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Simple Linear Regression



Where were we last week?

• Data: Scale of measurement

– Nominal, Ordinal, Interval, Ratio

• Univariate analysis: describing the distribution of a single variable

– Measures of central tendency: Mean, Median, Mode

– Measures of spread: Variance, Standard Deviation

– Measures of dispersion: Range, Quartiles, Interquartile Range

• Bivariate analysis: describing the relationship between pairs of variables

– Quantitative measures of dependence: Correlation, Covariance

• Tabular and graphical presentation

– Frequency distribution, Histogram, Box plot, Scatter plot



Today: Linear Regression

• Predicting a quantitative response

Supervised

Learning

Unsupervised 

Learning

Regression Classification

Simple linear regression

Logistic regression

Decision trees

Support Vector Machines

Tree Based Methods

Ensemble Methods

Clustering

Choosing the best methods for a given application: Cross-validation

Applications: e.g., Social Networks.



Example: Advertising

• Sales for a particular product as a function of advertising 

budgets for TV, radio and newspaper media



Linear Functions

• Linear functions refer to equations such as:

– Linear functions are linear with respect to the variables

– f(x)= -0.4 x - 2

– f(x1, x2)= 4 x1 + 53 x2  - 7

– f(x1, x2, x3)= -7 x1 + 5 x2 - √2 x3 - 1

• Non-linear functions refers to equations such as:

– f(x1, x2) = 2x1
2 + 3x2

– f(x1, x2, x3) = -2x1
1/2 + 3x2

5 – 0.7x3
3

– f(x1, x2) = 2x1 + 3x2 + 3x1x2

• If we assume x1
2 and x2 are known and fixed:

– Is f(a,b) = ax1
2 + bx2 linear or non-linear?

– Yes, let's assume x1
2 = 4 and x2 = 3.   Then f(a,b)=4a+3b



First-Order Linear Functions

0 = y-intercept of the line

the point at which the line intercepts or 
cuts through the y-axis

1 = slope of the line

the change (amount of increase or 
decrease) in the deterministic component of y
for every 1-unit increase in x

A first-order linear function is a straight line of the form:

y = 0 + 1x 

where



Outline

• Simple linear regression

– a single predictor variable:  Y ~ X

– E.g., The relationship between sales and TV advertising budget

• Multiple linear regression (self-study, optional)

– More than one predictor variable:  Y ~ X1, X2, …

– E.g., The relationship between sales and TV, radio and 

newspaper advertising budgets



Simple Linear Regression

Response Predictorparameters



Simple Linear Regression

Response Predictorparameters



Overview of Step 1

• Step 1: use training data to estimate coefficients (parameters)

– How to estimate?

– Assessing the accuracy of the coefficient estimates

– Assessing the accuracy of the model
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• Step 1: use training data to estimate coefficients (parameters)

– How to estimate?

– Assessing the accuracy of the coefficient estimates

– Assessing the accuracy of the model



• Given n observations (x1, y1),…, (xn, yn), plot all (xi, yi) pairs by scatter plots
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Plotting Training Data
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• How would you draw a line through the points?

How to fit?
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• How would you draw a line through the points?

• How do you determine which line ‘fits best’?

How to fit?



Residual Sum of Squares

y

x

……

y3

 Real value!



Least Squares Line



Least Squares Line



Least Squares Line



You’re a marketing analyst for Hasbro Toys.  
You gather the following data:

Ad Expenditure (100£) Sales (Units)
1 1
2 1
3 2
4 2
5 4

Find the least squares line relating
sales and advertising.

Least Squares Example

19



Scatter Plot -- Sales vs. Advertising

• Plot it
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Ad Expenditure (100£) Sales (Units)
1 1
2 1
3 2
4 2
5 4



Minimising RSS

• Recall: 



Minimising RSS

• Recall: 

Ad Expenditure (100£) Sales (Units)
1 1
2 1
3 2
4 2
5 4



Regression Line Fitted to the Data

1. Slope (1)

• Sales Volume (y) is expected to increase by 0.7 unit for each £100 increase in 

advertising (x), over the sampled range of advertising expenditures from £100 to 

£500 

2. y-Intercept (0)

• Since 0 is outside of the range of the sampled values of x, the y-intercept has no 

meaningful interpretation
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Overview of Step 1

• Step 1: use training data to estimate coefficients (parameters)

– How to estimate?

– Assessing the accuracy of the coefficient estimates

– Assessing the accuracy of the Model



Assessing the accuracy of 
coefficient estimates

• Three different lines:

– True relationship: 

• is a mean-zero random error term



Assessing the accuracy of 
coefficient estimates

• Three different lines:

– True relationship: 

• is a mean-zero random error term

– Population regression line:    Y

• f is to be approximated by a linear function

• ε is a catch-all for what we miss with this simple model:

– The true relationship is probably not linear;  (reducible error)

– There may be other variables that cause variation in Y; (reducible error)

– There may be measurement error (irreducible error)

• Assume that ε is independent of X

• The best linear approximation to the true relationship between X and Y



Assessing the accuracy of 
coefficient estimates

• Three different lines:

– True relationship: 

• is a mean-zero random error term

– Population regression line:    Y

• f is to be approximated by a linear function

• ε is a catch-all for what we miss with this simple model:

– The true relationship is probably not linear;  (reducible error)

– There may be other variables that cause variation in Y; (reducible error)

– There may be measurement error

• Assume that ε is independent of X

• The best linear approximation to the true relationship between X and Y

– Least squares line:

• With the least squares regression coefficient estimates



Sample Mean and Population Mean



An Analogue

Red line: population regression line f(X) = 2+3X, usually unknown 

Dark blue line: least square line – based on one set of observations

Light blue lines: least square lines – each based on a separate random set of obs.



An Analogue



Standard Error



An Analogy



Overview of Step 1

• Step 1: use training data to estimate coefficients (parameters)

– How to estimate?

– Assessing the accuracy of the coefficient estimates

• Are the coefficient estimates statistically significant?

– Assessing the accuracy of the Model



Hypothesis Tests

Y
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Hypothesis Tests

Y



t-value

0

t-value (or t-statistics) 

measures the number 

of standard deviations 

away from 0



t-value

0

t-value does not have a fixed range! Convert it to a p-value



P-value

• Given a t-value, we can calculate a p-value (a probability, between 0 and 1).

• P values address only one question: how likely are your data, assuming a true 

null hypothesis? 

• P values evaluate how well the sample data support that the null hypothesis is 

true. It measures how compatible your data are with the null hypothesis

– A small p-value (typically ≤ 0.05) indicates your sample provides strong evidence against the 

null hypothesis, so you reject the null hypothesis.

– A large p-value (> 0.05) indicates weak evidence against the null hypothesis, so you fail to 

reject the null hypothesis.

– p-values very close to the cutoff (0.05) are considered to be marginal (could go either way). 

Always report the p-value so your readers can draw their own conclusions.

• P values do not measure support for the alternative hypothesis.



t-value and p-value

Typical p-value cutoffs for rejecting the null hypothesis are 5 or 1%. 

If t is large (equivalently p-value is small), we can be sure that      is not 0.

➔ We reject the Null Hypothesis.  

➔ We declare a relationship to exist between X and Y.

1̂

Regression coefficients

Coefficient Std Err t-value p-value

Constant 7.0326 0.4578 15.3603 0.0000

TV 0.0475 0.0027 17.6676 0.0000

1̂ )ˆ( 1SE
p-valuet-value

SE(   )



Overview of Step 1

• Step 1: use training data to estimate coefficients

– How to estimate?

– Assessing the accuracy of the coefficient estimates

• Comparing coefficients only

– Assessing the accuracy of the model

• Quantifying the extent to which the model fits the data



Measures of Fit: RSE

• Recall:

• Measuring the extent to which the model fits the data

– Residual Standard Error (RSE)

• Even if it is a true regression line (     =0 and     =1), we would not 

be able to perfectly predict Y from X due to the error term ε

• RSE is the standard deviation of ε

– Quantifies average amount that the response will deviate from the true 

regression line
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Measures of Fit: RSE

• Recall:

• Measuring the extent to which the model fits the data

– Residual Standard Error (RSE)

• Even if it is a true regression line (     =0 and     =1), we would not 

be able to perfectly predict Y from X due to the error term ε

• RSE is the estimate of the standard deviation of ε

– Quantifies average amount that the response will deviate from the 

population regression line



Measures of Fit: RSE

• Measuring the extent to which the model fits the data

– Residual Standard Error (RSE)

• Example: regressing number of units sold on TV advertising budget

– RSE = 3.26 

– Even if the model were correct, any prediction on sales on the basis of 

TV advertising budget would still be off by about 3260 units on 

average

• An absolute measure of lack of fit of the model to the data

– Measured in the units of Y 

– Not always clear whether it is a good fit



Measures of Fit: R2

• Measuring the extent to which the model fits the data

– R2 statistic

• Some of the variation in Y can be explained by variation in the X’s 

and some cannot.

• R2 tells you the proportion of variance that can be explained by X.

• Starting variance: the amount of variability inherent in the response 

before the regression is performed

• Ending variance: the amount of variability that is left unexplained 

after performing regression 

Variance Starting

Variance Ending
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Measures of Fit: R2

• Measuring the extent to which the model fits the data

– R2 statistic

• R2 is always between 0 and 1. 

– Zero means no variance has been explained. 

– One means it has all been explained (perfect fit to the data).

• In simple linear regression, R2 = Cor(X,Y)2

– Both measure the linear relationship between X and Y

Remark: Cor(X,Y) = 0 means there is no linear relationship between X and Y, 

but there could be other relationship.

Example: X <- c(-3, -2, -1, 0, 1, 2, 3)

Y <- c(9, 4, 1, 0, 1, 4, 9)

# cor(X,Y) = 0    

#But Y = X2
➔ Y and X has quadratic relationship



Measure of Fit

Adjusted R-squared: penalize for adding irrelevant/non-significant variables

Model with multiple variables: use adjusted R-squared

Model with single variable: use R squared and adjusted R squared interchangably



Simple Linear Regression

Response Predictorparameters

 Done!

 Now!



An Example: Body Fat and Waist Size

• Investigating the relationship in adult males between 

– Y: % Body Fat and X: Waist size (in inches). 



An Example: Body Fat and Waist Size

• Investigating the relationship in adult males between 

– Y: % Body Fat and X: Waist size (in inches). 

• Here is a scatterplot of the data for 250 adult males of various ages:



Confidence Intervals and Prediction 
Intervals for Predicted Values

• For our %body fat and waist size example, there are two 

questions we could ask:

1. Do we want to know the mean %body fat for all men with 

a waist size of, say, 38 inches?  → predicting for a mean

2. Do we want to estimate the %body fat for a particular man 

with a 38-inch waist? → predicting for an individual

• The predicted %body fat is the same in both questions, but 

we can predict the mean %body fat for all men whose waist 

size is 38 inches with a lot more precision than we can predict 

the %body fat of a particular individual whose waist size

happens to be 38 inches.



Confidence/Prediction Intervals 
for Predicted Values

Prediction interval (PI) is an estimate of 

an interval in which future observations 

(particular individuals) will fall, with a 

certain probability, given what has already 

been observed.

38



Confidence Intervals vs. 
Prediction Intervals

x

y

x

Least squares line

Predicting a mean

Predicting an individual



Conclusion

• Simple Linear Regression

– Supervised Learning

– Prediction

– Parameterised method

• Variables

– y = Dependent variable (quantitative)

– x = Independent variable (quantitative)

• Least Squares Line

– mean error = 0

– sum of squared errors is minimum



Conclusion

• Practical Interpretation of y-intercept

– predicted y value when x = 0

– no practical interpretation if x = 0 is either nonsensical or outside range 

of sample data

• Practical Interpretation of Slope

– Increase or decrease in y for every 1-unit increase in x

• Analysis of Regression

– RSE, R2-statistic, p-value, Confidence Interval, Prediction Interval



LAB

Simple Linear Regression



Install packages/Load libs

• install.package()function downloads and installs 

packages from CRAN-like repositories or from local files.

• library()function loads libraries, or groups of functions and 

data sets that are not included in the base R distribution.

– Basic functions for least squares linear regression and other simple 

analysis  ➔ included in the base distribution

– MASS package, which is a very large collection of data sets and functions

– ISLR package, includes the data sets associated with the textbook

> library(MASS)

> library(ISLR)

Error in library(ISLR) : there is no package called ‘ISLR’

> install.packages("ISLR")

# or select the Install package option under the Package tab

> library(ISLR)



The Boston House Data

• The data set records median house value (medv) for 506 

neighbourhoods （a.k.a. towns） around Boston.

• We will seek to predict medv using 13 predictors such as

– rm: average number of rooms per house

– age: average age of houses

– lstat: percentage of households with low socio-economic status

> fix(Boston)

> names(Boston)

[1] "crim"   "zn"   "indus"   "chas"   "nox"   "rm"   "age"   "dis"   "rad"    

[10] "tax"   "ptratio" "black"   "lstat"   "medv“

> ?Boston

> # open the web page to find out about the data set



lm() to Fit Simple LR Models

• Using lm() to fit a simple linear regression model

– The response (y): medv

– The predictor (x): lstat

– Basic syntax: lm(y~x, data)

> lm.fit=lm(medv~lstat)

Error in eval(expr, envir, enclos) : object 'medv' not found

# we need to let R know where to find the variables medv and lstat

# we have two ways to solve this:

# first way: indicate where the variables are in the lm func

> lm.fit=lm(medv~lstat,data=Boston)

# second way: attach the dataset (not recommended)

> attach(Boston)

> lm.fit=lm(medv~lstat)



Check model details

> lm.fit  # basic information

Call:

lm(formula = medv ~ lstat) 

Coefficients:

(Intercept)        lstat  

34.55        -0.95           # medv = -0.95 * lstat + 34.55

> summary(lm.fit) # more details

Call:

lm(formula = medv ~ lstat)

Residuals:

Min      1Q  Median      3Q     Max 

-15.168  -3.990  -1.318   2.034  24.500 

Coefficients:

Estimate      Std. Error  t value  Pr(>|t|)    

(Intercept) 34.55384 0.56263    61.41    <2e-16 ***

lstat       -0.95005    0.03873   -24.53   <2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.216 on 504 degrees of freedom

Multiple R-squared:  0.5441,    Adjusted R-squared:  0.5432  

F-statistic: 601.6 on 1 and 504 DF,  p-value: < 2.2e-16

How to read the results? 



Extract Quantities

• Use names(lm.fit) to find out what other pieces of 

information are stored in lm.fit

> names(lm.fit)

[1] "coefficients"  "residuals"  "effects"   "rank"    "fitted.values" "assign"       

[7] "qr"    "df.residual"   "xlevels"   "call"          "terms"         "model" 

• How to extract the quantities?

– By name: e.g., lm.fit$coefficients

– By the extractor functions: e.g., coef(lm.fit)

> lm.fit$coefficients

(Intercept)       lstat 

34.5538409  -0.9500494 

> coef(lm.fit)

(Intercept)       lstat 

34.5538409  -0.9500494 



Obtaining CI and PI

• To obtain a confidence interval for the coefficient estimates:
> confint(lm.fit)

2.5 %     97.5 %

(Intercept) 33.448457 35.6592247

lstat       -1.026148 -0.8739505

• To obtain a confidence and prediction interval for the 

prediction of medv for a given value of lstat.
> predict(lm.fit,data.frame(lstat=(c(5,10,15))),interval="confidence")

fit      lwr      upr

1 29.80359 29.00741 30.59978

2 25.05335 24.47413 25.63256

3 20.30310 19.73159 20.87461

> predict(lm.fit,data.frame(lstat=(c(5,10,15))),interval="prediction")

fit       lwr      upr

1 29.80359 17.565675 42.04151

2 25.05335 12.827626 37.27907

3 20.30310  8.077742 32.52846

Which interval is wider?

How to read the results? 



Plot the results

> plot(lstat,medv) > abline(lm.fit)

Try out other options on the width of the regression line, colour, symbols, etc

abline(lm.fit, lwd=3,col="red", pch="+"), …



Least Squares - Exercise

You’re an economist for the county cooperative.  You 

gather the following data:

Fertilizer (lb.) Yield (lb.)

4 3.0

6 5.5

10 6.5

12 9.0

Find the least squares line relating

crop yield and fertilizer.
© 1984-1994 T/Maker Co.



Scatter Plot Crop Yield vs. Fertilizer

0

2

4

6

8

10

0 5 10 15

Yield (lb.)

Fertilizer (lb.)



0

2
4
6

8
10

0 5 10 15

Yield (lb.)

Fertilizer (lb.)

ŷ = 0.8+0.65x

Regression Line Fitted to the Data

fert=c(4,6,10,12)

yield=c(3.0,5.5,6.5,9.0)

FertYield=data.frame(fert,yield)



Predict

• Predict the yield when 2.5, 5.5 and 8.5 lb of fertilizer are used

• What is the 95% CI and PI?

– for the coefficients

– for the prediction of yield given 2.5, 5.5 and 8.5 lb of fertilizer

• Find the following measures:

– p value, 

– t value,

– the RSE, 

– the R2

• Do you think fert is related with yield? Why?



How to draw the CI/PI Curves?

lm.fit.Fert=lm(yield~fert,data=FertYield)

nd <- data.frame(fert=seq(2,8,length=51))

p_conf <- predict(lm.fit.Fert,interval="confidence",newdata=nd)

p_pred <- predict(lm.fit.Fert,interval="prediction",newdata=nd)

plot(fert,yield,data=FertYield,ylim=c(-5,12),xlim=c(0,15)) ## data

abline(lm.fit.Fert) ## fit

lines(nd$fert, p_conf[,"lwr"], col="red", type="b", pch="+")

lines(nd$fert, p_conf[,"upr"], col="red", type="b", pch="+")

lines(nd$fert, p_pred[,"upr"], col="blue", type="b", pch="*")

lines(nd$fert, p_pred[,"lwr"], col="blue", type="b", pch="*")



The CI/PI Plot


