew) 
 
The skew result show a positive (right) or negative (left) skew. Values closer to zero show less 
skew. 
 

 
Output of reviewing skew of attribute distribution in the data. 

 
Verify your understanding: 
(c) Is the dataset balanced? 
(d) Does any variable have unusual distribution? If yes what could be the problem? 
(e) What do you think should be done to rectify the situation? 
(f) Are there any variables have similar information? If yes then what should be done? 
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