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Quiz E;

What value would be in place of question mark?

INPUT FILTER CONVOLVED FEATURE
1 1 1 0 0
0 o 1 1 0 1|10(1 ?
0 0 1 1 1 of1]0
0 0 1 1 0 1({o]1
0 1 1 0 0
3x3
5x5

Here we see a convolutional function being applied to input.
3

C.
D.

Birkbeck, University of London © Copyright 2019

05/12/2019



Quiz [

L& 27

Which of the following gives non-linearity to a CNN?

A. Stochastic Gradient Descent
Rectified Linear Unit

C. Convolution function

D. None of the above

Rectified Linear unit is a non-linear activation function.

Birkbeck, University of London © Copyright 2019
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Quiz E;

Which of the following statements is true when you use 1x1
convolutions in a CNN?

A. It can help in dimensionality reduction
B. It can be used for feature pooling

. It suffers less overfitting
e All of the above

Input Filter Result

1x1x5

Parameters:
6x6x5 Size: f=1 6x6x2
#channels: n,=5

Stri s=1
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Quiz ::;

The input image has been converted into a matrix of size 28x28
and a kernel/filter of size 7x7 with a stride of 1. What will be the
size of the convoluted matrix?

2. 21 X21
3. 28X28
4. 7X7

The size of the convoluted matrix is given by € = ((I — F + 2P)/S) + 1,
where
C is the size of the Convoluted matrix,
| is the size of the input matrix,
F the size of the filter matrix and
P the padding applied to the input matrix.

Here P=0, 1=28, F=7 and S=1. There the answer is 22.

Birkbeck, University of London © Copyright 2019
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Quiz E;

Given below is an input matrix named |, kernel F and Convoluted
matrix named C. Which of the following is the correct option for
matrix C with stride =2 ?

1 [ o] 1 1] [ 1
3 1 F
1 1
o] 0 1 0 [
h 9 —o i
1] 1] 1 1] 1 Y Y
Cc
3] 3 4| 4 3| 3 3
3| 2 B) 4 2 3| 2 2
1 3 3| 2 3| 3 3
3| 2 3| 4 2| 3 2
2 4 4| 3 2| 2| 4
D C
) I e — —
L8 5[ 4

1 and 2 are automatically eliminated since they do not conform to the output
size for a stride of 2. Upon calculation option 3 is the correct answer.
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Quiz

Which of following activation function can’t be used at output
layer to classify an image ?

1. Sigmoid
. Tanh
@ RelLU
4. If(x>5,1,0)

5. None of the above

ReLU gives continuous output in range 0 to infinity. But in output layer, we want a
finite range of values. So option C is correct.

Birkbeck, University of London © Copyright 2019
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Quiz Ef

Which of following is the main contribution of VGG16?

1. Four building blocks of CNN (Convolution, Non-linearity, Pooling and
classification)

2. Use of ReLU as non-linearities and Dropout to avoid overfitting
3. Firstuse of GPU

Depth of the network is a critical component for good performance.
5. None of the above

The first one is LeNet-5, the 2" and 3 are AlexNet and the 4this VGG16

Birkbeck, University of London © Copyright 2019
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VGG16

+ Its main contribution was in showing that the 224x224x3 224122464
depth of the network (# of layers) is a critical

component for good performance.
« Simplified Architecture
* Conv = 3X3 filter,
s = 1, same padding
* Max-Pool = 2x2,s =1

* 138M parameters

)
)
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L& )27

112x112x128

6]x 56 x 256 7x7x512
28 x 28 x 512

14 x 14 x 512 1x1x4096 1x1x1000
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) max pooling
) fully nected-+ReLU
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Training a single Al model
can emit as much carbon
as five cars in their

lifetimes

Deep learning has a terrible carbon footprint.

by Karen Hao

Jun®,2019

Theartificial

oilindustry:once

mined and refined, data, like oil, can be a highly lucrative commodity. Now it
seems the metaphor may extend even further. Like its fossil-fuel counterpart,
the process of deep learning has an outsize environmental impact.

h

In a new paper,

at the U

ity of M: t ts, Amherst,

performed a life cycle assessment for training several common large Al
models. They found that the process can emit more than 626,000 pounds of
carbon dioxide equivalent—nearly five times the lifetime emissions of the
average American car (and that includes manufacture of the car itself).

Common carbon footprint benchmarks

in Ibs of CO2 equivalent

Roundtrip flight b/w NY and SF (1 passenger) \ 1984
023
| E3ES

Human Iife (avg. 1 year)
American life (avg. 1 year)

US car including fuel (avg. 1 lifetime)

Transformer (213M parameters) w/ neural

architecture search

Chart: MIT Technology Review « Source: Strubell et al. « Created with Datawrapper
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Google Has Reached 100%
Renewable Energy, SoI'm
Issuing A New Challenge

Navigant Research Contributar
Encrgy

£ by Roberto Rodriguez Labastida

»  In2010, Google started a journey to
replace the electricity it uses with

i renewable sources by signing its first
power purchase agreement (PPA) with
a 114 MW wind farm in Towa.

Photo Courtesy: iStock stock

To ensure that its purchases have a
meaningful impact on the environment, Google has followed the concept of
additionality, which means that all the electricity it buys is fnding new

renewable energy projects.

In 2017—2.6 GW over 20 projects and 7 years later—Google announced that
it reached its 100% renewables target. This is a massive achievement,
especially considering that Google began these plans when grid parity was
little more than a dream for wind, and solar energy was a technology that
only rich Californians and Germans put on their roofs.

@ BUSINESS. v

Work Transtormed!

Apple is now completely powered by clean
energy

oy Kaya st @kyurisit
@ 10,2008 2P ET

mEEmQQ

Hi+tableau

The 5 Most Influential
Visualizations of All Time

TR

Apple has made good on its promise to go green.

O Vonday, the tech giant announced that all of s retail stores, data centers and coroorate
offcas now run 01 100% clean enercy.

CUMULATIVE CORPORATE RENEWABLE ENERGY PURCHASING
w . EUROPE, AND 1

0 1060 1500 2000 2500

W emass Bwoste
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grid a full day in advance

DeepMind Carbon Free Energy Program
ML boosts the values of wind energy.

» Successfully predict wind power output 36 hours ahead of actual generation.

» A machine learning algorithm trained on widely available weather forecasts
and historical turbine data — which ML algorithm??

* Recommend how to make optimal hourly delivery commitments to the power

» Energy source that can be scheduled are often more valuable to the grid.

00 8 predicted
Actual pm — — S~
s —_ .
s
<
g s
e
£
5
° \ b
° N—r A Typical Better Better  Operational  Wind
ind  Prediction  prediction costsavings
Fi sat Sun win of of from ML arm
12/16 farm  wind power electricity using
production  supply and ML

lllustrated results from 2018 Google/DeepMind field study
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Economic Value
($/megawatt-hour)

demand

tch-bi t

[Source] https://www.blog.

g-100-p

05/12/2019



Naive Bayes

'/ Averaged O e (AODE)

Bayesian Belief Network (BBN)

Gaussian Naive Bayes

{\__Multinomial Naive Bayes

\__Bayesian Network (BN)
Classification and Regression Tree (CART)

/ Iterative Dichotomiser 3 (ID3)

Deep Boltzmann Machine (DBM) 1/ a.k.a stochastic Hopfield network

- atype of RNN
Deep Belief Networks (DBN)
Deep Learning
Convolutional Neural Network (CNN)
Stacked Auto-Encoders ;

Random Forest

Gradient Boosting Machines (GBM)

Bayesian

—\ ca.s
Boosting 50
\ K
Aggregation (Bagging) |\ Ensemble Decision Tree n
‘adaBoost Chi-squared Automatic Interaction Detection (CHAID)
aBoos!
- — \ \__Decision Stump
Stacked Generalization (Blending) | / — -
. . / \_Conditional Decision Trees
Gradient Boosted Regression Trees (GBRT) / s
Radial Basis Function Network (RBFN) \ /
\ / Principal Component Analysis (PCA)
Perceptron \ / o ——————
——————| Neural Networks \ |/ Partial Least Squares Regression (PLSR
Back-Propagation - ! [ .
~— |/ _sammon Mapping
Hopfield Network Machine Learning Algorithms ————

(' _Multidimensional Scaling (MDS)

Ridge Regression T T —— -
X i / Projection Pursuit
Least Absolute Shrinkage and Selection Operator (LASSO) | o —— i
- / VA . X Principal Component Regression (PCR)
Elastic Net / \ Dimensionality Reduction - N
/ Partial Least Squares Discriminant Analysis
Least Angle Regression (LARS)
Cubist [\__Mixture Discriminant Analysis (MDA)
ubis / [

One Rule (OneR)
Zero Rule (ZeroR)
Incremental Pruning to Produce Error Reduction (RIPPER) J /

Rule System Discriminant Analysis (RDA)

/’ ‘.\\ Quadratic Discriminant Analysis (QDA)

\' Flexible Discriminant Analysis (FDA)

Linear Discriminant Analysis (LDA)

k-Nearest Neighbour (kNN)
Ordinary Least Squares Regression (OLSR) \
\ Learning Vector Quantization (LVQ)
Stepwise Regression

Regression Self-Organizing Map (SOM)
Adaptive Splines (MARS) g genizrg Hep

- - \ \Locally Weighted Learning (LWL)
Locally Estimated Scatterplot Smoothing (LOESS)
| k-Means
Logistic Regression /
) k-Medians
Clustering -

\erarchical Clustering

Linear Regression

Instance Based

13

Overview

We covered:
» Convolutional Neural Network
* Convolution in 2D and 3D
* Non-linearity
» Pooling
» Classification
» Other CNNs (Alexnet, VGG16)

We will cover:
¢ Vanilla RNN
* Gated RNN (LSTM)
« BRNN
« Attention

Birkbeck, University of © Copyright 2019
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Discussion

\J
What is sequential data? Give a few examples

In small groups discuss what you think sequential data is and their
importance is.

You have 3 minutes and then we will discuss your answers.

Birkbeck, University of London © Copyright 2019

Regression

logit(p) =\ﬁ/q + \v"‘/,} X, + \%1 X,

A - A A A
Y =Wt Wi+ wy X, A 1
P eoatd)
Choose intercept and parameter estimates to minimize. Find parameter estimates
A by maximizing
(yi-yi)? A A
MZ i 2 log(p) + > log(1-p)
To obtain prediction estimates, the logit —

equation is solved for p.

The logistic function is simply the inverse of 1
the logit function. T

Birkbeck, University of London © Copyright 2019
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Neural Network

initial linear regression example.

A

lo P
9 1-p

Birkbeck, University of London

A A A
H;=tanh(wyo + Wqq X4 + Wy3 X))
A A A
Hj = tanh(wy, + Wy X4 + W3y X5)

A A A
Hs = tanh(w;, + W34 X3 + W35 X5)

Neural networks can be seen as natural extension of our

Weight estimates found by

maximizing:

2 log(p) + Y log(1 - p)

A A A A
= Woo + Wor Hy + Wy Hy + Wz Hy

© Copyright 2019

Proc. Natl. Acad. Sci. USA
Vol. 79, pp. 2554-2558, April 1982
Biophysics

computational abilities

‘memory/parallel ion/

Neural networks and physical systems with emergent collective

J. J. HoPFIELD

Contributed by John ] Hopfield, January 15, 1982

ABSTRACT ~ Computational properties of use to biological or-
ganisms or to the construction of-computers can emerge as col-
lective properties of systems having a large number of simple

ival neurons). hysical ing of con-
tent-addressable memory is described by an appropriate phase
space flow of the state of a system. A model of such a system is
given, based on aspects of biology but readily adapted to in-

‘tegrated circuits. The collective properties of this model produce
a content-addressable memory which correctly yields an entire
‘memory from any subpart of sufficient size. The algorithm for the
time evolution of the state of the system is based on asynchronous
parallel processing. Additional emergent collective properties in-

ddressable memory/fail-soft devices)

Division of Chemistry and Biology, California Institute of Technology, Pasadena, California 91125; and Bell Laboratories, Murray Hill, New Jersey 07974

calized content-addressable memory or izer using ex-
tensive asynchronous parallel processing.

The general content-addressable memory of a physical
system

Suppose that an item stored in memory is “H. A. Kramers &
G. H. Wannier Phys. Rev. 60, 252 (1941).” A general content-
addressable memory would be capable of retrieving this entire
memory item on the basis of sufficient partial information. The
input “& Wannier, (1941)" might suffice. An ideal memory
coul with errors and retrieve this reference even from the
input “Vannier, (l?-'ﬂ)". In computers, only relatively simple

clude some capacity for familiarity
categorization, error correction, and time sequence retention.
‘The collective properties are only weakly sensitive to details of the
modeling or the failure of individual devices.

Given the dynamical el hemical ies of neurons and

forms of content- ble memory have been made in hard-
ware (10, 11). Sophisticated ideas like error correction in ac-
cessing information are usually introduced as software (10).
‘There are classes of physical systems whose spontaneous be-
havior can !n used as a form of general (and error-correcting)

their interconnections (synapses), we readily understand schemes
that use a few neurons to obtain elementary useful biological
behavior (1-3). Our understanding of such simple circuits in
electronics allows us to plan larger and more complex circuits
which are essential to large computers. Because evolution has
no such plan, it becomes relevant to ask whether the ability of
large collections of neurons to perform “computational” tasks
may in part be a spontaneous collective consequence of having
a large number of interacting simple neurons.

In physical systems made from a large number of simple ele-
ments, interactions among large numbers of elementary com-
ponents yield collective phenomena such as the stable magnetic
orientations and domains in a magnetic system or the vortex
patterns in fluid flow. Do analogous collective phenomena in
a system of simple interacting neurons have useful “computa-
tional” correlates? For example, are the stability of memories,

te ble memory. Consider the time evolution of
a physical system that can be described by a set of general co-
ordinates. A point in state space then represents the instanta-
neous condition of the system. This state space may be either
continuous or discrete (as in the case of N Ising spins).

‘The equations of motion of the system describe a flow in state
space. Various classes of flow patterns are possible, but the sys-
tems of use for memory particularly include those that flow to-
ward locally stable points from anywhere within regions around
those points. A particle with frictional damping moving in a
potential well with two minima exemplifies such a dynamics.

If the flow is not letely d inistic, the descripti
is more complicated. In the two-well problems above, if the
frictional force is characterized by a temperature, it must also
produce a random driving force. The limit points become small
limiting regions, and the stability becomes not absolute. But
as long as the stochastic effects are small, the essence of local

the construction of categories of lization, or time-se-

stable points remains.

18
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RNNs

In the last few years, there have been incredible success applying

RNNs to a variety of problems:

* speech recognition
* language modelling
« translation

* image captioning

* energy systems

* biology

« finance

* etc

Birkbeck, University of London

BN
L&27

© Copyright 2019

RNN Flexibility

Il sequence output
(e.g. image captioning)

one to one one to many many to one
1 OEE I
t t ot ot il
U [HH
t 1 ttt
i HOE

Jf vanilla mode of Il sequence input (e.g
processing without sentiment analysis)
RNN

Birkbeck, University of London

many to many many to many
t ot ot t ot
ﬁ ﬁ t tott
/1 (e.g. machine translation) /I synced sequence input

and output (e.g. label each
frame of video - video

classification)

© Copyright 2019
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Sentiment Classification

A task of simply classifying tweets into positive and negative
sentiment — useful for big data

* Input : a tweet of varying lengths many to one
+ Output : a fixed type and size

| really like the color of my new Iphone o D’D*_
tt 1
| didn’t really enjoy the camera of my Iphone —“ D |:|

Birkbeck, University of London © Copyright 2019

Image Captioning

An image for which we need a textual description.

» Asingle input — the image (a fixed size)
» Multiple output — a series or sequence of words (a description of varying
lengths)

one to many

e

||

A group of young people

Two hockey players are fighting L
playing a game of frisbee. over the puck.

Birkbeck, University of London © Copyright 2019
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Language Translation

Translate English to French

for the same sentence.
» Both inputs and outputs are of varying lengths.

French was the official language of the colony of French Indochina,
comprising modern-day Vietnam, Laos, and Cambodia. It continues
to be an administrative language in Laos and Cambodia, although its
influence has waned in recent years,

Iranslate into : French

Le frangais était la langue officielle de la colonie de I'ndochine
frangaise, comprenant le Vietnam d‘aujourd'hui, le Laos et le
Cambodge. Il continue d'étre une langue administrative au Laos et
au Cambodge, bien que son influence a décliné au cours des
demniéres années.

Birkbeck, University of London

EY
L& 27

» Each language has it's own semantics and would have varying lengths

many to many

=

|

t ot

© Copyright 2019

Video Classification

Label each frame of a video (motion)

Tnput Visual Sequence  Output
Features Learning

Birkbeck, University of London

many to many

L& 57
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Quiz

What RNN architecture is suitable for the prediction of wind power
output next 3 days using weather forecasts and historical turbine
data?

one t_o one Te to many many to of many t_o many mjw t_o mfy
1 OEE I 00 DG
t t ottt i t o+t t ottt
Y A HHHHD  [HKH
t 1 tt ot tt ot tott
i JOd Do 100

Birkbeck, University of London © Copyright 2019

B
RNNs E;

Predict the next word given a sequence of the N previous words.

» Your thoughts have persistence.

 Traditional neural networks can'’t do this, and it seems like a major
shortcoming.

* Recurrent neural networks address this issue.
» They are networks with loops in them, allowing information to persist.

Birkbeck, University of London © Copyright 2019
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RNN ::;

RNNs have loops.

J, [/hiserves 2 purposes:
t  the hidden state for the previous sequence data as
A well as making a prediction.

6

* A chunk of neural network, 4, looks at some input x, and outputs a
value h, (hidden state / internal state / memory).

* Aloop allows information to be passed from one step of the network to
the next.

Birkbeck, University of London © Copyright 2019

Unrolled RNN

A RNN can be thought of as multiple copies of the same network,
each passing a message to a successor.

» Consider what happens if we unroll the loop:

XX,

Ay g Sy g —
® ® L®

» This chain-like nature reveals that RNNs are intimately related to
sequences and lists.

» They’re the natural architecture of neural network to use for such data.

Birkbeck, University of London © Copyright 2019
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RNN and Sequential Data

Unlike neural networks, RNNs can use their (hidden) internal state

(memory) to process sequences of inputs.

A sequence of vectors x is processed by applying a
recurrent formula at every time step.

(o] = (i) .
| old state input vector at
some time step
©
A = achunk of neural network

new state

some function
with parameters W
/

* The ho and x1 is the input for the next step.
Similarly, h1 from the next is the input with x; for the next step and so on.

This way, it keeps remembering the context while training.

Birkbeck, University of London

© Copyright 2019

(Vanilla) RNN
RNNs can use their (hidden) internal state (memory) to process
72,4

sequences of inputs.
Il ht serves 2 purposes:
the hidden state for the previous sequence data as

= tanh(Wpphe 1 + Wypx)

=l ) B e
YtZWhyht
"= A ea—

,
Anunrolled recurrent neural network.

A = achunk of neural network

R

Birkbeck, University of London

the same function and the same set of parameters (e. g. Wiy, Wy, Why) are used at every time step

© Copyright 2019
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Character-level Language Model Example

Vocabulary: [h, e, |, 0]

+ Example training sequence : “hello”

Birkbeck, University of London

paul

paul yoo
paul d yoo

paul mccartney
paul smith

paul rudd

paul hollywood
paultons park
paul

paul anderson

paul pogba

© Copyright 2019

One Hot Encoding

5
L&x7

A process by which categorical variables are converted into a form
that could be provided to ML algorithms to do a better job in

prediction.

- Paris word V
Rome = [1, O, O, O, O, O, .., O]
paris = [0, 1, O, O, O, O, .., O]
Italy = [0, O, 1, O, 0, O, .., O]
France= [0, O, O, 1, 0, 0, .., 0]

Birkbeck, University of London

Our input
0
input layer ?
0
input chars:  “h" “e” “r o o

© Copyright 2019
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A = achunk of neural network

Step 1: We would need Wy, X X;

bias

T ooom

0.56700 and would need Wy, X hy_1 + bias

Weight(whh) bias

Step 2: Moving to the recurrent neuron, we have Wy, = 0.427043 and the

0.287027
0.902874
0537524,

I the previous state (ht1) is [0,0,0] since
there is no letter orior to it.

0 |
0427043 0.567001 L]

0567001
0567001
0567001

_—
_—
Step 3: Apply the tanh/fﬁnction

0287027359 0567001
, 0902874425 0567001
, 0537523791
/,
/

>’

[hd =[flChe—a /%) ‘ he = tanh(Whhht 1+W hxt)

0.854028
1.469875
1104525

0.854028 0.693168
H: == TANH 1469875 - 0899554 ho
-— 1104525 0.802118
= Whyhe
i
=
® |
A = achunk of neural network An unrolled recurrent neural network. e
the same function and the same set of parameters (e. g. Wun, Wxn, Way) are used at every time step
“n
Step 4: In the next state, “e” is now supplied
- . .
Win* he.s + bias will be
Il the same weight value (W) J/ the same bias value
0.69316804 0853013
Whh*H,1+Bias | == o oo = o
0.8021184
1 ho
Wi * x: will be

090954

Step 5: Calculate hy for the letter “e

N

0.93653372 I
0.94910403 1 !
0.76234056

Step 6: Each state could produce output y
[hd = [fulChe—a/xe)) ‘ he = fa"h(Whhh_zT‘:thxz)

037168 0.974829459)] 0.830034836)

0.282585623) 0.659835709
0.09821557] 0.334287084|
Ve = W,lyht

L}
—_—
0.32581642] 0.14463001

®

Step 7: Apply softmax(y:)

0.419748
Classwise Probabilities | py Softmax 0.194682
for the next letter — 0162429
An unrolled recurrent neural network 0223141
the same function and the same set of parameters (e. g. Wyn, Wxn, Way) are used at every time step

17
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Training B3]
b

\

1. The cross entropy error is first computed using the current output and the
actual output

*  Remember that the network is unrolled for all the time steps

2. The gradient is calculated for each time step with respect to the weight
parameter

3. Now that the weight is the same for all the time steps the gradients can
be combined together for all time steps

4. I'I'he weights are then updated for both recurrent neuron and the dense
ayers

**The unrolled network looks much like a regular neural network.

**And the back propagation algorithm is similar to a regular neural network,
just that we combine the gradients of the error for all time steps.

**If there are 100s of time steps — this would basically take really long for the
network to converge since after unrolling the network becomes really huge.

© Copyright 2019

Birkbeck, University of London

sigmoid
Vanishing Gradient sl -

i " i * i de
new weight = weight - learning rate*gradient small ZE' muffling its signal to the next layer of

0.001 neurons. /T‘\
Softmax Layer
A R R R Y R Y R Y R O Y R A A A
Recurrentlayer — = = = = = = = = = > > > & - > > > > > > > > > s o
Y S R Y Y Y A A O O A |
Input Layer
Xo Vanishing gradient: Where the contribution from the earlier steps becomes insignificant. Xn

» This arrow means that long-term information has to sequentially travel
through all cells before getting to the current processing cell.

» This means it can be easily corrupted by being multiplied many time by
small numbers < 0. This is the cause of vanishing gradients.

Birkbeck, University of London

© Copyright 2019
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http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/

Birkbeck, University of London

Vanishing Gradients :.;

\

As we go back to the lower layers gradient often get smaller.
eventually causing weights to never change at lower layers.

The cats, which already ate, . .were full.
The cat, which already ate, .....cccceeveevevecececeern was full.

a 5<2> o

y<1> % y<3> 5<Ty>

y

Pt ! !

a<9> —» | o<1>—| g<2>— [ 4<3>[— —|g<Ty]
x<I>  p<2> x<3> 2<Te>

Basic RNN model has many local influences because of RNNs as the earlier
information. Meaning the output is mostly affected by the value close to it.

© Copyright 2019

Cho, K., Van Merriénboer, B., Bahdanau, D. and Bengio, Y., 2014. On the properties of
neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259.

On the Properties of Neural Machine Translation: Encoder-Decoder
Approaches

Kyunghyun Cho Bart van Merriénboer Dzmitry Bahdanau*
Université de Montréal Jacobs University, Germany

Yoshua Bengio
Université de Montréal, CIFAR Senior Fellow

Abstract generates a correct, variable-length target transla-
tion.
Neural machine translation is a relatively The emergence of the neural machine transla-
new approach to statistical machine trans- tion is highly significant, both practically and the-
lation based purely on neural networks. oretically. Neural machine translation models re-
The neural machine translation models of- quire only a fraction of the memory needed by
ten consist of an encoder and a decoder. ditional statistical his lation (SMT)
The encoder extracts a fixed-length repre- models. The models we trained for this paper
sentation from a variable-length input sen- require only 500MB of memory in total. This
tence, and the decoder generates a correct stands in stark contrast with existing SMT sys-
lation from this rep ion. In this tems, which often require tens of gigabytes of
paper, we focus on analyzing the proper- memory. This makes the neural machine trans-
ties of the neural machine translation us- lation appealing in practice. Furthermore, un-
ing two models; RNN Encoder-Decoder like conventional translation systems, each and ev-
and ou- ery component of the neural translation model is
volutional neural network. We show that trained jointly to maximize the translation perfor-
the neural machine translation performs mance.
relatively well on short sentences without As this approach is relatively new, there has not
unknown words, but its performance de- been much work on analyzing the properties and
grades rapidly as the length of the sentence behavior of these models. For instance: What
and the number of unknown words in- are the properties of sentences on which this ap-
crease. Furthermore, we find that the pro- proach performs better? How does the choice of
posed gated ive convolutional net- /target vocabulary affect the performance?
work learns a grammatical structure of a In which cases does the neural machine translation
sentence automatically. fail?
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Gated RNN (LSTM)

learning long-term dependencies.

1% v 1%
tstm | W sm | W leswm | W W

Cell Cell Cell
C C C C

U U U

* a regulates the amount of information the network remembers over time.
« LSTM adds another connection from every cell called C, the cell state.

Birkbeck, University of London

LSTM is the most commonly used Gated RNN, capable of

LSTM
Cell

U

BN
L&27
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Empirical Evaluation of
Gated Recurrent Neural Networks

on Sequence Modeling
Junyoung Chung  Caglar Gulcehre ~ KyungHyun Cho Yoshua Bengio
Université de Montréal Université de Montréal
CIFAR Senior Fellow
Abstract

In this paper we compare different types of recurrent units in recurrent neural net-
works (RNNs). E: ially, we focus on more histi d units that impl

a gating mechanism, such as a long short-term memory (LSTM) unit ?nd are-
cently proposed gated recurrent uni . We evaluate these recurrent units on
the tasks of polyphonic music modeling and speech signal modeling. Our exper-
iments revealed that these advanced recurrent units are indeed better than more

traditional recurrent units such as tanh units. Also, we found GRU to be compa-
rable to LSTM.

1 Introduction

Recurrent neural networks have recently shown promising results in many machine learning tasks,
especially when input and/or output are of variable length [see, e.g.,(Graves}[2012]). More recently,
Sutskever et al.|[2014] and Bahdanau et al./[2014] reported that recurrent neural networks are able to
perform as well as the existing, well-developed systems on a challenging task of machine translation.

One interesting observation, we make from these recent successes is that almost none of these suc-
cesses were achieved with a vanilla recurrent neural network. Rather, it was a recurrent neural net-
work with sophisticated recurrent hidden units, such as long short-term memory units [Hochreiter,
and Schmidhuber] 1997]], that was used in those successful applications.
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LONG SHORT-TERM MEMORY

NEURAL COMPUTATION 9(8):1735-1780, 1997

Sepp Hochreiter Jiirgen Schmidhuber
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Technische Universitat Miinchen Corso Elvezia 36
80290 Miinchen, Germany 6900 Lugano, Switzerland
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Abstract

Learning to store information over extended time intervals via recurrent backpropagation
takes a very long time, mostly due to insufficient, decaying error back flow. We briefly review
Hochreiter’s 1991 analysis of this problem, then address it by introducing a novel, efficient,
gradient-based method called “Long Short-Term Memory” (LSTM). Truncating the gradient
where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000
discrete time steps by enforcing constant error flow through “constant error carrousels” within
special units. Multiplicative gate units learn to open and close access to the constant error
flow. LSTM is local in space and time; its computational complexity per time step and weight
is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy
pattern representations. In comparisons with RTRL, BPTT, Recurrent Cascade-Correlation,
Elman nets, and Neural Sequence Chunking, LSTM leads to many more successful runs, and
learns much faster. LSTM also solves complex, artificial long time lag tasks that have never
been solved by previous recurrent network algorithms.

1 INTRODUCTION

Recurrent networks can in principle use their feedback connections to store representations of
recent input events in form of activations (“short-term memory”, as opposed to “long-term mem-
ory” embodied by slowly changing weights). This is potentially significant for many applications,
including speech processing, non-Markovian control, and music composition (e.g., Mozer 1992).
The most widely used algorithms for learning what to put in short-term memory, however, take
too much time or do not work well at all, especially when minimal time lags between inputs and
corresponding teacher signals are long. Although theoretically fascinating, existing methods do
not provide clear practical advantages over, say, backprop in feedforward nets with limited time
windows. This paper will review an analysis of the problem and suggest a remedy.
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LSTM

*  When you read the review, your brain subconsciously only remembers important keywords.
*  You pick up words like “amazing” and “perfectly balanced breakfast”.

Customers Review 24901

Thanos

September 2018

Verified Purchase

box of cereal gave me a

| Amazing! This
perfectly balanced preakfast, as all casgen

things should be. | only ate half of it
but will definitely be|buying again! | ABoxof Cereal
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Ve = Wiy he forget gate cell state

Core Concept .:[_in* =) _“ ;,

input gate output gate

]
hy = tanh(Wyphe—y + Wypx,)
The core concept of LSTM’s are the cell state, and it’s various gates.

The cell state
« a transport highway that transfers relative information all the way
down the sequence chain — the “memory” of the network.

« information gets added or removed to the cell state via gates.

/I reducing the effects of short-term memory

The gates
« different neural networks that decide which information is allowed on
the cell state.
« can learn what information is relevant to keep or forget during
training.

© Copyright 2019
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Sigmoid Vs Tanh

LSTM GRU

forget gate cell state reset gate

z=0 (W, - [h-1,24])

re =0 (Wy - [hy—1,24])

hy = tanh (W [ * hy—q, 24])

he = (1= z¢) * hyy + 2 *I.z,,

input gate output gate update gate
sigmoid tanh pointwise pointwise vector

Birkbeck, University of London © Copyright 2019
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%+
Tanh ::;

The tanh is used to regulate the values flowing through the network
as it squishes values to always be between -1 and 1.

Il each step the value is multiplied by 3 Il causes other values to seem insignificant

s 1 > 1 -~ 1 LSTM
001
forget gate cell state
-0.5)
! 1 N

vector transformations without tanh

5 4
001 input gate output gate
-0.5
1 1 1

vector transformations with tanh

Birkbeck, University of London © Copyright 2019

S B
Sigmoid E;

» Used for Gates

* Any number getting multiplied by 0 is 0, causing values to disappears or
be “forgotten”.

* Any number multiplied by 1 is the same value therefore that value stay’s
the same or is “kept”.

LSTM

forget gate cell state

01
05

input gate output gate

Birkbeck, University of © Copyright 2019
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\

The Gates :.;

» The cell sates regulates the amount of information the network
remembers over time.

* Inputs
» The forget gate decides what is relevant to keep from prior steps.
 The input gate decides what information is relevant to add from
the current step.
» The output gate determines what the next hidden state should be.
* Input
* The cell state

Birkbeck, University of London © Copyright 2019

Forget Gate

Forget gate decides what information should be thrown away or kept.

e previous cell state

// the closer to 0 means to forget,

and the closer to 1 means to keep. fe=o (Wy-[he-1,2] + by) ° forget gate output
l Forget gate operation

Birkbeck, University of London © Copyright 2019
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Input Gate

\J
Input gate controls how much of input is used in the new cell state.

/I multiply the tanh output with the sigmoid output.

. . ° previous cell state
/I the sigmoid output will decide which information
is important to keep from the tanh output. ° forget gate output

’ input gate output

>
° = ° candidate

lt
Ct i =0 (Wi-[hi—1,24] + bi)
Cy = tanh(We - [hy—1,2¢] + be)
_ a
>

1/ pass the previous I/ pass the hidden state and

hidden state and current current input into the tanh

input into a sigmoid function to squish values

function — decides which  between -1 and 1 to help regulate

values will be updated by the network.
transforming the values
to be between 0 and 1. 0.

Birkbeck, University of London © Copyright 2019

Cell State E;

Update the old cell state, C,_;, into the new cell state C,.

/l take the output from the input gate and do an
addition which updates the cell state to new values o previous cell state
that the neural network finds relevant.

o forget gate output
Il cell state gets multiplied by

the forget vector — dropping ‘ input gate output
values in the cell state if it gete >
multiplied by values near 0 . v o candidate

f t e C"t © rew celi state

Cy= fixCiy +ip % C,
heq

Xt ©0-00-00

Birkbeck, University of London © Copyright 2019
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Output Gate

The output gate decides what the next hidden state should be.
Remember that the hidden state contains information on previous
inputs.

I/ pass the newly modified cell ° previous cell state
state to the tanh function. ° forget gate output

. input gate output

>
v © condicate
° new cell state
© output gate output
ot @ nidden state
op =0 (Wy [hi—1,2] + bo)
ht = oy * tanh (Cy)
/ pass the previous hidden
state and the current input J/ multiply the tanh output with the
into a sigmoid function. sigmoid output to decide what

information the hidden state should carry.

Birkbeck, University of London © Copyright 2019

LSTM Gates E;

Update the old cell state, i, into the new

het

cell state C.

/‘T "{"é% Cy = fix Cooy +iy % Cy

Input Gate: to control how much of
input is used in the new cell state.

o

iy =0 (Wi-lhe—1, 2] + bi)
Cy = tanh(We-[he—1,2,] + be)

Forget Gate: to decide what information we’re
going to throw away/reset from the cell state.

fe fi=0Ws-[hy_1,2(] + bf)

ES

Output Gate: decide whether the depth
info. of the Ctis visible or not
0p =0 (Wo [he—1,24] + bo)

hy = oy * tanh (Cy)

LSTM Parameters: by, W, bs, Wy, be, W, by, Wy

© Copyright 2019
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LSTM Review :.;

\

» The cell sates regulates the amount of information the network
remembers over time.

+ The forget gate decides what is relevant to keep from prior steps.

» The input gate decides what information is relevant to add from the
current step.

» The output gate determines what the next hidden state should be.

Birkbeck, University of London © Copyright 2019

Bidirectional RNN E;

Getting information from future

/I need more information than this

He said, “Teddy|bears are on sale!”

He said, “Teddy|Roosevelt was a great President!”

5<1> 5<2> 5<3> 5<4> 5<5> 5<6> 5<7>
y y y y y y y
a<0> | g<1>[ | <23 | g<3>| — | <> |—| <5>| —»| a<C>| — |a<7>
x<1> x<2> x<3> x<4> x<5> x<6> x<7>
He said. “Teddv bears are on sale!”

Birkbeck, University of London © Copyright 2019
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RNN Activation

BRNN tid.

Rt
t|) » he = tanh(Wpphe—1 + Wypnxe) .w:;

(’ Ve = g(wyldy, ael+by)

?<1>

9<2> 9(3)

a<°’ > a<1> a<1> a<2>

a<2> a<3> a<3>

X<

Birkbeck, University of London

ald X3
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Bidirectional Recurrent Neural Networks

Mike Schuster and Kuldip K. Paliwal, Member, IEEE

Abstract— In the first part of this paper, a regular recurrent
neural network (RNN) is extended to a bidirectional recurrent
neural network (BRNN). The BRNN can be trained without
the limitation of using input information just up to a preset
future frame. This is lished by training it sii 1)
n

n
dure of the
and classification experiments on artificial data, the proposed
structure gives better results than other approaches. For real
data, classification experiments for phonemes from the TIMIT
database show the same tendency.

In the second part of this paper, it is shown how the proposed
bidirectional structure can be easily modified to allow efficient
estimation of the conditional posterior probability of complete
symbol sequences without making any explicit assumption about
the shape of the distribution. For this part, experiments on real
data are reported.

d network are ined. In r

Index Terms — Recurrent neural networks.

I. INTRODUCTION

A. General

ANY classification and regression problems of engi-
neering interest are currently solved with statistical
approaches using the principle of “learning from examples.”

that, at least theoretically, is able to use all available input
information to predict a point in the output space.

Many ANN structures have been proposed in the literature
to deal with time varying patterns. Multilayer perceptrons
(MLP’s) have the limitation that they can only deal with
static data patterns (i.e., input patterns of a predefined dimen-
sionality), which requires definition of the size of the input
window in advance. Waibel et al. [16] have pursued time delay
neural networks (TDNN’s), which have proven to be a useful
improvement over regular MLP’s in many applications. The
basic idea of a TDNN is to tie certain parameters in a regular
MLP structure without restricting the learning capability of the
ANN too much. Recurrent neural networks (RNN’s) [5], [8],
[12], [13], [15] provide another alternative for incorporating
temporal dynamics and are discussed in more detail in a later
section.

In this paper, we investigate different ANN structures for
incorporating temporal dynamics. We conduct a number of
experiments using both artificial and real-world data. We show
the superiority of RNN’s over the other structures. We then
point out some of the limitations of RNN’s and propose a
modified version of an RNN called a bidirectional recurrent
neural network, which overcomes these limitations.
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Deep RNN
Softmax Layer
[ Y O O P11 ttrttrittitt
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CNN + Deep RNN

Activity Recognition

Birkbeck, University of London

Visual
Features

Output
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/1 an algorithm for evaluating the quality
of text which has been machine-
translated from one natural language to

Attention

-
=

— Source text
= Reference text |]
- - Both .‘. ;
! ﬂ

BLEU score
s

o

The problem of long sequences ol i i i
0 10 20 30 40 50 60 70 80
Sentence length

+ Difficult to memories the whole long sentence.
+ Translate part by part

Jane s'est rendue en Afrique en septembre dernier, a apprécié la culture et a rencontré beaucoup de
gens merveilleux; elle est revenue en parlant comment son voyage était merveilleux, et elle me tente
d'y aller aussi.

Jane went to Africa last September, and enjoyed the culture and met many wonderful people;
she came back raving about how wonderful her trip was, and is tempting me to go too.

© Copyright 2019

Birkbeck, University of London

Attention Rt

iy

Attention (combined in RNN) focuses on certain parts of the input
sequence when predicting a certain part of the output sequence.

Jane went to Africa last summer.

Wi Y Yz Yr Yr: Output
S S5 Sz O Sy $:=f(Se1, Yra, €1)  vacivation=s
C: [ Crs Cr Cr=2anh:

a,;= _exp(es) e; = a(su, h;)

> exp (e.) | where a:alignment model (parameterized)
=

hl h2 }TT-I hT

\ 1 T

x xz L Zr z, : Input
jane visite  T'Afrique en  septembre

Computation of attention weights at time step T, notice how this needs to be computed separately on
every time step since the computation at time step T involves S;_,, the state form time step T — 1.

© Copyright 2019
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Bahdanau, D., Cho, K. and Bengio, Y., 2014. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473.

NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau
Jacobs University Bremen, Germany

KyungHyun Cho  Yoshua Bengio*
Université de Montréal

ABSTRACT

Neural machine translation is a recently proposed approach to machine transla-
tion. Unlike the traditional statistical machine translation, the neural machine
translation aims at building a single neural network that can be jointly tuned to
maximize the translation performance. The models proposed recently for neu-
ral machine translation often belong to a family of encoder—decoders and encode
a source sentence into a fixed-length vector from which a decoder generates a
translation. In this paper, we conjecture that the use of a fixed-length vector is a
bottleneck in improving the performance of this basic encoder-decoder architec-
ture, and propose to extend this by allowing a model to automatically (soft-)search
for parts of a source sentence that are relevant to predicting a target word, without
having to form these parts as a hard segment explicitly. With this new approach,
we achieve a translation performance comparable to the existing state-of-the-art
phrase-based system on the task of English-to-French translation. Furthermore,
qualitative analysis reveals that the (soft-)alignments found by the model agree
well with our intuition.
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Task 1
Given a year and a month, the task is to predict the number of international airline
passengers
+ the data ranges from January 1949 to December 1960 or 12 years, with 144
observations.
Task 2

Can you use SMS spam dataset to build a LSTM prediction model that will accurately
classify which texts are spam?

* The SMS Spam Collection is a set of SMS tagged messages that have been collected for
SMS Spam research.
* It contains one set of SMS messages in English of 5,574 messages, tagged being ham
(legitimate) or spam.
» Download from the VLE
* Ham 87% and Spam 13%
* 97.6% Accuracy
« Keras + Tensorflow

» Use Anaconda
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Automated Protein Function Prediction with Machine Learning

Dr Wen Cen

Abstract

As one of the major challenges in
bioinformatics, accurate protein function
prediction is crucial to understand the roles of
protein in complex biological systems. Machine
learning has been widely used in this research
area and obtains significant progress in
improving accuracy. Here | will be discussing
the recent development of automated protein
function prediction methods using the state-of-
the-art machine (deep) learning techniques.
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