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CONVOLUTIONAL NEURAL NETWORK WITH KERAS 
 
This workbook is designed to guide you through the activities proposed for today’s lab. As you will 
be working independently, feel free to proceed through the text at your own pace, spending more time 
on the parts that are less familiar to you. The workbook contains both hands-on tasks and links to 
learning materials such as tutorials, articles and videos. When you are unsure about something, feel 
free to ask our teaching assistants or use Internet resources to look for a solution. At the end of each 
section, there will be questions and exercises to verify your understanding of the presented 
information. You may need to do some research to answer the questions. 
 
1. Handwritten Digits Classification 

In this lab we will create a simple CNN for MNIST (Modified National Institute of Standards and 
Technology database) that demonstrates how to use all of the aspects of a modern CNN 
implementation, including Convolutional layers, Pooling layers and Dropout layers.  

The MNIST database is a large database of handwritten digits that is commonly used for training 
various image processing systems. It was created by “re-mixing” the samples from NIST's 
(National Institute of Standards and Technology) original datasets. The MNIST database contains 
60,000 training images and 10,000 testing images. Half of the training set and half of the test set 
were taken from NIST's training dataset, while the other half of the training set and the other half of 
the test set were taken from NIST's testing dataset. There have been a number of scientific papers 
on attempts to achieve the lowest error rate; one paper, using a hierarchical system of convolutional 
neural networks, manages to get an error rate on the MNIST database of 0.23%. The original 
creators of the database keep a list of some of the methods tested on it. In their original paper, they 
use a support-vector machine to get an error rate of 0.8%.  

The Keras deep learning library provides a convenience method for loading the MNIST dataset. 
The dataset is downloaded automatically the first time this function is called and is stored in your 
home directory in ~/.keras/datasets/mnist.pkl.gz as a 15 megabyte file. This is very handy for 
developing and testing deep learning models. To demonstrate how easy it is to load the MNIST 
dataset, we will first write a little script to download and visualise the first 4 images in the training 
dataset. 
 
# plot ad hoc MNIST instances 
import keras 
from keras.datasets import mnist 
import matplotlib.pyplot as plt 
 
# load (downloaded if needed) the MNIST dataset  
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() 
 
# plot 4 images as gray scale 
plt.subplot(221) 
plt.imshow(x_train[0], cmap=plt.get_cmap('gray'))  
plt.subplot(222) 
plt.imshow(x_train[1], cmap=plt.get_cmap('gray'))  
plt.subplot(223) 
plt.imshow(x_train[2], cmap=plt.get_cmap('gray'))  
plt.subplot(224) 
plt.imshow(x_train[3], cmap=plt.get_cmap('gray')) 
 
# show the plot 
plt.show() 
 



Let us import other classes and functions needed, Again, we always initialise the random number 
generator to a constant seed value for reproducibility of results. 
 
# to see versions 
import warnings 
warnings.simplefilter(action='ignore', category=FutureWarning) 
import sys 
import tensorflow as tf 
 
from keras.models import Sequential 
from keras.layers import Dense, Dropout, Flatten 
from keras.layers.convolutional import Conv2D, MaxPooling2D 
 
# fix random seed for reproducibility 
import numpy as np 
np.random.seed(7) 

 
Let us use 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 functions to see the versions of Python, TensorFlow and Keras.  
 
# print 
print('Python version : ', sys.version) 
print('TensorFlow version : ', tf.__version__) 
print('Keras version : ', keras.__version__) 

 
As we already loaded the MNIST dataset, we now just reshape it so that it is suitable for use 
training a CNN. In Keras, the layers used for two-dimensional convolutions (Conv2D) expect pixel 
values with the dimensions [height][width][channels]. In the case of RGB, the first-
dimension channels would be 3 for the red, green and blue components and it would be like having 
3 image inputs for every colour image. In the case of MNIST where the channels values are grey 
scale, the pixel dimension is set to 1. 
 
img_rows = 28 
img_cols = 28 
input_shape = (img_rows, img_cols, 1) 
 
# reshape to be [samples][height][width][channels] 
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) 
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) 

 
As before, it is a good idea to normalise the pixel values to the range 0 and 1 and one hot encode 
the output variable. 
 
# normalise inputs from 0-255 to 0-1 
x_train = x_train.astype('float32') / 255. 
x_test = x_test.astype('float32') / 255. 

 
Let’s print to see the input shape. 
 
print('x_train shape:', x_train.shape) 
print(x_train.shape[0], 'train samples') 
print(x_test.shape[0], 'test samples') 

 
Let’s do hot encode outputs for labels. A one hot encoding is a representation of categorical 
variables as binary vectors. This first requires that the categorical values be mapped to integer 
values. Then, each integer value is represented as a binary vector that is all zero values except the 
index of the integer, which is marked with a 1. For example, if we had the sequence: ‘red’, ‘red’, 
‘green’. We could represent it with the integer encoding: 0, 0, 1. And one hot encoding of  
 

[1, 0] 
[1, 0] 
[0, 1] 

 



We would like to give the network more expressive power to learn a probability-like number for 
each possible label value. 
 
# one hot encode outputs  
num_classes = 10  
y_train = keras.utils.to_categorical(y_train, num_classes) 
y_test = keras.utils.to_categorical(y_test, num_classes) 
 
Next we define our neural network model. Convolutional neural networks are more complex than 
standard Multilayer Perceptron (MLP), so we will start by using a simple structure to begin with 
that uses all of the elements for state-of-the-art results. Below summarises the network architecture. 
 

1. The first hidden layer is a convolutional layer called a Conv2D. The layer has 32 feature 
maps, with the size of 5 × 5 and a rectifier (𝑟𝑒𝑙𝑢) activation function. This is the input layer, 
expecting images with the structure outline above. 

2. Next, we define a pooling layer that takes the maximum value called MaxPooling2D. It is 
configured with a pool size of 2 × 2. 

3. The second hidden layer is also a Conv2D. The layer has 64 features maps, with the size of 
5 × 5 and a 𝑟𝑒𝑙𝑢 activation function. 

4. Next, we define a MaxPooling2D again. It is configured with a pool size of 2 × 2. 
5. The next layer is a regularization layer using dropout called Dropout. It is configured to 

randomly exclude 25% of neurons in the layer in order to reduce overfitting. 
6. Next is a layer that converts the 2D matrix data to a vector called 𝐹𝑙𝑎𝑡𝑡𝑒𝑛. It allows the 

output to be processed by standard fully connected layers. 
7. Next a fully connected layer with 1000 neurons and 𝑟𝑒𝑙𝑢 function is used. 
8. We again use Dropout. It is configured to randomly exclude 50% of neurons in the layer. 
9. Finally, the output layer has 10 neurons for the 10 classes and a softmax activation function 

to output probability-like predictions for each class. 
 

As before, the model is trained using logarithmic loss and the ADAM gradient descent algorithm. A 
depiction of the network structure is provided below. 
 

 
[Source] Adventures in Machine Learning 

 
model = Sequential() 
model.add(Conv2D(32, kernel_size=(5, 5), strides=(1, 1), padding='same', 
activation='relu', input_shape=input_shape)) 
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) 
model.add(Conv2D(64, (2, 2), activation='relu', padding='same')) 
model.add(MaxPooling2D(pool_size=(2, 2))) 
model.add(Dropout(0.25)) 
model.add(Flatten()) 
model.add(Dense(1000, activation='relu')) 
model.add(Dropout(0.5)) 
model.add(Dense(num_classes, activation='softmax')) 
model.summary() 
 



Compile and fit the model. The CNN is fit over 12 epochs with a batch size of 128 as defined 
above. The 𝑣𝑒𝑟𝑏𝑜𝑠𝑒 setting changes the way you see the training progress for each epoch. For 
example, 𝑣𝑒𝑟𝑏𝑜𝑠𝑒 = 0 will show you nothing (silent), 𝑣𝑒𝑟𝑏𝑜𝑠𝑒 = 1 will show you an animated 
progress bar like this: and 𝑣𝑒𝑟𝑏𝑜𝑠𝑒 = 2 will just mention the 
number of epoch like this: Epoch 1/10 
 
opt = 'adam' 
loss = 'categorical_crossentropy' 
metrics = ['accuracy'] 
 
# these values are chosen via trial and error  
batch_size = 128 
epochs = 12 
 
model.compile(optimizer=opt, loss=loss, metrics=metrics) 
 
# fit the model 
history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, 
validation_data=(x_test, y_test)) 
 
Verify your understanding: 
(a) Use 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒  function in 𝑀𝑜𝑑𝑒𝑙  class to print the test loss and accuracy values. Refer to 

https://keras.io/models/model/  
(b) How many images are misclassified? 
(c) Run the below code blocks and analyse the plots. What do these plots tell? 
     print(history) 
     fig1, ax_acc = plt.subplots() 
     plt.plot(history.history['acc']) 
     plt.plot(history.history['val_acc']) 
     plt.xlabel('Epoch') 
     plt.ylabel('Accuracy') 
     plt.title('Model - Accuracy') 
     plt.legend(['Training', 'Validation'], loc='lower right') 
     plt.show() 
 
     fig2, ax_loss = plt.subplots() 
     plt.xlabel('Epoch') 
     plt.ylabel('Loss') 
     plt.title('Model - Loss') 
     plt.legend(['Training', 'Validation'], loc='upper right') 
     plt.plot(history.history['loss']) 
     plt.plot(history.history['val_loss']) 
     plt.show() 

(d) Run the below code block and interpret the results.  
         n = 0 
         plt.imshow(x_test[n].reshape(28, 28), cmap='Greys', interpolation='nearest') 
         plt.show() 
         print('The Answer is ', model.predict_classes(x_test[n].reshape((1, 28, 28, 1)))) 
(e) Write a code block that shows the misclassified images and how they are predicted as in the 

image below. 
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