
APPLIED MACHINE LEARNING
LAB ACTIVITIES (LAB 7)

28/11/19

CONVOLUTIONAL NEURAL NETWORK WITH KERAS

This workbook is designed to guide you through the activities proposed for today’s lab. As you will
be working independently, feel free to proceed through the text at your own pace, spending more time
on the parts that are less familiar to you. The workbook contains both hands-on tasks and links to
learning materials such as tutorials, articles and videos. When you are unsure about something, feel
free to ask our teaching assistants or use Internet resources to look for a solution. At the end of each
section, there will be questions and exercises to verify your understanding of the presented
information. You may need to do some research to answer the questions.

1. Handwritten Digits Classification

In this lab we will create a simple CNN for MNIST (Modified National Institute of Standards and
Technology database) that demonstrates how to use all of the aspects of a modern CNN
implementation, including Convolutional layers, Pooling layers and Dropout layers.

The MNIST database is a large database of handwritten digits that is commonly used for training
various image processing systems. It was created by “re-mixing” the samples from NIST's
(National Institute of Standards and Technology) original datasets. The MNIST database contains
60,000 training images and 10,000 testing images. Half of the training set and half of the test set
were taken from NIST's training dataset, while the other half of the training set and the other half of
the test set were taken from NIST's testing dataset. There have been a number of scientific papers
on attempts to achieve the lowest error rate; one paper, using a hierarchical system of convolutional
neural networks, manages to get an error rate on the MNIST database of 0.23%. The original
creators of the database keep a list of some of the methods tested on it. In their original paper, they
use a support-vector machine to get an error rate of 0.8%.

The Keras deep learning library provides a convenience method for loading the MNIST dataset.
The dataset is downloaded automatically the first time this function is called and is stored in your
home directory in ~/.keras/datasets/mnist.pkl.gz as a 15 megabyte file. This is very handy for
developing and testing deep learning models. To demonstrate how easy it is to load the MNIST
dataset, we will first write a little script to download and visualise the first 4 images in the training
dataset.

plot ad hoc MNIST instances
import keras
from keras.datasets import mnist
import matplotlib.pyplot as plt

load (downloaded if needed) the MNIST dataset
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

plot 4 images as gray scale
plt.subplot(221)
plt.imshow(x_train[0], cmap=plt.get_cmap('gray'))
plt.subplot(222)
plt.imshow(x_train[1], cmap=plt.get_cmap('gray'))
plt.subplot(223)
plt.imshow(x_train[2], cmap=plt.get_cmap('gray'))
plt.subplot(224)
plt.imshow(x_train[3], cmap=plt.get_cmap('gray'))

show the plot
plt.show()

Let us import other classes and functions needed, Again, we always initialise the random number
generator to a constant seed value for reproducibility of results.

to see versions
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import sys
import tensorflow as tf

from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D

fix random seed for reproducibility
import numpy as np
np.random.seed(7)

Let us use 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 functions to see the versions of Python, TensorFlow and Keras.

print
print('Python version : ', sys.version)
print('TensorFlow version : ', tf.__version__)
print('Keras version : ', keras.__version__)

As we already loaded the MNIST dataset, we now just reshape it so that it is suitable for use
training a CNN. In Keras, the layers used for two-dimensional convolutions (Conv2D) expect pixel
values with the dimensions [height][width][channels]. In the case of RGB, the first-
dimension channels would be 3 for the red, green and blue components and it would be like having
3 image inputs for every colour image. In the case of MNIST where the channels values are grey
scale, the pixel dimension is set to 1.

img_rows = 28
img_cols = 28
input_shape = (img_rows, img_cols, 1)

reshape to be [samples][height][width][channels]
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)

As before, it is a good idea to normalise the pixel values to the range 0 and 1 and one hot encode
the output variable.

normalise inputs from 0-255 to 0-1
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.

Let’s print to see the input shape.

print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

Let’s do hot encode outputs for labels. A one hot encoding is a representation of categorical
variables as binary vectors. This first requires that the categorical values be mapped to integer
values. Then, each integer value is represented as a binary vector that is all zero values except the
index of the integer, which is marked with a 1. For example, if we had the sequence: ‘red’, ‘red’,
‘green’. We could represent it with the integer encoding: 0, 0, 1. And one hot encoding of

[1, 0]
[1, 0]
[0, 1]

We would like to give the network more expressive power to learn a probability-like number for
each possible label value.

one hot encode outputs
num_classes = 10
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

Next we define our neural network model. Convolutional neural networks are more complex than
standard Multilayer Perceptron (MLP), so we will start by using a simple structure to begin with
that uses all of the elements for state-of-the-art results. Below summarises the network architecture.

1. The first hidden layer is a convolutional layer called a Conv2D. The layer has 32 feature
maps, with the size of 5 × 5 and a rectifier (𝑟𝑒𝑙𝑢) activation function. This is the input layer,
expecting images with the structure outline above.

2. Next, we define a pooling layer that takes the maximum value called MaxPooling2D. It is
configured with a pool size of 2 × 2.

3. The second hidden layer is also a Conv2D. The layer has 64 features maps, with the size of
5 × 5 and a 𝑟𝑒𝑙𝑢 activation function.

4. Next, we define a MaxPooling2D again. It is configured with a pool size of 2 × 2.
5. The next layer is a regularization layer using dropout called Dropout. It is configured to

randomly exclude 25% of neurons in the layer in order to reduce overfitting.
6. Next is a layer that converts the 2D matrix data to a vector called 𝐹𝑙𝑎𝑡𝑡𝑒𝑛. It allows the

output to be processed by standard fully connected layers.
7. Next a fully connected layer with 1000 neurons and 𝑟𝑒𝑙𝑢 function is used.
8. We again use Dropout. It is configured to randomly exclude 50% of neurons in the layer.
9. Finally, the output layer has 10 neurons for the 10 classes and a softmax activation function

to output probability-like predictions for each class.

As before, the model is trained using logarithmic loss and the ADAM gradient descent algorithm. A
depiction of the network structure is provided below.

[Source] Adventures in Machine Learning

model = Sequential()
model.add(Conv2D(32, kernel_size=(5, 5), strides=(1, 1), padding='same',
activation='relu', input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(64, (2, 2), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1000, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.summary()

Compile and fit the model. The CNN is fit over 12 epochs with a batch size of 128 as defined
above. The 𝑣𝑒𝑟𝑏𝑜𝑠𝑒 setting changes the way you see the training progress for each epoch. For
example, 𝑣𝑒𝑟𝑏𝑜𝑠𝑒 = 0 will show you nothing (silent), 𝑣𝑒𝑟𝑏𝑜𝑠𝑒 = 1 will show you an animated
progress bar like this: and 𝑣𝑒𝑟𝑏𝑜𝑠𝑒 = 2 will just mention the
number of epoch like this: Epoch 1/10

opt = 'adam'
loss = 'categorical_crossentropy'
metrics = ['accuracy']

these values are chosen via trial and error
batch_size = 128
epochs = 12

model.compile(optimizer=opt, loss=loss, metrics=metrics)

fit the model
history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1,
validation_data=(x_test, y_test))

Verify your understanding:
(a) Use 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 function in 𝑀𝑜𝑑𝑒𝑙 class to print the test loss and accuracy values. Refer to

https://keras.io/models/model/
(b) How many images are misclassified?
(c) Run the below code blocks and analyse the plots. What do these plots tell?
 print(history)
 fig1, ax_acc = plt.subplots()
 plt.plot(history.history['acc'])
 plt.plot(history.history['val_acc'])
 plt.xlabel('Epoch')
 plt.ylabel('Accuracy')
 plt.title('Model - Accuracy')
 plt.legend(['Training', 'Validation'], loc='lower right')
 plt.show()

 fig2, ax_loss = plt.subplots()
 plt.xlabel('Epoch')
 plt.ylabel('Loss')
 plt.title('Model - Loss')
 plt.legend(['Training', 'Validation'], loc='upper right')
 plt.plot(history.history['loss'])
 plt.plot(history.history['val_loss'])
 plt.show()

(d) Run the below code block and interpret the results.
 n = 0
 plt.imshow(x_test[n].reshape(28, 28), cmap='Greys', interpolation='nearest')
 plt.show()
 print('The Answer is ', model.predict_classes(x_test[n].reshape((1, 28, 28, 1))))
(e) Write a code block that shows the misclassified images and how they are predicted as in the

image below.

2. References

[1]. Géron, A., 2017. Hands-on machine learning with Scikit-Learn and TensorFlow: concepts,

tools, and techniques to build intelligent systems. " O'Reilly Media, Inc.".
[2]. Raschka, S., 2015. Python machine learning. Packt Publishing Ltd.
[3]. Grus, J., 2019. Data science from scratch: first principles with python. O'Reilly Media.
[4]. Müller, A.C. and Guido, S., 2016. Introduction to machine learning with Python: a guide for

data scientists. " O'Reilly Media, Inc.".
[5]. Brownlee, J., 2014. Machine learning mastery.
[6]. Raschka, S., 2015. Python machine learning. Packt Publishing Ltd.
[7]. SAS, 2018, Advanced Predictive Modelling using SAS
[8]. Géron, A., 2019. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:

Concepts, Tools, and Techniques to Build Intelligent Systems. O'Reilly Media.

