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SEQUENCE DATA PREDICTION USING LSTM 
 
This workbook is designed to guide you through the activities proposed for today’s lab. As you will 
be working independently, feel free to proceed through the text at your own pace, spending more time 
on the parts that are less familiar to you. The workbook contains both hands-on tasks and links to 
learning materials such as tutorials, articles and videos. When you are unsure about something, feel 
free to ask our teaching assistants or use Internet resources to look for a solution. At the end of each 
section, there will be questions and exercises to verify your understanding of the presented 
information. You may need to do some research to answer the questions. 
 
1. Time Series Prediction 
 
The problem we are going to look at in this lab is the international airline passengers prediction 
problem. This is a problem where given a year and a month, the task is to predict the number of 
international airline passengers in units of 1,000. The data ranges from January 1949 to December 
1960 or 12 years, with 144 observations. The dataset is available for free from the DataMarket or 
Kaggle webpage as a CSV download with the filename 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 − 𝑎𝑖𝑟𝑙𝑖𝑛𝑒 −
𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠. 𝑐𝑠𝑣.  
 
https://www.kaggle.com/ternaryrealm/airlines-passenger-data  
 
Below is a sample of the first few lines of the file. 
 

 
Sample Output from Evaluating the Baseline Model. 

 
We can load this dataset easily using the Pandas library. We are not interested in the date, given that 
each observation is separated by the same interval of one month. Therefore, when we load the 
dataset, we can exclude the first column. The downloaded dataset also has footer information that 
we can exclude with the 𝑠𝑘𝑖𝑝𝑓𝑜𝑜𝑡𝑒𝑟 argument to 𝑝𝑎𝑛𝑑𝑎𝑠. 𝑟𝑒𝑎𝑑_𝑐𝑠𝑣() set to 3 for the 3 footer 
lines. Once loaded we can easily plot the whole dataset. The code to load and plot the dataset is 
listed below. 
 
from pandas import read_csv 
import matplotlib.pyplot as plt 
dataset = read_csv('international-airline-passengers.csv', usecols=[1], engine='python', 
    skipfooter=3) 
plt.plot(dataset) 
plt.show() 

LSTMs are sensitive to the scale of the input data, specifically when the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (default) or 𝑡𝑎𝑛ℎ 
activation functions are used. It can be a good practice to rescale the data to the range of 0-to-1, also 
called normalising. We can easily normalise the dataset using the 𝑀𝑖𝑛𝑀𝑎𝑥𝑆𝑐𝑎𝑙𝑒𝑟 preprocessing 
class from the scikit-learn library.  

# normalise the dataset 
scaler = MinMaxScaler(feature_range=(0, 1)) 



dataset = scaler.fit_transform(dataset) 
 
The LSTM network expects the input data (𝑋) to be provided with a specific array structure in the 
form of: [samples, time steps, features]  
 
where 
samples is the number of data points we have,  
time steps is the number of time-dependent steps that are there in a single data point, and 
features refers to the number of variables we have for the corresponding true value in Y. 
 
Our prepared data is in the form: [samples, features] and we are framing the problem as one time 
step for each sample. We can transform the prepared train and test input data into the expected 
structure using 𝑛𝑢𝑚𝑝𝑦. 𝑟𝑒𝑠ℎ𝑎𝑝𝑒() as follows: 
 
# reshape input to be [samples, time steps, features] 
trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) 
testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1])) 
 
The 𝑠ℎ𝑎𝑝𝑒 attribute for Numpy arrays returns the dimensions of the array. If 𝑌 has 𝑛 rows and 𝑚 
columns, then 𝑌. 𝑠ℎ𝑎𝑝𝑒 is (𝑛,𝑚). Thus, 𝑌. 𝑠ℎ𝑎𝑝𝑒[0] is 𝑛. 
 
We are now ready to design and fit our LSTM network for this problem. The network has a visible 
layer with 1 input, a hidden layer with 4 LSTM blocks or neurons and an output layer that makes a 
single value prediction. The default sigmoid activation function is used for the LSTM memory 
blocks. The network is trained for 100 epochs and a batch size of 1 is used. 
 
# create and fit the LSTM network 
model = Sequential() 
model.add(LSTM(4, input_shape=(1, look_back)))  
model.add(Dense(1)) 
model.compile(loss='mean_squared_error', optimizer='adam') model.fit(trainX, trainY, 
epochs=100, batch_size=1, verbose=2) 
 
When defining the input layer of your LSTM network, the network assumes you have 1 or more 
samples and requires that you specify the number of time steps and the number of features. You can 
do this by specifying a tuple to the “𝑖𝑛𝑝𝑢𝑡_𝑠ℎ𝑎𝑝𝑒” argument. 
 
For example, the model below defines an input layer that expects 1 or more samples, 50 time steps, 
and 2 features. 
 
For completeness below is the entire code example.  
	
# LSTM for international airline passengers problem with regression framing 
import numpy 
import matplotlib.pyplot as plt 
from pandas import read_csv 
import math 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.layers import LSTM 
from sklearn.preprocessing import MinMaxScaler 
from sklearn.metrics import mean_squared_error 
 
# convert an array of values into a dataset matrix 
def create_dataset(dataset, look_back=1): 
  dataX, dataY = [], [] 
  for i in range(len(dataset)-look_back-1): 
    a = dataset[i:(i+look_back), 0] 
    dataX.append(a) 
    dataY.append(dataset[i + look_back, 0]) 
  return numpy.array(dataX), numpy.array(dataY) 
 
# LSTM for international airline passengers problem with regression framing 
import numpy 



import matplotlib.pyplot as plt 
from pandas import read_csv 
import math 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.layers import LSTM 
from sklearn.preprocessing import MinMaxScaler 
from sklearn.metrics import mean_squared_error 
 
# convert an array of values into a dataset matrix 
def create_dataset(dataset, look_back=1): 
  dataX, dataY = [], [] 
  for i in range(len(dataset)-look_back-1): 
    a = dataset[i:(i+look_back), 0] 
    dataX.append(a) 
    dataY.append(dataset[i + look_back, 0]) 

return numpy.array(dataX), numpy.array(dataY) 
 
# fix random seed for reproducibility 
numpy.random.seed(7) 
 
# load the dataset 
dataframe = read_csv('international-airline-passengers.csv', usecols=[1],      
engine='python', skipfooter=3) 
dataset = dataframe.values 
dataset = dataset.astype('float32') 
 
# normalize the dataset 
scaler = MinMaxScaler(feature_range=(0, 1)) 
dataset = scaler.fit_transform(dataset) 
 
# split into train and test sets 
train_size = int(len(dataset) * 0.67) 
test_size = len(dataset) - train_size 
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:] 
 
# reshape into X=t and Y=t+1 
look_back = 1 
trainX, trainY = create_dataset(train, look_back) 
testX, testY = create_dataset(test, look_back) 
# reshape input to be [samples, time steps, features] 
trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) 
testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1])) 
 
# create and fit the LSTM network 
model = Sequential() 
model.add(LSTM(4, input_shape=(1, look_back))) 
model.add(Dense(1)) 
model.compile(loss='mean_squared_error', optimizer='adam') 
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2) 
 
# make predictions 
trainPredict = model.predict(trainX) 
testPredict = model.predict(testX) 
 
# invert predictions 
trainPredict = scaler.inverse_transform(trainPredict) 
trainY = scaler.inverse_transform([trainY]) 
testPredict = scaler.inverse_transform(testPredict) 
testY = scaler.inverse_transform([testY]) 
 
# calculate root mean squared error 
trainScore = … 
print('Train Score: %.2f RMSE' % (trainScore)) 
testScore = …  
print('Test Score: %.2f RMSE' % (testScore)) 
 
# shift train predictions for plotting 
trainPredictPlot = numpy.empty_like(dataset) 
trainPredictPlot[:, :] = numpy.nan 
trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict 
 
# shift test predictions for plotting 
testPredictPlot = numpy.empty_like(dataset) 
testPredictPlot[:, :] = numpy.nan 
testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict 



 
# plot baseline and predictions 
plt.plot(scaler.inverse_transform(dataset)) 
plt.plot(trainPredictPlot) 
plt.plot(testPredictPlot) 
plt.show() 
 
Verify your understanding: 
(a) Complete the code block for calculating root mean squared error.  
(b) Run the above code block and interpreted the results.  
 
Soln: 
trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0])) 
print('Train Score: %.2f RMSE' % (trainScore)) 
testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0])) 
print('Test Score: %.2f RMSE' % (testScore)) 
 
We can see that the model has an average error of about 23 passengers (in 
thousands) on the training dataset and about 52 passengers (in thousands) on the 
test dataset. Not that bad. 
 
2. Sequence Classification 
 
The problem that we will use to demonstrate sequence learning in this section is the SMS Spam 
classification problem.  
 
The SMS Spam Collection is a set of SMS tagged messages that have been collected for SMS Spam 
research. It contains one set of SMS messages in English of 5,574 messages, tagged being ham 
(legitimate) or spam. See below. 
 
https://www.kaggle.com/uciml/sms-spam-collection-dataset/  
 
We can develop a small LSTM for the SMS Spam problem and achieve good accuracy. Let’s start 
off by importing the classes and functions required for this model and initialising the random 
number generator to a constant value to ensure we can easily reproduce the results. 
 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
from sklearn.model_selection import train_test_split 
from sklearn.preprocessing import LabelEncoder 
from keras.models import Model 
from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding 
from keras.optimizers import RMSprop 
from keras.preprocessing.text import Tokenizer 
from keras.preprocessing import sequence 
from keras.utils import to_categorical 
from keras.callbacks import EarlyStopping 
 
# fix random seed for reproducibility 
np.random.seed(7) 
 
We need to load the spam dataset. We are loading the data into Pandas dataframe.  
 
df = pd.read_csv('spam.csv',delimiter=',',encoding='latin-1') 
df.head() 
 
Verify your understanding: 
(c) Run the above code block in Jupyter Notebook and interpret the output.  
 



We now need to drop the columns that are not required. Pandas 𝑑𝑎𝑡𝑎𝑓𝑟𝑎𝑚𝑒. 𝑖𝑛𝑓𝑜() function is 
used to get a concise summary of the dataframe. It comes really handy when doing exploratory 
analysis of the data. 
 
df.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'],axis=1,inplace=True) 
df.info() 
 
Visualising the data may help us to understand the distribution better.  
 
sns.countplot(df.v1) 
plt.xlabel('Label') 
plt.title('Number of ham and spam messages') 

 
We need to create input and output vectors and reshape the labels. 𝐿𝑎𝑏𝑒𝑙𝐸𝑛𝑐𝑜𝑑𝑒𝑟 can be used to 
normalise labels and 𝑓𝑖𝑡_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 fits label encoder and returns encoded labels.  
 
X = df.v2 
Y = df.v1 
le = LabelEncoder() 
Y = le.fit_transform(Y) 
Y = Y.reshape(-1,1) 

We also split the dataset into train (85%) and test (15%) sets.  

X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.15) 

“Tokens” are usually individual words (at least in languages like English) and “tokenization” is 
taking a text or set of text and breaking it up into its individual words. As each sample in v2 has a 
sequence of tokens it should be tokenised and added padding to ensure that all the sequences have 
the same shape. There are many ways of taking the 𝑚𝑎𝑥_𝑙𝑒𝑛 but an arbitrary length of 150 is 
chosen. 
 
max_words = 1000 
max_len = 150 
tok = Tokenizer(num_words=max_words) 
tok.fit_on_texts(X_train) 
sequences = tok.texts_to_sequences(X_train) 
sequences_matrix = sequence.pad_sequences(sequences,maxlen=max_len) 
 
We can now define, compile and fit our LSTM model. The first layer is the Embedded layer that 
uses 50 length vectors to represent each word. The next layer is the LSTM layer with 64 memory 
units (smart neurons). Finally, because this is a classification problem, we use a Dense output layer 
with a single neuron and a sigmoid activation function to make 0 or 1 predictions for the two 
classes (ham and spam) in the problem. Because it is a binary classification problem, log loss is 
used as the loss function (𝑏𝑖𝑛𝑎𝑟𝑦_𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦 in Keras). The efficient ADAM optimisation 
algorithm is used. The model is fit for only 5 epochs because it quickly overfits the problem. A 
large batch size of 128 SMS is used to space out weight updates. 
 
def RNN(): 
    inputs = Input(name='inputs',shape=[max_len]) 
    layer = Embedding(max_words,50,input_length=max_len)(inputs) 
    layer = LSTM(64)(layer) 
    layer = Dense(256,name='FC1')(layer) 
    layer = Activation('relu')(layer) 
    layer = Dropout(0.5)(layer) 
    layer = Dense(1,name='out_layer')(layer) 
    layer = Activation('sigmoid')(layer) 
    model = Model(inputs=inputs,outputs=layer) 
    return model 
model = RNN() 
model.summary() 
model.compile(loss='binary_crossentropy',optimizer=’adam’,metrics=['accuracy']) 
model.fit(sequences_matrix,Y_train,batch_size=128,epochs=5,validation_split=0.2,callbacks
=[EarlyStopping(monitor='val_loss',min_delta=0.0001)]) 



 
We need to process the test data as the train data was processed in the previous step.  
 
test_sequences = tok.texts_to_sequences(X_test) 
test_sequences_matrix = sequence.pad_sequences(test_sequences,maxlen=max_len) 
 
Once fit, we estimate the performance of the model on unseen reviews. 
 
scores = model.evaluate(test_sequences_matrix,Y_test) 
print('Test set\n  Loss: {:0.3f}\n  Accuracy: {:0.3f}'.format(scores[0],scores[1])) 

 
Verify your understanding: 
(d) Run the above code block in Jupyter Notebook and interpret the results.  
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