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DEEP LEARNING WITH KERAS 
 
This workbook is designed to guide you through the activities proposed for today’s lab. As you will 
be working independently, feel free to proceed through the text at your own pace, spending more time 
on the parts that are less familiar to you. The workbook contains both hands-on tasks and links to 
learning materials such as tutorials, articles and videos. When you are unsure about something, feel 
free to ask our teaching assistants or use Internet resources to look for a solution. At the end of each 
section, there will be questions and exercises to verify your understanding of the presented 
information. You may need to do some research to answer the questions. 
 
1. Why Keras? 
 
The TensorFlow project has adopted Keras as the high-level API for the TensorFlow 2.0 release. 
The biggest reasons to use Keras stem from its guiding principles, primarily the one about being 
user friendly. Beyond ease of learning and ease of model building, Keras offers the advantages of 
broad adoption, support for a wide range of production deployment options, integration with at least 
five backend engines (TensorFlow, CNTK, Theano, MXNet, and PlaidML), and strong support for 
multiple GPUs and distributed training. Plus, Keras is backed by Google, Microsoft, Amazon, 
Apple, Nvidia, Uber, and others. 
 
Keras is a lightweight API and rather than providing an implementation of the required 
mathematical operations needed for deep learning. It provides a consistent interface to efficient 
numerical libraries called backends. Keras does not do its own low-level operations, such as tensor 
products and convolutions; it relies on a backend engine for that. Even though Keras supports 
multiple backend engines, its primary (and default) backend is TensorFlow, and its primary 
supporter is Google. The Keras API comes packaged in TensorFlow as 𝑡𝑓. 𝑘𝑒𝑟𝑎𝑠, which is the 
primary TensorFlow API as of TensorFlow 2.0. 
 
In the following labs, we will mainly use Keras with TensorFlow. TensorFlow is an open source 
library for fast numerical computing. It was created and is maintained by Google and released under 
the Apache 2.0 open source license. The API is nominally for the Python programming language, 
although there is access to the underlying C++ API. Unlike other numerical libraries intended for 
use in Deep Learning like Theano, TensorFlow was designed for use both in research and 
development and in production systems, not least RankBrain in Google search and the fun 
DeepDream project. It can run on single CPU systems, GPUs as well as mobile devices and large-
scale distributed systems of hundreds of machines. 
 
Your lab PCs have both TensorFlow and Theano installed, you can configure the backend used by 
Keras. 
 
2. First Deep Learning with Multi-layered Perceptron (MLP) 
 
Load Data 
 
Whenever we work with machine learning algorithms that use a stochastic process (e.g. random 
numbers), as you have been doing this, it is a good idea to initialise the random number generator 
with a fixed seed value. This is so that you can run the same code again and again and get the same 
result. This is useful if you need to demonstrate a result, compare algorithms using the same source 



of randomness or to debug a part of your code. You can initialise the random number generator 
with any seed you like, for example: 
 
from keras.models import Sequential 
from keras.layers import Dense 
import numpy 
# fix random seed for reproducibility 
numpy.random.seed(7) 
 
Verify your understanding: 
(a) Run the above code block. What is the backend engine for Keras? 
 
Now we can load our Pima Indians dataset. You can now load the file directly using the NumPy 
function 𝑙𝑜𝑎𝑑𝑡𝑥𝑡(). As you know the Pima Indian dataset has eight input variables and one output 
variable (the last column). Once loaded we can split the dataset into input variables (𝑋) and the 
output class variable (𝑌). 
 
# load pima indians dataset 
dataset = numpy.loadtxt("pima-indians-diabetes.data.csv", delimiter=",") 
# split into input and output variables 
X = dataset[:,0:8] 
Y = dataset[:,8] 
 
We are now ready to define our neural network model. 
 
Define Model 
 
Models in Keras are defined as a sequence of layers. We create a 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 model and add layers 
one at a time until we are happy with our network topology. The first thing to get right is to ensure 
the input layer has the right number of inputs. This can be specified when creating the first layer 
with the input dim argument and setting it to 8 for the 8 input variables. 
 
How do we know the number of layers to use and their types? This is a very hard question. There 
are heuristics that we can use and often the best network structure is found through a process of 
trial and error experimentation. Generally, you need a network large enough to capture the 
structure of the problem if that helps at all. In this example we will use a fully-connected network 
structure with three layers. 
 
Fully connected layers are defined using the Dense class. We can specify the number of neurons in 
the layer as the first argument and specify the activation function using the 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 argument. 
We will use the rectifier (𝑟𝑒𝑙𝑢) activation function on the first two layers and the sigmoid 
activation function in the output layer. It used to be the case that 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 and 𝑡𝑎𝑛ℎ activation 
functions were preferred for all layers. These days, better performance is seen using the 𝑟𝑒𝑙𝑢 
activation function. We use a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation function on the output layer to ensure our 
network output is between 0 and 1 and easy to map to either a probability of class 1 or snap to a 
hard classification of either class with a default threshold of 0.5. We can piece it all together by 
adding each layer. The first hidden layer has 12 neurons and expects 8 input variables (e.g. 
𝑖𝑛𝑝𝑢𝑡	𝑑𝑖𝑚 = 8). The second hidden layer has 8 neurons and finally the output layer has 1 neuron 
to predict the class (onset of diabetes or not). 
 
# create model 
model = Sequential() 
model.add(Dense(12, input_dim=8, activation='relu'))  
model.add(Dense(8, activation='relu'))  
model.add(Dense(1, activation='sigmoid')) 
 
 
 



 
 
 
The figure below provides a depiction of the network structure.  
 

 
 

Visualisation of Neural Network Structure.  
 
Compile Model 
 
Now that the model is defined, we can compile it. Compiling the model uses the efficient numerical 
libraries under the covers (i.e. backend) such as TensorFlow. The backend automatically chooses 
the best way to represent the network for training and making predictions to run on your hardware. 
When compiling, we must specify some additional properties required when training the network. 
Remember training a network means finding the best set of weights to make predictions for this 
problem. 
 
We must specify the loss function to use to evaluate a set of weights, the optimizer used to search 
through different weights for the network and any optional metrics we would like to collect and 
report during training. In this case we will use 𝑙𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐	𝑙𝑜𝑠𝑠, which for a binary classification 
problem is defined in Keras as 𝑏𝑖𝑛𝑎𝑟𝑦_𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦. We will also use the efficient gradient 
descent algorithm 𝑎𝑑𝑎𝑚 for no other reason that it is an efficient default. Learn more about the 
Adam optimisation algorithm in the paper Adam: A Method for Stochastic 
Optimization. See below.  
 
https://arxiv.org/abs/1412.6980  
 
Finally, because it is a classification problem, we will collect and report the classification accuracy 
as the metric. 
 
# compile model 
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) 
 
Fit Model 
 
We have defined our model and compiled it ready for efficient computation. Now it is time to 
execute the model on some data. We can train or fit our model on our loaded data by calling the 
𝑓𝑖𝑡() function on the model. 
 
The training process will run for a fixed number of iterations through the dataset called epochs, that 
we must specify using the epochs argument. We can also set the number of instances that are 



evaluated before a weight update in the network is performed called the batch size and set using the 
batch size argument. For this problem we will run for a small number of epochs (50) and use a 
relatively small batch size of 10. Again, these can be chosen experimentally by trial and error. 
 
# fit the model 
model.fit(X, Y, epochs=150, batch_size=10) 

 
Evaluate Model 
 
We have trained our neural network on the entire dataset and we can evaluate the performance of 
the network on the same dataset. This will only give us an idea of how well we have modelled the 
dataset (e.g. train accuracy), but no idea of how well the algorithm might perform on new data. We 
have done this for simplicity, but ideally, you could separate your data into train and test datasets 
for the training and evaluation of your model. 
 
You can evaluate your model on your training dataset using the 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛() function on your 
model and pass it the same input and output used to train the model. This will generate a prediction 
for each input and output pair and collect scores, including the average loss and any metrics you 
have configured, such as accuracy. 
 
# evaluate the model 
scores = model.evaluate(X, Y) 
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) 
 
Verify your understanding: 
(b) Let’s tie it all together and into a complete code block and run it.  
(c) What is the accuracy? Is this the accuracy we could trust? If not explain.  
 
Data Splitting 
 
The large amount of data and the complexity of the models require very long training times. As 
such, it is typical to use a simple separation of data into training and test datasets or training and 
validation datasets. Keras provides two convenient ways of evaluating your deep learning 
algorithms this way: 
 

1. Use an automatic verification dataset.  
2. Use a manual verification dataset. 

 
Automatic Verification Dataset. Keras can separate a portion of your training data into a 
validation dataset and evaluate the performance of your model on that validation dataset each 
epoch. You can do this by setting the validation split argument on the 𝑓𝑖𝑡() function to a percentage 
of the size of your training dataset. For example, a reasonable value might be 0.2 or 0.33 for 20% or 
33% of your training data held back for validation. The code below demonstrates the use of using 
an automatic validation dataset on the Pima Indians onset of diabetes dataset. 
 
# MLP with automatic validation set 
from keras.models import Sequential 
from keras.layers import Dense 
import numpy 
 
# fix random seed for reproducibility 
numpy.random.seed(7) 
 
# load pima indians dataset 
dataset = numpy.loadtxt("pima-indians-diabetes.data.csv", delimiter=",") 
 
# split into input (X) and output (Y) variables 
X = dataset[:,0:8] 
Y = dataset[:,8] 
 



# create model 
model = Sequential() 
model.add(Dense(12, input_dim=8, activation='relu')) 
model.add(Dense(8, activation='relu')) 
model.add(Dense(1, activation='sigmoid')) 
 
# Compile model 
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])  
 
# Fit the model 
model.fit(X, Y, validation_split=0.33, epochs=150, batch_size=10) 
 
Verify your understanding: 
(d) Running the above code block, you can see that the verbose output on each epoch shows the loss 

and accuracy on both the training dataset and the validation dataset. 
 
Manual Verification Dataset. Keras also allows you to manually specify the dataset to use for 
validation during training. In this example we use the handy train test 𝑠𝑝𝑙𝑖𝑡() function from the 
Python scikit-learn machine learning library to separate our data into a training and test dataset. We 
use 67% for training and the remaining 33% of the data for validation. The validation dataset can be 
specified to the 𝑓𝑖𝑡() function in Keras by the validation data argument. It takes a tuple of the input 
and output datasets. 
 
# MLP with manual validation set 
from keras.models import Sequential 
from keras.layers import Dense 
from sklearn.model_selection import train_test_split 
import numpy 
 
# fix random seed for reproducibility 
seed = 7 
numpy.random.seed(seed) 
 
# load pima indians dataset 
dataset = numpy.loadtxt("pima-indians-diabetes.data.csv", delimiter=",") 
 
# split into input (X) and output (Y) variables 
X = dataset[:,0:8] 
Y = dataset[:,8] 
 
# split into 67% for train and 33% for test 
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, 
random_state=seed)  
 
# create model 
model = Sequential() 
model.add(Dense(12, input_dim=8, activation='relu')) 
model.add(Dense(8, activation='relu')) 
model.add(Dense(1, activation='sigmoid')) 
 
# compile model 
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) 
 
# Fit the model 
model.fit(X_train, y_train, validation_data=(X_test,y_test), epochs=150, batch_size=10) 
 
Verify your understanding: 
(e) Like before, running the example provides verbose output of training that includes the loss and 

accuracy of the model on both the training and validation datasets for each epoch. 
 
Manual k-Fold Cross-Validation. The gold standard for machine learning model evaluation is k-
fold cross-validation. It provides a robust estimate of the performance of a model on unseen data. 
However, cross-validation is often not used for evaluating deep learning models because of the 
greater computational expense. For example k-fold cross-validation is often used with 5 or 10 folds. 
As such, 5 or 10 models must be constructed and evaluated, greatly adding to the evaluation time of 
a model. Nevertheless, when the problem is small enough or if you have sufficient compute 



resources, k-fold cross-validation can give you a less biased estimate of the performance of your 
model. 
 
In the example below we use the handy 𝑆𝑡𝑟𝑎𝑡𝑖𝑓𝑖𝑒𝑑𝐾𝐹𝑜𝑙𝑑 class from the scikit-learn Python 
machine learning library to split up the training dataset into 10 folds. See below.  
 
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html  
 
The folds are stratified, meaning that the algorithm attempts to balance the number of instances of 
each class in each fold. The example creates and evaluates 10 models using the 10 splits of the data 
and collects all of the scores. The verbose output for each epoch is turned off by passing verbose=0 
to the 𝑓𝑖𝑡() and 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒() functions on the model. The performance is printed for each model and 
it is stored. The average and standard deviation of the model performance is then printed at the end 
of the run to provide a robust estimate of model accuracy. 
 
# MLP for Pima Indians Dataset with 10-fold cross validation 
from keras.models import Sequential 
from keras.layers import Dense 
from sklearn.model_selection import StratifiedKFold 
import numpy 
 
# fix random seed for reproducibility 
seed = 7 
numpy.random.seed(seed) 
 
# load pima indians dataset 
dataset = numpy.loadtxt("pima-indians-diabetes.data.csv", delimiter=",") 
 
# split into input (X) and output (Y) variables 
X = dataset[:,0:8] 
Y = dataset[:,8] 
 
# define 10-fold cross validation test harness 
kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed) 
cvscores = [] 
for train, test in kfold.split(X, Y): 
    # create model 
    model = Sequential() 
    model.add(Dense(12, input_dim=8, activation='relu')) 
    model.add(Dense(8, activation='relu')) 
    model.add(Dense(1, activation='sigmoid')) 
    # compile model 
    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])  
    # fit the model 
    model.fit(X[train], Y[train], epochs=150, batch_size=10, verbose=0) 
    # evaluate the model 
    scores = model.evaluate(X[test], Y[test], verbose=0) 
    print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))  
    cvscores.append(scores[1] * 100) 
 
print("%.2f%% (+/- %.2f%%)" % (numpy.mean(cvscores), numpy.std(cvscores))) 
 
Verify your understanding: 
(f) Run the above code block. 
(g) Why do we need a for loop? 
 
3. Use Keras with Scikit-Learn 
 
The scikit-learn library is the most popular library for general machine learning in Python while 
Keras is a popular library for deep learning in Python. However the focus of the Keras library is 
deep learning, not all of machine learning. In fact it strives for minimalism, focusing on only what 
you need to quickly and simply define and build deep learning models. The scikit-learn library in 
Python is built upon the SciPy stack for efficient numerical computation. It is a fully featured 



library for general purpose machine learning and provides many utilities that are useful in the 
development of deep learning models. Not least: 
 

• Evaluation of models using resampling methods like k-fold cross-validation.  
• Efficient search and evaluation of model hyperparameters. 

 
The Keras library provides a convenient wrapper for deep learning models to be used as 
classification or regression estimators in scikit-learn. In this section we will work through examples 
of using the 𝐾𝑒𝑟𝑎𝑠𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 wrapper for a classification neural network created in Keras and 
used in the scikit-learn library.  
 
Evaluate Models with Cross-Validation 
 
The 𝐾𝑒𝑟𝑎𝑠𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 and 𝐾𝑒𝑟𝑎𝑠𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟 classes in Keras take an argument 𝑏𝑢𝑖𝑙𝑑_𝑓𝑛 which is 
the name of the function to call to create your model. You must define a function called whatever 
you like that defines your model, compiles it and returns it. In the example below we define a 
function 𝑐𝑟𝑒𝑎𝑡𝑒_𝑚𝑜𝑑𝑒𝑙() that create a simple multilayer neural network for the problem. 
 
We pass this function name to the 𝐾𝑒𝑟𝑎𝑠𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 class by the 𝑏𝑢𝑖𝑙𝑑_𝑓𝑛 argument. We also pass 
in additional arguments of 𝑒𝑝𝑜𝑐ℎ𝑠 = 150 and 𝑏𝑎𝑡𝑐ℎ	𝑠𝑖𝑧𝑒 = 10. These are automatically bundled 
up and passed on to the 𝑓𝑖𝑡() function which is called internally by the 𝐾𝑒𝑟𝑎𝑠𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟	class. In 
this example we use the scikit-learn 𝑆𝑡𝑟𝑎𝑡𝑖𝑓𝑖𝑒𝑑𝐾𝐹𝑜𝑙𝑑 to perform 10-fold stratified cross-
validation. This is a resampling technique that can provide a robust estimate of the performance of a 
machine learning model on unseen data. We use the scikit-learn function 𝑐𝑟𝑜𝑠𝑠_𝑣𝑎𝑙_𝑠𝑐𝑜𝑟𝑒() to 
evaluate our model using the cross-validation scheme and print the results. 
 
# MLP for Pima Indians Dataset with 10-fold cross validation via sklearn 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.wrappers.scikit_learn import KerasClassifier 
from sklearn.model_selection import StratifiedKFold 
from sklearn.model_selection import cross_val_score 
import numpy 
 
# create a function to build a model, required for KerasClassifier 
def create_model(): 
    # create model 
    model = Sequential() 
    model.add(Dense(12, input_dim=8, activation='relu'))  
    model.add(Dense(8, activation='relu'))  
    model.add(Dense(1, activation='sigmoid')) 
    # compile model 
    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])       
    return model 
 
# fix random seed for reproducibility 
seed = 7 
numpy.random.seed(seed) 
 
# load pima indians dataset 
dataset = numpy.loadtxt("pima-indians-diabetes.data.csv", delimiter=",") 
 
# split into input (X) and output (Y) variables 
X = dataset[:,0:8] 
Y = dataset[:,8] 
 
# create model 
model = KerasClassifier(build_fn=create_model, epochs=150, batch_size=10, verbose=0) 
 
# evaluate using 10-fold cross validation 
kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed) 
results = cross_val_score(model, X, Y, cv=kfold) 
print(results.mean()) 

 
Verify your understanding: 



(h) Run the above code block and explain the output.  
(i) Compare the codes with the manual enumeration of cross-validation folds performed in the 

previous lesson. 
 
Grid Search Deep Learning Model Parameters 
 
The previous example showed how easy it is to wrap your deep learning model from Keras and use 
it in functions from the scikit-learn library. In this example we go a step further. We already know 
we can provide arguments to the 𝑓𝑖𝑡() function. The function that we specify to the 𝑏𝑢𝑖𝑙𝑑_𝑓𝑛 
argument when creating the 𝐾𝑒𝑟𝑎𝑠𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟	wrapper can also take arguments. We can use these 
arguments to further customise the construction of the model. 
 
In this example we use a grid search to evaluate different configurations for our neural network 
model and report on the combination that provides the best estimated performance. The create 
𝑚𝑜𝑑𝑒𝑙() function is defined to take two arguments 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 and 𝑖𝑛𝑖𝑡, both of which must have 
default values. This will allow us to evaluate the effect of using different optimisation algorithms 
and weight initialisation schemes for our network. After creating our model, we define arrays of 
values for the parameter we wish to search, specifically: 
 

• Optimizers for searching different weight values. 
• Initializers for preparing the network weights using different schemes. 
• Number of epochs for training the model for different number of exposures to the training 

dataset. 
• Batches for varying the number of samples before weight updates. 

 
The options are specified into a dictionary and passed to the configuration of the 𝐺𝑟𝑖𝑑𝑆𝑒𝑎𝑟𝑐ℎ𝐶𝑉 
scikit-learn class. This class will evaluate a version of our neural network model for each com- 
bination of parameters (2 × 3 × 3 × 3) for the combinations of optimizers, initializations, epochs and 
batches). Each combination is then evaluated using the default of 3-fold stratified cross-validation. 
 
That is a lot of models and a lot of computation. This is not a scheme that you want to use lightly 
because of the time it will take to compute. It may be useful for you to design small experiments 
with a smaller subset of your data that will complete in a reasonable time. This experiment is 
reasonable in this case because of the small network and the small dataset (less than 1,000 instances 
and 9 attributes). Finally, the performance and combination of configurations for the best model are 
displayed, followed by the performance of all combinations of parameters. 
 
# MLP for Pima Indians Dataset with grid search via sklearn 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.wrappers.scikit_learn import KerasClassifier 
from sklearn.model_selection import GridSearchCV 
import numpy 
 
# create a function to build a model, required for KerasClassifier 
def create_model(optimizer='rmsprop', init='glorot_uniform'): 
    # create model 
    model = Sequential() 
    model.add(Dense(12, input_dim=8, kernel_initializer=init, activation='relu'))     
    model.add(Dense(8, kernel_initializer=init, activation='relu'))  
    model.add(Dense(1, kernel_initializer=init, activation='sigmoid')) 
    # compile model 
    model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])     
    return model 
 
# fix random seed for reproducibility 
seed = 7 
numpy.random.seed(seed) 
 
# load pima indians dataset 



dataset = numpy.loadtxt("pima-indians-diabetes.data.csv", delimiter=",") 
 
# split into input (X) and output (Y) variables 
X = dataset[:,0:8] 
Y = dataset[:,8] 
 
# create model 
model = KerasClassifier(build_fn=create_model, verbose=0) 
 
# grid search epochs, batch size and optimizer 
optimizers = ['rmsprop', 'adam'] 
inits = ['glorot_uniform', 'normal', 'uniform'] 
epochs = [50, 100, 150] 
batches = [5, 10, 20] 
param_grid = dict(optimizer=optimizers, epochs=epochs, batch_size=batches, init=inits) 
grid = GridSearchCV(estimator=model, param_grid=param_grid) 
grid_result = grid.fit(X, Y) 
 
# summarize results 
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_)) 
means = grid_result.cv_results_['mean_test_score'] 
stds = grid_result.cv_results_['std_test_score'] 
params = grid_result.cv_results_['params'] 
for mean, stdev, param in zip(means, stds, params): 
    print("%f (%f) with: %r" % (mean, stdev, param)) 
 
Verify your understanding: 
(j) Run the above code block and interpreted the results. This might take about 5-10 minutes to 

complete on your workstation executed on the CPU. 
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