
APPLIED MACHINE LEARNING 
LAB ACTIVITIES (LAB 5) (WITH SOLUTIONS) 

AUTOMATING THE PROCESS AND SAVING THE MODEL 
 
This workbook is designed to guide you through the activities proposed for today’s lab. As you will 
be working independently, feel free to proceed through the text at your own pace, spending more time 
on the parts that are less familiar to you. The workbook contains both hands-on tasks and links to 
learning materials such as tutorials, articles and videos. When you are unsure about something, feel 
free to ask our teaching assistants or use Internet resources to look for a solution. At the end of each 
section, there will be questions and exercises to verify your understanding of the presented 
information. You may need to do some research to answer the questions. 
 
1. Pipelining 
 
There are standard workflows in applied machine learning. Standard because they overcome 
common problems like data leakage in your test harness. Python scikit-learn provides a Pipeline 
utility to help automate machine learning workflows. Pipelines work by allowing for a linear 
sequence of data transforms to be chained together culminating in a modelling process that can be 
evaluated. 
 
The goal is to ensure that all of the steps in the pipeline are constrained to the data available for the 
evaluation, such as the training dataset or each fold of the cross-validation procedure. You can learn 
more about 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑠 in scikit-learn by reading the Pipeline section of the user guide. See below.  
 
https://scikit-learn.org/stable/modules/compose.html 
 
You can also review the API documentation for the 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 and 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑈𝑛𝑖𝑜𝑛 classes and the 
pipeline module.  
 
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.pipeline 
 
An easy trap to fall into in applied machine learning is leaking data from your training dataset to 
your test dataset. To avoid this trap you need a robust test harness with strong separation of training 
and testing. This includes data preparation. Data preparation is one easy way to leak knowledge of 
the whole training dataset to the algorithm. For example, preparing your data using normalisation or 
standardisation on the entire training dataset before learning would not be a valid test because the 
training dataset would have been influenced by the scale of the data in the test set. 
 
Pipelines help you prevent data leakage in your test harness by ensuring that data preparation like 
standardisation is constrained to each fold of your cross-validation procedure. The example below 
demonstrates this important data preparation and model evaluation workflow on the Pima Indians 
onset of diabetes dataset. The pipeline is defined with two steps: 
 

1. Standardise the data. 
2. Learn a Linear Discriminant Analysis model. 

 
The pipeline is then evaluated using 10-fold cross-validation. 
 
# Create a pipeline that standardises the data then creates a model 
from pandas import read_csv 
from sklearn.model_selection import KFold 
from sklearn.model_selection import cross_val_score 
from sklearn.preprocessing import StandardScaler 
from sklearn.pipeline import Pipeline 
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis 



 
# load data 
filename = 'pima-indians-diabetes.data.csv' 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] 
dataframe = read_csv(filename, names=names) 
array = dataframe.values 
X = array[:,0:8] 
Y = array[:,8] 
 
# create pipeline 
estimators = [] 
estimators.append(('standardize', StandardScaler())) 
estimators.append(('lda', LinearDiscriminantAnalysis())) 
model = Pipeline(estimators) 
 
# evaluate pipeline 
kfold = KFold(n_splits=10, random_state=7) 
results = cross_val_score(model, X, Y, cv=kfold) 
print(results.mean()) 

 
Verify your understanding: 
(a) Analyse the code block and see how we create a Python list of steps that are provided to the 

Pipeline for process the data and how the Pipeline itself is treated like an estimator and is 
evaluated in its entirety by the k-fold cross-validation procedure.  

(b) Run the code block above to see a summary of accuracy of the setup on the dataset. 
 
Feature extraction is another procedure that is susceptible to data leakage. Like data preparation, 
feature extraction procedures must be restricted to the data in your training dataset. The pipeline 
provides a handy tool called the 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑈𝑛𝑖𝑜𝑛 which allows the results of multiple feature 
selection and extraction procedures to be combined into a larger dataset on which a model can be 
trained. Importantly, all the feature extraction and the feature union occurs within each fold of the 
cross-validation procedure. The example below demonstrates the pipeline defined with four steps: 
 

1. Feature Extraction with Principal Component Analysis (3 features).  
2. Feature Extraction with Statistical Selection (6 features). 
3. Feature Union. 
4. Learn a Logistic Regression Model. 

 
The pipeline is then evaluated using 10-fold cross-validation. 
 
# Create a pipeline that extracts features from the data then creates a model 
from pandas import read_csv 
from sklearn.model_selection import KFold 
from sklearn.model_selection import cross_val_score 
from sklearn.pipeline import Pipeline 
from sklearn.pipeline import FeatureUnion 
from sklearn.linear_model import LogisticRegression 
from sklearn.decomposition import PCA 
from sklearn.feature_selection import SelectKBest 
 
# load data 
filename = 'pima-indians-diabetes.data.csv' 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] 
dataframe = read_csv(filename, names=names) 
array = dataframe.values 
X = array[:,0:8] 
Y = array[:,8] 
 
# create feature union 
features = [] 
features.append(('pca', PCA(n_components=3))) 
features.append(('select_best', SelectKBest(k=6))) 
feature_union = FeatureUnion(features) 
 
# create pipeline 
estimators = [] 
estimators.append(('feature_union', feature_union))  



estimators.append(('logistic', LogisticRegression())) 
model = Pipeline(estimators) 
 
# evaluate pipeline 
kfold = KFold(n_splits=10, random_state=7) 
results = cross_val_score(model, X, Y, cv=kfold) 
print(results.mean()) 

 
Verify your understanding: 
(c) Analyse the code block to see how the FeatureUnion is its own Pipeline that in turn is a single 

step in the final Pipeline used to feed Logistic Regression. This might get you thinking about how 
you can start embedding pipelines within pipelines.  

(d) Run the above code block to see a summary of accuracy of the setup on the dataset. 
(e) Compare the result with its previous step.  
 
Soln: 
0.773462064252 Vs 0.776042378674 
 
2. Ensembles 
 
The three most popular methods for combining the predictions from different models are: 
 

• Bagging. Building multiple models (typically of the same type) from different subsamples 
of the training dataset. 

• Boosting. Building multiple models (typically of the same type) each of which learns to fix 
the prediction errors of a prior model in the sequence of models. 

• Voting. Building multiple models (typically of differing types) and simple statistics (like 
calculating the mean) are used to combine predictions. 

 
This assumes you are generally familiar with machine learning algorithms and ensemble methods 
and will not go into the details of how the algorithms work or their parameters. The Pima Indians 
onset of Diabetes dataset is used to demonstrate each algorithm. Each ensemble algorithm is 
demonstrated using 10-fold cross-validation and the classification accuracy performance metric. 
 
Bagging Algorithms 
 
Bootstrap Aggregation (or Bagging) involves taking multiple samples from your training dataset 
(with replacement) and training a model for each sample. The final output prediction is averaged 
across the predictions of all of the sub-models. The two bagging models covered in this section 
are as follows: 
 

• Bagged Decision Trees.  
• Random Forest. 

 
Bagging performs best with algorithms that have high variance. A popular example are decision 
trees, often constructed without pruning. In the example below is an example of using the 
BaggingClassifier with the Classification and Regression Trees algorithm 
(𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑒𝑒𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟). A total of 100 trees are created. See below.  
 
Bagging 
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html 
 
DecisionTree 
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html 
 



 
# Bagged Decision Trees for Classification 
from pandas import read_csv 
from sklearn.model_selection import KFold 
from sklearn.model_selection import cross_val_score 
from sklearn.ensemble import BaggingClassifier 
from sklearn.tree import DecisionTreeClassifier 
filename = 'pima-indians-diabetes.data.csv' 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] 
dataframe = read_csv(filename, names=names) 
array = dataframe.values 
X = array[:,0:8] 
Y = array[:,8] 
seed = 7 
kfold = KFold(n_splits=10, random_state=seed) 
cart = DecisionTreeClassifier() 
num_trees = 100 
model = BaggingClassifier(base_estimator=cart, n_estimators=num_trees, random_state=seed) 
results = cross_val_score(model, X, Y, cv=kfold) 
print(results.mean()) 
 
Random Forests is an extension of bagged decision trees. Samples of the training dataset are taken 
with replacement, but the trees are constructed in a way that reduces the correlation between 
individual classifiers. Specifically, rather than greedily choosing the best split point in the 
construction of each tree, only a random subset of features are considered for each split. You can 
construct a Random Forest model for classification using the 𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 class. The 
example below demonstrates using Random Forest for classification with 100 trees and split points 
chosen from a random selection of 3 features. See below.  
 
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html 
 
Verify your understanding: 
(f) Referring the information on the above link, modify the above code to build a Random Forest 

Classifier with 100 trees and 3 max features.  
(g) What is the accuracy? 
 
Soln: 
# Random Forest Classification 
from pandas import read_csv 
from sklearn.model_selection import KFold 
from sklearn.model_selection import cross_val_score 
from sklearn.ensemble import RandomForestClassifier 
filename = 'pima-indians-diabetes.data.csv' 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] 
dataframe = read_csv(filename, names=names) 
array = dataframe.values 
X = array[:,0:8] 
Y = array[:,8] 
num_trees = 100 
max_features = 3 
kfold = KFold(n_splits=10, random_state=7) 
model = RandomForestClassifier(n_estimators=num_trees, 
max_features=max_features)  
results = cross_val_score(model, X, Y, cv=kfold) 
print(results.mean()) 
 
Boosting Algorithms 
 
AdaBoost was perhaps the first successful boosting ensemble algorithm. It generally works by 
weighting instances in the dataset by how easy or difficult they are to classify, allowing the 
algorithm to pay less attention to them in the construction of subsequent models. You can construct 
an AdaBoost model for classification using the 𝐴𝑑𝑎𝐵𝑜𝑜𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 class. The example below 



demonstrates the construction of 30 decision trees in sequence using the AdaBoost algorithm. See 
below. 
 
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html 
 
Verify your understanding: 
(h) Referring the information on the above link, modify the above code to build a AdaBoost classifier 

with 30 trees and a seed of 7.  
(i) What is the accuracy? 
 
Soln: 
# AdaBoost Classification 
from pandas import read_csv 
from sklearn.model_selection import KFold 
from sklearn.model_selection import cross_val_score 
from sklearn.ensemble import AdaBoostClassifier 
filename = 'pima-indians-diabetes.data.csv' 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] 
dataframe = read_csv(filename, names=names) 
array = dataframe.values 
X = array[:,0:8] 
Y = array[:,8] 
num_trees = 30 
seed=7 
kfold = KFold(n_splits=10, random_state=seed) 
model = AdaBoostClassifier(n_estimators=num_trees, random_state=seed) 
results = cross_val_score(model, X, Y, cv=kfold) 
print(results.mean()) 
 
Voting Ensemble 
 
Voting is one of the simplest ways of combining the predictions from multiple machine learning 
algorithms. It works by first creating two or more standalone models from your training dataset. A 
Voting Classifier can then be used to wrap your models and average the predictions of the sub-
models when asked to make predictions for new data. The predictions of the sub-models can be 
weighted, but specifying the weights for classifiers manually or even heuristically is difficult. More 
advanced methods can learn how to best weight the predictions from sub-models, but this is called 
stacking (stacked aggregation) and is currently not provided in scikit-learn. 
 
You can create a voting ensemble model for classification using the 𝑉𝑜𝑡𝑖𝑛𝑔𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟	class. The 
code below provides an example of combining the predictions of logistic regression, classification 
and regression trees and support vector machines together for a classification problem. See below.  
 
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html 
 
Verify your understanding: 
(j) Referring the information on the above link, build a Voting classifier with LogisticRegression(), 

DecisionTreeClassifier() and SVC().  
(k) Run your code block and compare the results.  
(l) What are the ensemble algorithms perhaps worthy of further study on this problem? Explain why.  
 
Soln: 
# Voting Ensemble for Classification 
from pandas import read_csv 
from sklearn.model_selection import KFold 
from sklearn.model_selection import cross_val_score 
from sklearn.linear_model import LogisticRegression 
from sklearn.tree import DecisionTreeClassifier 



from sklearn.svm import SVC 
from sklearn.ensemble import VotingClassifier 
filename = 'pima-indians-diabetes.data.csv' 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] 
dataframe = read_csv(filename, names=names) 
array = dataframe.values 
X = array[:,0:8] 
Y = array[:,8] 
kfold = KFold(n_splits=10, random_state=7) 
# create the sub models 
estimators = [] 
model1 = LogisticRegression() 
estimators.append(('logistic', model1)) 
model2 = DecisionTreeClassifier() 
estimators.append(('cart', model2)) 
model3 = SVC() 
estimators.append(('svm', model3)) 
# create the ensemble model 
ensemble = VotingClassifier(estimators) 
results = cross_val_score(ensemble, X, Y, cv=kfold) 
print(results.mean()) 
 
3. Tuning 
 
Algorithm tuning is a final step in the process of applied machine learning before finalising your 
model. It is sometimes called hyperparameter optimisation where the algorithm parameters are 
referred to as hyperparameters, whereas the coefficients found by the machine learning algorithm 
itself are referred to as parameters. Optimisation suggests the search-nature of the problem. Phrased 
as a search problem, you can use different search strategies to find a good and robust parameter or 
set of parameters for an algorithm on a given problem. Python scikit-learn provides two simple 
methods for algorithm parameter tuning: 
 

1. Grid Search Parameter Tuning. 
2. Random Search Parameter Tuning. 

 
Grid search is an approach to parameter tuning that will methodically build and evaluate a model 
for each combination of algorithm parameters specified in a grid. You can perform a grid search 
using the 𝐺𝑟𝑖𝑑𝑆𝑒𝑎𝑟𝑐ℎ𝐶𝑉 class. See below.  
 
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html 
 
The example below evaluates different alpha values for the Ridge Regression algorithm on the 
standard diabetes dataset. This is a one-dimensional grid search. 
 
# Grid Search for Algorithm Tuning 
import numpy 
from pandas import read_csv 
from sklearn.linear_model import Ridge 
from sklearn.model_selection import GridSearchCV 
filename = 'pima-indians-diabetes.data.csv' 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] 
dataframe = read_csv(filename, names=names) 
array = dataframe.values 
X = array[:,0:8] 
Y = array[:,8] 
alphas = numpy.array([1,0.1,0.01,0.001,0.0001,0]) 
param_grid = dict(alpha=alphas) 
model = Ridge() 
grid = GridSearchCV(estimator=model, param_grid=param_grid) 
grid.fit(X, Y) 
print(grid.best_score_) 
print(grid.best_estimator_.alpha) 
 



Verify your understanding: 
(m) Run the above code block and interpret the results.  
(n) What is the recommended alpha value? 
   
 
Soln: 
0.279617559313 
1.0 
 
Random search is an approach to parameter tuning that will sample algorithm parameters from a 
random distribution (i.e. uniform) for a fixed number of iterations. A model is constructed and 
evaluated for each combination of parameters chosen. You can perform a random search for 
algorithm parameters using the 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑𝑆𝑒𝑎𝑟𝑐ℎ𝐶𝑉 class. See below.  
 
https://scikit-
learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html 
 
The example below evaluates different random alpha values between 0 and 1 for the Ridge 
Regression algorithm on the standard diabetes dataset. A total of 100 iterations are performed with 
uniformly random alpha values selected in the range between 0 and 1 (the range that alpha values 
can take). 
 
# Randomized for Algorithm Tuning 
from pandas import read_csv 
from scipy.stats import uniform 
from sklearn.linear_model import Ridge 
from sklearn.model_selection import RandomizedSearchCV  
filename = 'pima-indians-diabetes.data.csv' 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] 
dataframe = read_csv(filename, names=names) 
array = dataframe.values 
X = array[:,0:8] 
Y = array[:,8] 
param_grid = {'alpha': uniform()} 
model = Ridge() 
rsearch = RandomizedSearchCV(estimator=model, param_distributions=param_grid, n_iter=100, 
    random_state=7) 
rsearch.fit(X, Y) 
print(rsearch.best_score_) 
print(rsearch.best_estimator_.alpha) 
 
Verify your understanding: 
(o) Run the above code block and interpret the results.  
(p) What is the recommended alpha value? Compare with the value from Grid search.  
 
Soln: 
0.279617354112 
0.989527376274 
 
4. Saving and Loading Models 
 
Pickle is the standard way of serialising objects in Python. You can use the 𝑝𝑖𝑐𝑘𝑙𝑒 operation to 
serialise your machine learning algorithms and save the serialised format to a file. See below.  
 
https://docs.python.org/2/library/pickle.html 
 
Later you can load this file to deserialise your model and use it to make new predictions. The 
example below demonstrates how you can train a logistic regression model on the Pima Indians 



onset of diabetes dataset, save the model to file and load it to make predictions on the unseen test 
set. 
 
# Save Model Using Pickle 
from pandas import read_csv 
from sklearn.model_selection import train_test_split 
from sklearn.linear_model import LogisticRegression 
from pickle import dump 
from pickle import load 
filename = 'pima-indians-diabetes.data.csv' 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] 
dataframe = read_csv(filename, names=names) 
array = dataframe.values 
X = array[:,0:8] 
Y = array[:,8] 
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.33, random_state=7) 
 
# Fit the model on 33% 
model = LogisticRegression()  
model.fit(X_train, Y_train) 
 
# save the model to disk 
filename = 'finalized_model.sav'  
dump(model, open(filename, 'wb')) 
 
# some time later... 
 
# load the model from disk 
loaded_model = load(open(filename, 'rb'))  
result = loaded_model.score(X_test, Y_test) print(result) 
 
Verify your understanding: 
(q) Run the above code block to save the model to finalized model.sav in your local working directory. 

Load the saved model and evaluating it provides an estimate of accuracy of the model on unseen 
data. 

 
The 𝑱𝒐𝒃𝒍𝒊𝒃 library is part of the SciPy ecosystem and provides utilities for pipelining Python jobs. 
See below.  
 
https://pypi.org/project/joblib/ 
 
It provides utilities for saving and loading Python objects that make use of NumPy data structures, 
efficiently. This can be useful for some machine learning algorithms that require a lot of parameters 
or store the entire dataset (e.g. k-Nearest Neighbors). The example below demonstrates how you 
can train a logistic regression model on the Pima Indians onset of diabetes dataset, save the model 
to file using Joblib and load it to make predictions on the unseen test set. 
 
# Save Model Using joblib 
from pandas import read_csv 
from sklearn.model_selection import train_test_split 
from sklearn.linear_model import LogisticRegression 
from sklearn.externals.joblib import dump 
from sklearn.externals.joblib import load 
filename = 'pima-indians-diabetes.data.csv' 
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] 
dataframe = read_csv(filename, names=names) 
array = dataframe.values 
X = array[:,0:8] 
Y = array[:,8] 
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.33, random_state=7)  
 
# Fit the model on 33% 
model = LogisticRegression() 
model.fit(X_train, Y_train) 
 
 # save the model to disk 
filename = 'finalized_model1.sav'  



dump(model, filename) 
 
 
# some time later... 
 
 
# load the model from disk 
loaded_model = load(filename) 
result = loaded_model.score(X_test, Y_test) 
print(result) 
 
Verify your understanding: 
(r) Run the above code block and save the model to file as finalized model1.sav and also create one 

file for each NumPy array in the model. After the model is loaded see how an estimate of the 
accuracy of the model on unseen data is reported. 

(s) Below are some important considerations when finalising your machine learning models. 
 Python Version. Take note of the Python version. You almost certainly require the same major 

(and maybe minor) version of Python used to serialise the model when you later load it and 
deserialise it. 

 Library Versions. The version of all major libraries used in your machine learning project 
almost certainly need to be the same when deserialising a saved model. This is not limited to the 
version of NumPy and the version of scikit-learn. 

 Manual Serialisation. You might like to manually output the parameters of your learned model 
so that you can use them directly in scikit-learn or another platform in the future. Often the 
techniques used internally by machine learning algorithms to make predictions are a lot simpler 
than those used to learn the parameters and can be easy to implement in custom code that you 
have control over. 

Take note of the version so that you can re-create the environment if for some reason you cannot 
reload your model on another machine or another platform at a later time.   
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