
APPLIED MACHINE LEARNING 
LAB ACTIVITIES (LAB 4) 

24/10/19 

COMPARE MACHINE LEARNING ALGORITHMS 
 
This workbook is designed to guide you through the activities proposed for today’s lab. As you will 
be working independently, feel free to proceed through the text at your own pace, spending more time 
on the parts that are less familiar to you. The workbook contains both hands-on tasks and links to 
learning materials such as tutorials, articles and videos. When you are unsure about something, feel 
free to ask our teaching assistants or use Internet resources to look for a solution. At the end of each 
section, there will be questions and exercises to verify your understanding of the presented 
information. You may need to do some research to answer the questions. 
 
1. Evaluation Metrics 
 
The metrics that you choose to evaluate your machine learning algorithms are very important. 
Choice of metrics influences how the performance of machine learning algorithms is measured and 
compared. They influence how you weight the importance of different characteristics in the results 
and your ultimate choice of which algorithm to choose.  
 
In this lab, various algorithm evaluation metrics are demonstrated for classification type machine 
learning problems. All recipes evaluate the same algorithms, Logistic Regression. A 10-fold cross-
validation test harness is used to demonstrate each metric, because this is the most likely scenario 
you will use when employing different algorithm evaluation metrics. 
 
A caveat in these recipes is the cross_validation.cross val score function used to report the 
performance in each recipe. It does allow the use of different scoring metrics that will be discussed, 
but all scores are reported so that they can be sorted in ascending order (largest score is best). Some 
evaluation metrics (like mean squared error) are naturally descending scores (the smallest score is 
best) and as such are reported as negative by the cross validation.cross val score() function. 
This is important to note, because some scores will be reported as negative that by definition can 
never be negative. I will remind you about this caveat as we work through the lab. 
 
You can learn more about machine learning algorithm performance metrics supported by scikit-
learn on the page Model evaluation: quantifying the quality of predictions. See below. 
 
https://scikit-learn.org/stable/modules/model_evaluation.html 
 
Classification Metrics 
 
Classification problems are perhaps the most common type of machine learning problem and as 
such there is a myriad of metrics that can be used to evaluate predictions for these problems. In this 
section we will review how to use the following metrics: 
 

• Classification Accuracy.  
• Logarithmic Loss. 
• Area Under ROC Curve.  
• Confusion Matrix. 
• Classification Report. 

 
Classification Accuracy. Classification accuracy is the number of correct predictions made as a 
ratio of all predictions made. This is the most common evaluation metric for classification 



problems, it is also the most misused. It is really only suitable when there are an equal number of 
observations in each class (which is rarely the case) and that all predictions and prediction errors are 
equally important, which is often not the case. Below is an example of calculating classification 
accuracy. 
 
# Cross Validation Classification Accuracy 
from pandas import read_csv 
from sklearn.model_selection import KFold 
from sklearn.model_selection import cross_val_score 
from sklearn.linear_model import LogisticRegression 
filename = 'pima-indians-diabetes.data.csv' 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] 
dataframe = read_csv(filename, names=names) 
array = dataframe.values 
X = array[:,0:8] 
Y = array[:,8] 
kfold = KFold(n_splits=10, random_state=7) 
model = LogisticRegression() 
scoring = 'accuracy' 
results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)  
print("Accuracy: %.3f (%.3f)" % (results.mean(), results.std())) 

 
Verify your understanding: 
(a) What is the classification accuracy? 
(b) Covert the classification accuracy into a percentage by multiplying the value by 100, giving an 

accuracy score of approximately 77% accurate.  
(c) How is the standard deviation calculated? Discuss why it is an important measur.  
 
Logarithmic Loss. Logarithmic loss (or logloss) is a performance metric for evaluating the 
predictions of probabilities of membership to a given class. The scalar probability between 0 and 1 
can be seen as a measure of confidence for a prediction by an algorithm. Predictions that are correct 
or incorrect are rewarded or punished proportionally to the confidence of the prediction. Below is 
an example of calculating logloss for Logistic regression predictions on the Pima Indians onset of 
diabetes dataset. You can learn more about Log Loss. See below page.  
 
https://www.kaggle.com/dansbecker/what-is-log-loss  
 
Verify your understanding: 
(d) Using the information on the above link, modify the above code block to calculate logloss.  
(e) What is the logloss? Interpret the result.  
 
Area Under ROC Curve. Area under ROC Curve (or AUC for short) is a performance metric for 
binary classification problems. The AUC represents a model’s ability to discriminate between 
positive and negative classes. An area of 1.0 represents a model that made all predictions perfectly. 
An area of 0.5 represents a model that is as good as random. ROC can be broken down into 
sensitivity and specificity. A binary classification problem is really a trade-off between sensitivity 
and specificity. 
 

• Sensitivity is the true positive rate also called the recall. It is the number of instances from 
the positive (first) class that actually predicted correctly. 𝑇𝑃𝑅 = %&

%&'()
. 

 
• Specificity is also called the true negative rate. Is the number of instances from the negative 

(second) class that were actually predicted correctly. 𝐹𝑃𝑅 = (&
(&'%)

.		 
 
Since an ROC curve is a plot of the true positive rate against the false positive rate for the different 
possible cutpoints of a diagnostic test, it demonstrates several things: 



 
1) It shows the tradeoff between sensitivity and specificity (any increase in sensitivity will be 

accompanied by a decrease in specificity). 
2) The closer the curve follows the left-hand border and then the top border of the ROC space, 

the more accurate the test. 
3) The closer the curve comes to the 45-degree diagonal of the ROC space, the less accurate 

the test. 
4) The slope of the tangent line at a cutpoint gives the likelihood ratio (LR) for that value of 

the test.  
5) The area under the curve is a measure of test accuracy. 
 

 
 
 
 
The above graph shows three ROC curves representing excellent, good, and worthless tests plotted 
on the same graph. The accuracy of the test depends on how well the test separates the group being 
tested into those with and without the disease in question. Accuracy is measured by the area under 
the ROC curve. An area of 1 represents a perfect test; an area of .5 represents a worthless test. A 
rough guide for classifying the accuracy of a diagnostic test is the traditional academic point 
system: 
 

1) .90-1 = excellent (A) 
2) .80-.90 = good (B) 
3) .70-.80 = fair (C) 
4) .60-.70 = poor (D) 
5) .50-.60 = fail (F) 

 
Verify your understanding: 
(f) Using the information on the same page, modify the above code block to calculate AUC.  
(g) What is the AUC? Interpret the result.  
 
We can plot a ROC curve for a model in Python using the 𝑟𝑜𝑐_𝑐𝑢𝑟𝑣𝑒() scikit-learn function. The 
function takes both the true outcomes (0,1) from the test set and the predicted probabilities for the 1 
class. The function returns the false positive rates for each threshold, true positive rates for each 
threshold and thresholds. The AUC for the ROC can be calculated using the 𝑟𝑜𝑐_𝑎𝑢𝑐_𝑠𝑐𝑜𝑟𝑒() 
function. Like the 𝑟𝑜𝑐_𝑐𝑢𝑟𝑣𝑒() function, the AUC function takes both the true outcomes (0,1) 
from the test set and the predicted probabilities for the 1 class. It returns the AUC score between 0.0 
and 1.0 for no skill and perfect skill respectively.  
 
# Cross Validation Classification ROC AUC 
from pandas import read_csv 
from sklearn.model_selection import train_test_split 
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from sklearn.linear_model import LogisticRegression 
from sklearn.metrics import roc_curve 
from sklearn.metrics import roc_auc_score 
from matplotlib import pyplot 
filename = 'pima-indians-diabetes.data.csv' 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']  
dataframe = read_csv(filename, names=names) 
array = dataframe.values 
X = array[:,0:8] 
Y = array[:,8] 
# split into train/test sets 
trainX, testX, trainy, testy = train_test_split(X, Y, test_size=0.1, random_state=2) 
# fit a model 
model = LogisticRegression() 
model.fit(trainX, trainy) 
# predict probabilities 
probs = model.predict_proba(testX) 
# keep probabilities for the positive outcome only 
probs = probs[:, 1] 
# calculate AUC 
auc = roc_auc_score(testy, probs) 
print('AUC: %.3f' % auc) 
# calculate roc curve 
fpr, tpr, thresholds = roc_curve(testy, probs) 
# plot no skill 
pyplot.plot([0, 1], [0, 1], linestyle='--') 
# plot the roc curve for the model 
pyplot.plot(fpr, tpr, marker='.') 
# show the plot 
pyplot.show() 
 
Verify your understanding: 
(h) Run the above code block and explain the plot.   
 
Confusion Matrix. The confusion matrix is a handy presentation of the accuracy of a model with 
two or more classes. The table presents predictions on the x-axis and accuracy outcomes on the y-
axis. The cells of the table are the number of predictions made by a machine learning algorithm. For 
example, a machine learning algorithm can predict 0 or 1 and each prediction may actually have 
been a 0 or 1. Predictions for 0 that were actually 0 appear in the cell for prediction = 0 and actual = 
0, whereas predictions for 0 that were actually 1 appear in the cell for prediction = 0 and actual = 1. 
And so on. Below is an example of calculating a confusion matrix for a set of predictions by a 
Logistic Regression on the Pima Indians onset of diabetes dataset. 
 
# Cross Validation Classification Confusion Matrix 
from pandas import read_csv 
from sklearn.model_selection import train_test_split 
from sklearn.linear_model import LogisticRegression 
from sklearn.metrics import confusion_matrix 
filename = 'pima-indians-diabetes.data.csv' 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] 
dataframe = read_csv(filename, names=names) 
array = dataframe.values 
X = array[:,0:8] 
Y = array[:,8] 
test_size = 0.33 
seed = 7 
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, 
    random_state=seed) 
model = LogisticRegression() 
model.fit(X_train, Y_train) 
predicted = model.predict(X_test) 
matrix = confusion_matrix(Y_test, predicted) 
print(matrix) 
 
Verify your understanding: 
(i) Calculate Type I and II errors using the below information.  
 https://towardsdatascience.com/taking-the-confusion-out-of-confusion-matrices-c1ce054b3d3e  



(j) Which one is more important in the given scenario? 
 
Classification Report. The scikit-learn library provides a convenience report when working on 
classification problems to give you a quick idea of the accuracy of a model using a number of 
measures. The 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑝𝑜𝑟𝑡() function displays the precision, recall, F1-score and 
support for each class. The example below demonstrates the report on the binary classification 
problem. 
 
# Cross Validation Classification Report 
from pandas import read_csv 
from sklearn.model_selection import train_test_split 
from sklearn.linear_model import LogisticRegression 
from sklearn.metrics import classification_report 
filename = 'pima-indians-diabetes.data.csv' 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] 
dataframe = read_csv(filename, names=names) 
array = dataframe.values 
X = array[:,0:8] 
Y = array[:,8] 
test_size = 0.33 
seed = 7 
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, 
    random_state=seed) 
model = LogisticRegression() 
model.fit(X_train, Y_train) 
predicted = model.predict(X_test) 
report = classification_report(Y_test, predicted) 
print(report) 
 
Verify your understanding: 
(k) You should be able to explain the report.  
 
2. Shortlisting Algorithms 
 
You cannot know which algorithm will work best on your dataset beforehand. You must use trial 
and error to discover a shortlist of algorithms that do well on your problem that you can then double 
down on and tune further. I call this process spot-checking.  
 
The question is not: What algorithm should I use on my dataset? Instead it is: What algorithms 
should I spot-check on my dataset? You can guess at what algorithms might do well on your 
dataset, and this can be a good starting point. I recommend trying a mixture of algorithms and see 
what is good at picking out the structure in your data. Below are some suggestions when spot-
checking algorithms on your dataset:  
 

• Try a mixture of algorithm representations (e.g. instances and trees). 
• Try a mixture of learning algorithms (e.g. different algorithms for learning the same type of 

representation). 
• Try a mixture of modelling types (e.g. linear and nonlinear functions or parametric and 

nonparametric). 
 
We are going to take a look at four classification algorithms that you can spot-check on your 
dataset.  
 

• Logistic Regression 
• k-Nearest Neighbors. 
• Classification and Regression Trees (CART).  
• Support Vector Machines. 

 
This time, we will not go into the API or parameterisation of each algorithm. 



Logistic Regression. Logistic regression assumes a Gaussian distribution for the numeric input 
variables and can model binary classification problems. You can construct a logistic regression 
model using the 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 class. See the details below.  
 
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html 
 
# Logistic Regression Classification 
from pandas import read_csv 
from sklearn.model_selection import KFold 
from sklearn.model_selection import cross_val_score 
from sklearn.linear_model import LogisticRegression 
filename = 'pima-indians-diabetes.data.csv' 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] 
dataframe = read_csv(filename, names=names) 
array = dataframe.values 
X = array[:,0:8] 
Y = array[:,8] 
num_folds = 10 
kfold = KFold(n_splits=10, random_state=7) 
model = LogisticRegression() 
results = cross_val_score(model, X, Y, cv=kfold) 
print(results.mean()) 
 
k-Nearest Neighbors (KNN). KNN uses a distance metric to find the k most similar instances in 
the training data for a new instance and takes the mean outcome of the neighbors as the prediction. 
You can construct a KNN model using the 𝐾𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 class. See the details below.  
 
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html 
 
# KNN Classification 
from pandas import read_csv 
from sklearn.model_selection import KFold 
from sklearn.model_selection import cross_val_score 
from sklearn.neighbors import KNeighborsClassifier 
filename = 'pima-indians-diabetes.data.csv' 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] 
dataframe = read_csv(filename, names=names) 
array = dataframe.values 
X = array[:,0:8] 
Y = array[:,8] 
num_folds = 10 
kfold = KFold(n_splits=10, random_state=7) 
model = KNeighborsClassifier() 
results = cross_val_score(model, X, Y, cv=kfold) 
print(results.mean()) 
 
Support Vector Machines (SVM). SVM seek a line that best separates two classes. Those data 
instances that are closest to the line that best separates the classes are called support vectors and 
influence where the line is placed. SVM has been extended to support multiple classes. Of 
particular importance is the use of different kernel functions via the kernel parameter. A powerful 
Radial Basis Function is used by default. You can construct an SVM model using the 𝑆𝑉𝐶 class. 
See the details below.  
 
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html 
 
Verify your understanding: 
(l) Using the information on the above link, modify the above code block to build a SVC.  
 
Classification and Regression Trees (CART or just decision trees). CART constructs a binary 
tree from the training data. Split points are chosen greedily by evaluating each attribute and each 
value of each attribute in the training data in order to minimize a cost function (like the Gini index). 
You can construct a CART model using the 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑒𝑒𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 class. See the details below.  
 



https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html 
 
# CART Classification 
from pandas import read_csv 
from sklearn.model_selection import train_test_split 
from sklearn.model_selection import cross_val_score 
from sklearn.metrics import classification_report 
from sklearn.tree import DecisionTreeClassifier, plot_tree 
filename = 'pima-indians-diabetes.data.csv' 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']  
dataframe = read_csv(filename, names=names) 
array = dataframe.values 
X = array[:,0:8] 
Y = array[:,8] 
test_size = 0.1 
seed = 7 
 
# split into train/test sets 
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, 
random_state=seed) 
 
# fit a model 
model = DecisionTreeClassifier() 
model.fit(X_train, Y_train) 
predicted = model.predict(X_test) 
report = classification_report(Y_test, predicted) 
print(report) 
 
from sklearn.tree import export_graphviz 
export_graphviz( 
            model, 
            out_file='pima_tree.dot', 
            feature_names=names[0:8], 
            rounded=True, 
            filled=True 
        ) 
 
# convert .dot to .png 
# from subprocess import check_call 
# check_call(['dot','-Tpng','pima_tree.dot','-o','pima_tree.png']) 
 
# if pydot is installed use the below 
!dot -Tpng pima_tree.dot -o pima_tree.png -Gdpi-600 
 
# display in python 
import matplotlib.pyplot as plt 
plt.figure(figsize = (14, 18)) 
plt.imshow(plt.imread('pima_tree.png')) 
plt.axis('off'); 
plt.show(); 
 

Decision-tree learners can create over-complex trees that do not generalise the data well. This is 
called overfitting. Mechanisms such as pruning (not currently supported), setting the minimum 
number of samples required at a leaf node or setting the maximum depth of the tree are necessary to 
avoid this problem. For pruning decision tree, see the below.  
 
https://statinfer.com/204-3-10-pruning-a-decision-tree-in-python/  
 
Verify your understanding: 
(m) Run the above ML algorithms and compare the results.  
 
3. Comparing ML Algorithms 
 
When you work on a machine learning project, you often end up with multiple good models to 
choose from. Each model will have different performance characteristics. Using resampling 
methods like cross-validation, you can get an estimate for how accurate each model may be on 
unseen data. You need to be able to use these estimates to choose one or two best models from the 
suite of models that you have created. 



 
When you have a new dataset, it is a good idea to visualise the data using different techniques in 
order to look at the data from different perspectives. The same idea applies to model selection. You 
should use a number of different ways of looking at the estimated accuracy of your machine 
learning algorithms in order to choose the one or two algorithm to finalise. A way to do this is to 
use visualisation methods to show the average accuracy, variance and other properties of the 
distribution of model accuracies. In this section you will discover exactly how you can do that in 
Python with scikit-learn. 
 
The key to a fair comparison of machine learning algorithms is ensuring that each algorithm is 
evaluated in the same way on the same data. You can achieve this by forcing each algorithm to be 
evaluated on a consistent test harness. In the example below six different classification 
algorithms are compared on a single dataset: 
 

• Logistic Regression. 
• Linear Discriminant Analysis. 
• k-Nearest Neighbors. 
• Classification and Regression Trees.  
• Naive Bayes. 
• Support Vector Machines. 

 
The dataset is the Pima Indians onset of diabetes problem. The problem has two classes and eight 
numeric input variables of varying scales. The 10-fold cross-validation procedure is used to 
evaluate each algorithm, importantly configured with the same random seed to ensure that the same 
splits to the training data are performed and that each algorithm is evaluated in precisely the same 
way. Each algorithm is given a short name, useful for summarising results afterward. 
 
# Compare Algorithms 
from pandas import read_csv 
from matplotlib import pyplot 
from sklearn.model_selection import KFold 
from sklearn.model_selection import cross_val_score 
from sklearn.linear_model import LogisticRegression 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.neighbors import KNeighborsClassifier 
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis 
from sklearn.naive_bayes import GaussianNB 
from sklearn.svm import SVC 
# load dataset 
filename = 'pima-indians-diabetes.data.csv' 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] 
dataframe = read_csv(filename, names=names) 
array = dataframe.values 
X = array[:,0:8] 
Y = array[:,8] 
# prepare models 
models = [] 
models.append(('LR', LogisticRegression())) 
models.append(('LDA', LinearDiscriminantAnalysis())) 
models.append(('KNN', KNeighborsClassifier())) 
models.append(('CART', DecisionTreeClassifier())) 
models.append(('NB', GaussianNB())) 
models.append(('SVM', SVC())) 
# evaluate each model in turn 
results = [] 
names = [] 
scoring = 'accuracy' 
for name, model in models: 
  kfold = KFold(n_splits=10, random_state=7) 
  cv_results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring) 
  results.append(cv_results) 
  names.append(name) 
  msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) 
  print(msg) 
# boxplot algorithm comparison 



fig = pyplot.figure()  
fig.suptitle('Algorithm Comparison')  
ax = fig.add_subplot(111) pyplot.boxplot(results)  
ax.set_xticklabels(names)  
pyplot.show() 
 
Verify your understanding: 
(n) Run the above code block and interpret the results.  
(o) What are the algorithms perhaps worthy of further study on this problem? Explain why.  
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