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inputs target

Predictive Modeling Training Data

...

Training Data Training data case: categorical or 
numeric input and target 
measurements
Examples of categorical variables: 
race, sex, age group, educational level etc

• Predictive Modeling (a.k.a. supervised prediction or supervised learning)
• Training data : training cases, examples, instances, or records
• Variables : inputs, predictors, features, explanatory or independent 

variables 
• Targets : response, outcome, or dependent variable
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Predictive Model

...

Training Data

Predictive model: a concise 
representation of the input 
and target association

inputs target



10/10/19

2

6

Predictive Model

...

Predictions: output 
of the predictive 
model given a set of 
input measurements

inputs predictions
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Three Prediction Types

...

rankings

estimates

decisionsinputs prediction
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Decision Predictions

...

A predictive model uses
input measurements
to make the best decision 
for each case.

inputs prediction

primary

secondary

secondary

primary

tertiary
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Ranking Predictions

...

A predictive model uses
input measurements
to optimally rank each 
case.

inputs prediction
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Estimate Predictions

...

A predictive model uses
input measurements
to optimally estimate 
the target value.

inputs prediction
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Data Quality: Why Preprocess the Data?

Measures for data quality: A multidimensional view

n Accuracy: correct or wrong, accurate or not

n Completeness: not recorded, unavailable, …

n Consistency: some modified but some not, dangling, …

n Timeliness: timely update? 

n Believability: how trustable the data are correct?

n Interpretability: how easily the data can be understood?
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Major Tasks in Data Preprocessing

Data cleaning
n Fill in missing values, smooth noisy data, identify or remove outliers, 

and resolve inconsistencies
Data integration
n Integration of multiple databases, data cubes, or files

Data reduction
n Dimensionality reduction – data encoding scheme 
n To obtain a reduced representation of the original data

– Data compression techniques
§ E.g., wavelet transforms and principal components analysis

– Attribute subset selection
§ E.g., removing irrelevant attributes

– Attribute construction
§ Where a small set of more useful attributes is derived from the original set 
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Data transformation and data discretization
n Rescaling [0, 1]
n Binnarisation

– All values above the threshold are marked 1 and all equal to or 
below are marked as 0.

n Standardisation (Gaussian)
– Means of 0 and STDEV of 1

n Normalisation 
– A distance-based learning algorithms work better

– e.g., neural networks, nearest-neighbor, clustering
– Scaled to a smaller range such as a length of 1 (called unit norm or a vector with 

length of 1 in linear algebra)

n Concept hierarchy generation (e.g., DT)
– Raw data values for attributes are replaced by ranges or higher conceptual levels
– Raw value for age may be replaced by higher-level concepts, such as youth, 

adult, or senior
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Data Cleaning
Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., 
instrument faulty, human or computer error, transmission error
n incomplete: lacking attribute values, lacking certain attributes of 

interest, or containing only aggregate data
– e.g., Occupation=“ ” (missing data)

n noisy: containing noise, errors, or outliers
– e.g., Salary=“−10” (an error)

n inconsistent: containing discrepancies in codes or names, e.g.,
– Age=“42”, Birthday=“03/07/2010”
– Was rating “1, 2, 3”, now rating “A, B, C”
– discrepancy between duplicate records

n Intentional (e.g., disguised missing data)
– Jan. 1 as everyone’s birthday?
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Incomplete (Missing) Data

Data is not always available
n E.g., many tuples have no recorded value for several 

attributes, such as age, number of times pregnanct, salary
Missing data may be due to 
n equipment malfunction
n inconsistent with other recorded data and thus deleted
n data not entered due to misunderstanding
n certain data may not be considered important at the time 

of entry
n not register history or changes of the data

Missing data may need to be inferred
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Simple Prediction Illustration – Regressions 

log-likelihood function

Find parameter estimates 
by maximizing

...
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Missing Values and Regression Modeling
Training Data

targetinputs

Problem 1: Training data cases with missing 
values on inputs used by a regression model 
are ignored.

...
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Missing Values and the Prediction Formula

Predict: (x1, x2) = (0.3, ? )

Problem 2: Prediction formulas cannot 
score cases with missing values.

...
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Noisy Data

Noise: random error or variance in a measured variable
Incorrect attribute values may be due to
n faulty data collection instruments
n data entry problems
n data transmission problems
n technology limitation
n inconsistency in naming convention 

Other data problems which require data cleaning
n duplicate records
n incomplete data
n inconsistent data
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How to Handle Noisy Data?

Binning
n first sort data and partition into (equal-frequency) bins
n then one can smooth by bin means, smooth by bin 

median, smooth by bin boundaries, etc.
Regression
n smooth by fitting the data into regression functions

Clustering
n detect and remove outliers

Combined computer and human inspection
n detect suspicious values and check by human (e.g., deal 

with possible outliers)
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Simple Discretization: Binning

Equal-width (distance) partitioning

n Divides the range into N intervals of equal size: uniform grid

n if A and B are the lowest and highest values of the attribute, the width 

of intervals will be: W = (B –A)/N.

n The most straightforward, but outliers may dominate presentation

n Skewed data is not handled well

Equal-depth (frequency) partitioning

n Divides the range into N intervals, each containing approximately same 

number of samples

n Good data scaling

n Managing categorical attributes can be tricky

41

How might you determine outliers in the data?

• Outliers in the data may be detected by clustering, 
where similar values are organized into groups, or 
‘clusters’. 

• Values that fall outside of the set of clusters may be 
considered outliers. 

• Alternatively, a combination of computer and human 
inspection can be used where a predetermined data 
distribution is implemented to allow the computer to 
identify possible outliers. 

• These possible outliers can then be verified by human 
inspection with much less effort than would be required 
to verify the entire initial data set.
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What other methods are there for data smoothing?

Alternate forms of binning 
n smoothing by bin means, medians, modes 
n smoothing by bin boundaries 
n equi-width bins can be used to implement any of the 

forms of binning, where the interval range of values in 
each bin is constant. 

Mean=the average. 
Median= the middle number. You line up the numbers in order from smallest 
to largest, and cross one out on each side at a time. 
Mode=the most common or frequent number. 
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What other methods are there for data smoothing?

Alternate forms of binning 
n smoothing by bin medians 
n smoothing by bin boundaries 
n equi-width bins can be used to implement any of the 

forms of binning, where the interval range of values in 
each bin is constant. 

Regression techniques 
n smooth the data by fitting it to a function such as 

through linear or multiple regression
Concept hierarchies 
n can smooth the data by rolling-up lower level concepts 

to higher-level concepts
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The Curse of Dimensionality

1–D

2–D

3–D
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Irrelevancy
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Redundancy
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