

Code +						
	+ Module title +	Coursework element	Publication +	Deadline +	Late cut-off ¢	Mark return date
BUC1077H7	Applied Machine Learning	Project	Monday, 11 November 2019	Sunday, 19 January 2020	Sunday, 2 February 2020	Friday, 14 February 2020
U	RL: <u>https://www.dcs.bt</u>	k.ac.uk/intrane	t <u>/index.php/Cοι</u>	<u>ırsework Deadl</u>	ines Autumn 2	<u>:019</u>

Kolias, C., Kambourakis, G., Stavrou, A. and Gritzalis, S., 2015. Intrusion detection in 802.11 networks: empirical evaluation of threats and a public dataset. IEEE Communications Surveys & Tutorials, 18(1), pp.184-208.

Intrusion Detection in 802.11 Networks: Empirical Evaluation of Threats and a Public Dataset

Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Stefanos Gritzalis

Abstract—WiFi has become the de facto wireless technology for achieving short to medium-range device connectivity. While early attempts to secure this technology have been proved inadequate in several respects, the current, more robust, security amendments will inevitably get outperformed in the future too. In any case, several security vulnerabilities have been spotted in virtually any version of the protocol rendering the integration of external protection mechanisms a necessity. In this context, the contribution of this paper is multi-fold. First, it gathers, categorizes, thoroughly evaluates the most popular attacks on 802.11, and analyzes their signatures. Second, it offers a publicly available dataset containing a rich blend of normal and attack traffic against 802.11 networks. A quite extensive first-hand evaluation of this dataset using several machine learning algorithms and data features is also provided. Given that to the best of our knowledge the literature lacks such a rich and well-tailored dataset, it is anticipated that the results of the work at hand will offer a solid basis for intrusion detection in the current as

of availability attacks but more importantly to attacks that threat the secrecy of its key, jeopardising the confidentiality of the entire communication. Posterior efforts such as WiFi Protected Access (WPA) and WPA2 proved to be more robust as far as confidentiality is concerned. However, with the increasing computational power and the instalment of low-cost cluster computing this will be soon inaccurate. Naturally, these mechanisms are anticipated to render themselves vulnerable even to brute force attacks [3]. On the other hand, cloud-based systems like CloudCracker [4] can test 300 million possible WPA passwords in just 20 minutes.

In any case, WPA/WPA2 share almost the same vulnerabilities as the early WEP versions as far as availability is concerned. Even the newest amendment, 802.11w [5], which concentrates in patching availability related shortcomings (leading

Normal	Flooding	Injection	Impersonation	Classified As	Normal	Flooding	Injection	Impersonation	Classified As
530785	0	0	0	Normal	530785	0	0	0	Normal
8097	0	0	0	Flooding	8097	0	0	0	Flooding
16682	0	0	0	Injection	16682	0	0	0	Injection
20079	0	0	0	Impersonation	20079	0	0	0	Impersonation
		(a) Ad	aboost	<u> </u>			(b) Hyj	perpipes	
Normal	Flooding	Injection	Impersonation	Classified As	Normal	Flooding	Injection	Impersonation	Classified As
530771	8	0	6	Normal	508621	22164	0	0	Normal
2641	4857	Ō	599	Flooding	2189	5908	Ō	Ō	Flooding
2	0	16680	0	Injection	16400	0	282	0	Injection
18629	0	0	1450	Impersonation	18750	1329	0	0	Impersonation
		(c)	J48				(d) Naiv	re Bayes	
Normal	Flooding	Injection	Impersonation	Classified As	Normal	Flooding	Injection	Impersonation	Classified As
530775	0	7	3	Normal	530729	1	54	1	Normal
8097	0	0	0	Flooding	4077	4020	0	0	Flooding
3038	0	13644	0	Injection	2470	0	14212	0	Injection
20079	0	0	0	Impersonation	18760	0	28	1291	Impersonation
		(e) (IneR				(f) Rando	om Forest	
Normal	Flooding	Injection	Impersonation	Classified As	Normal	Flooding	Injection	Impersonation	Classified As
518657	906	716	10506	Normal	530785	0	0	0	Normal
3854	4243	0	0	Flooding	8097	0	0	0	Flooding
338	0	1930	14414	Injection	16682	0	0	0	Injection
17550	0	1003	1526	Impersonation	20079	0	0	0	Impersonation
		(g) Rand	om Tree				(h) Z	leroR.	
Hii be	rte, Hon en iden	eypot a tified as	and EvilTwi s the most	n impersona severe threa	tion attac ts to a wi	ks have reless r	e previo network	usly	

								-		
	TABLE X:	Confusion	Matrices of Var	rious Classificati	on Al	gorithms o	on the 20 F	eature Set.	Best performer	in red.
Normal	Flooding	Injection	Impersonation	Classified As		Normal	Flooding	Injection	Impersonation	Classified As
530785	0	0	0	Normal		530785	0	0	0	Normal
8097	ŏ	ŏ	õ	Flooding		8097	ŏ	ŏ	ŏ	Flooding
16682	õ	õ	ō	Injection		16515	ō	167	õ	Injection
20079	õ	õ	õ	Impersonation		20079	õ	0	õ	Impersonation
	-	(a) Ad	aboost	r			-	(b) Hy	perpipes	I
Normal	Flooding	Injection	Impersonation	Classified As		Normal	Flooding	Injection	Impersonation	Classified As
530588	116	6	75	Normal		497199	8971	11899	12716	Normal
2553	5544	0	0	Flooding		2123	5974	0	0	Flooding
2	0	16680	0	Injection		3027	0	13655	0	Injection
18644	148	0	1287	Impersonation		14187	1473	0	4419	Impersonation
		(c)	J48					(d) Naiv	e Bayes	
Normal	Flooding	Injection	Impersonation	Classified As		Normal	Flooding	Injection	Impersonation	Classified As
530765	0	14	6	Normal		530746	1	1	37	Normal
8097	0	0	0	Flooding		2600	5497	0	0	Flooding
3038	0	13644	0	Injection		2763	0	13893	0	Injection
20079	0	0	0	Impersonation		18607	0	28	1472	Impersonation
		(e) (DneR					(f) Rando	om Forest	,
Normal	Flooding	Injection	Impersonation	Classified As		Normal	Flooding	Injection	Impersonation	Classified As
530700	3	0	82	Normal		530785	0	0	0	Normal
2442	5494	161	0	Flooding		8097	0	0	0	Flooding
273	0	16253	156	Injection		16682	0	0	0	Injection
18609	0	0	1470	Impersonation		20079	0	0	0	Impersonation
		(g) Rand	om Tree					(h) Z	leroR	

The 14th ACM International Conference on Availability, Reliability and Security (ARES), 26-29 Aug. 2019, U.K. DEMISe: Interpretable Deep Extraction and Mutual Information **Selection Techniques for IoT Intrusion Detection** Paul D Yoo* Luke R Parker Taufiq A Asyhari School of Computing, Electronics and Mathematics ce Equipment and Support CSIS, Birkbeck College Def Ministry of Defence University of London Bristol, UK luke.parker890@mod.gov.uk London, UK Coventry University paul.d.yoo@ieee.org Coventry, UK taufiq-a@ieee.org Lounis Chermak Yoonchan Jhi Kamal Taha Centre for Electronic Warfare, Information and Cyber Security Research Team Samsung SDS ECE Dept Khalifa University Seoul, South Korea Cranfield University Abu Dhabi, UAE Shrivenham, UK l.chermak@cranfield.ac.uk yoonchan.jhi@samsung.com kamal.taha@kustar.ac.ac

ABSTRACT

Recent studies have proposed that traditional security technology – involving pattern-matching algorithms that check predefined pattern sets of intrusion signatures – should be replaced with sophisticated adaptive approaches that combine machine learning and behavioural analytics. However, machine learning is performance driven, and the high computational cost is incompatible with the limited computing power, memory capacity and energy resources of portable IoT-enabled devices. The convoluted nature of deep-structured machine learning means that such models also lack transparency and interpretability. The knowledge obtained by interpretable learners is critical in security

KEYWORDS

Security mobility applications, security of resource constrained devices, IoT, lightweight intrusion detection, feature engineering, mutual information, white-box modelling, deep learning.

1 Introduction

The Internet of Things (IoT) is an expanding network of devices that are predicted to become more mainstream as a result of their proliferation in the healthcare, retail, manufacturing and transportation markets [1,2]. The IoT comprises everyday devices with a degree of networked capability such that they provide an

Classifier	Ac (%	.cc %)	DR (%) 99.04	FAR (%)	.R 6)	F1 (%) 97.98	N (*
DETEReD	98. 98.	.04	99.04 99.07	2.96	6	98.01	96.
Kolias et al [12 Aminanto et al [1] 94. 1] 97.	.91 .60	97.23 85.00	74.21 2.36	21 56	97.37 NRA	22.1 NR
Table VII: Estin and DEMISe-RE	nated reso BFC	шгсе	e require	ements	ıts foi	r DET	EReD
Table VII: Estin and DEMISe-RE	nated reso BFC	ber of	e require	ements	its for	or DET Esti Me	EReD mated mory
Table VII: Estin and DEMISe-RE Model DEMISe-RBFC	nated reso BFC 21 (4 outp layers), 14 layers), 2 t each class)	ber of tput w 4 unit bias v s) and	e require f Paramete veights (fi t centres (weights (c l a scale w	ement: ers tom 2 from 2 one for veight)	ats for 2 rr	er DET Esti Ma Requ 84	EReD imated mory irement bytes

