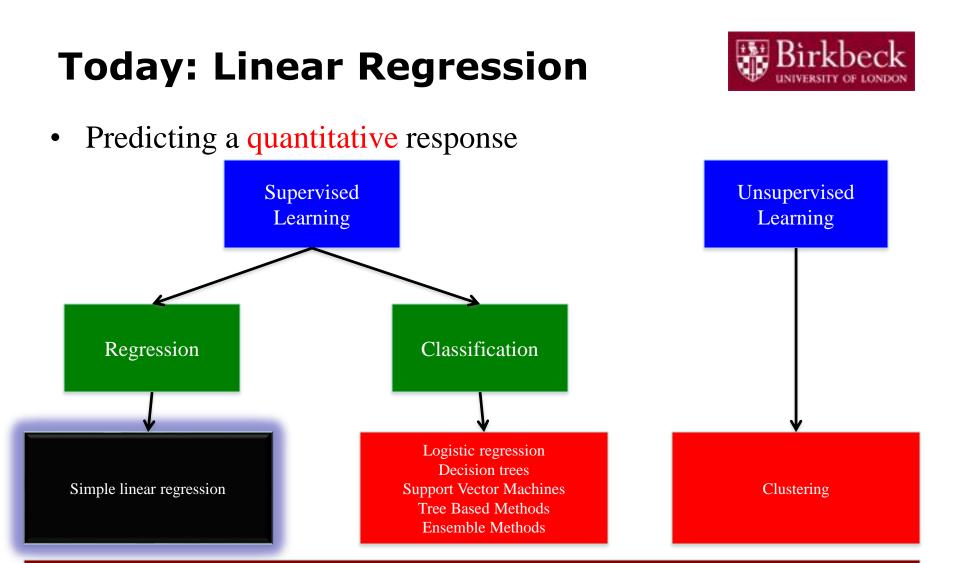


Big Data Analytics

Session 3 Simple Linear Regression

Where were we last week?

- Data: Scale of measurement
 - Nominal, Ordinal, Interval, Ratio
- Univariate analysis: describing the distribution of a single variable
 - Measures of central tendency: Mean, Median, Mode
 - Measures of spread: Variance, Standard Deviation
 - Measures of dispersion: Range, Quartiles, Interquartile Range
- Bivariate analysis: describing the relationship between pairs of variables
 - Quantitative measures of dependence: Correlation, Covariance
- Tabular and graphical presentation
 - Frequency distribution, Histogram, Box plot, Scatter plot

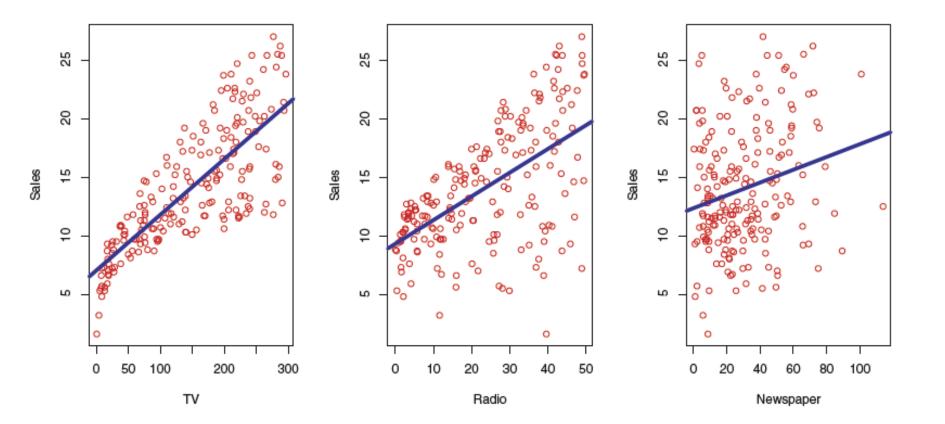


Choosing the best methods for a given application: Cross-validation

Applications: e.g., Social Networks.

Example: Advertising

• Sales for a particular product as a function of advertising budgets for TV, radio and newspaper media



Linear Functions

- Linear functions refer to equations such as:
 - Linear functions are linear with respect to the variables

$$- f(x) = -0.4 x - 2$$

- $f(x_1, x_2) = 4 x_1 + 5^3 x_2 - 7$
- $f(x_1, x_2, x_3) = -7 x_1 + 5 x_2 - \sqrt{2} x_3 - 1$

• Non-linear functions refers to equations such as:

$$- f(\mathbf{x}_{1}, \mathbf{x}_{2}) = 2\mathbf{x}_{1}^{2} + 3\mathbf{x}_{2}$$

- $f(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}) = -2\mathbf{x}_{1}^{1/2} + 3\mathbf{x}_{2}^{5} - 0.7\mathbf{x}_{3}^{3}$
- $f(\mathbf{x}_{1}, \mathbf{x}_{2}) = 2\mathbf{x}_{1} + 3\mathbf{x}_{2} + 3\mathbf{x}_{1}\mathbf{x}_{2}$

- If we assume x_1^2 and x_2 are known and fixed:
 - Is $f(a,b) = ax_1^2 + bx_2$ linear or non-linear?
 - Yes, let's assume $x_1^2 = 4$ and $x_2 = 3$. Then f(a,b)=4a+3b

First-Order Linear Functions

A first-order linear function is a straight line of the form:

$$y = \beta_0 + \beta_1 x$$

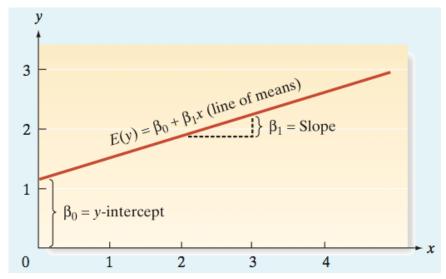
where

β_0 = *y*-intercept of the line

the point at which the line *intercepts or* cuts through the y-axis

β_1 = slope of the line

the change (amount of increase or decrease) in the deterministic component of y for every 1-unit increase in x



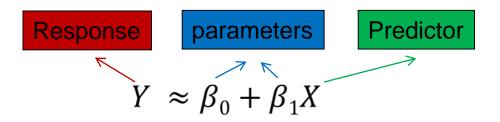
Outline

- Simple linear regression
 - a single predictor variable: $Y \sim X$
 - E.g., The relationship between sales and TV advertising budget

- Multiple linear regression (self-study, optional)
 - *More than one predictor variable:* $Y \sim X_1, X_2, \ldots$
 - E.g., The relationship between sales and TV, radio and newspaper advertising budgets

Simple Linear Regression

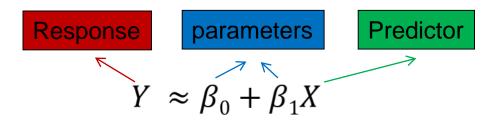
To predict a quantitative response *Y* on the basis of a single predictor variable *X*.



We are regressing Y on X.

Simple Linear Regression

To predict a quantitative response *Y* on the basis of a single predictor variable *X*.



We are regressing Y on X.

Step1:

Use the training data to produce estimates $\hat{\beta}_0$ and $\hat{\beta}_1$

Step2:

Use $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ to predict Y (as \hat{y}) on the basis of X = x

Overview of Step 1

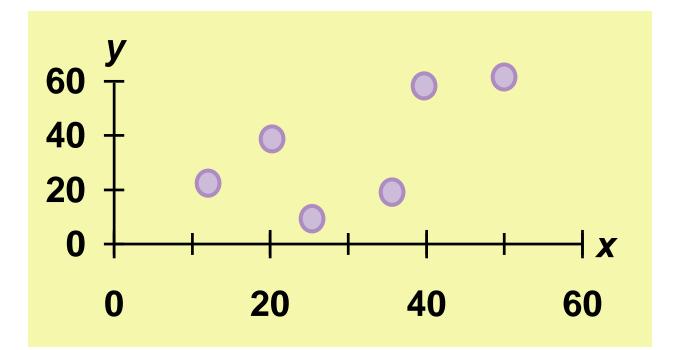
- Step 1: use training data to estimate coefficients (parameters)
 - How to estimate?
 - Assessing the accuracy of the coefficient estimates
 - Assessing the accuracy of the model

Overview of Step 1

- Step 1: use training data to estimate coefficients (parameters)
 - How to estimate?
 - Assessing the accuracy of the coefficient estimates
 - Assessing the accuracy of the model

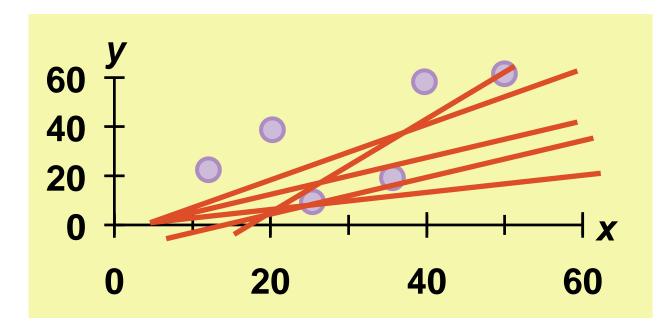
Plotting Training Data

• Given *n* observations $(x_1, y_1), \dots, (x_n, y_n)$, plot all (x_i, y_i) pairs by scatter plots



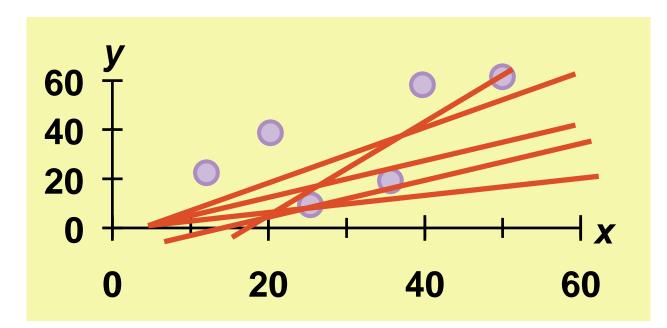
How to fit?

• How would you draw a line through the points?



How to fit?

- How would you draw a line through the points?
- How do you determine which line 'fits best'?

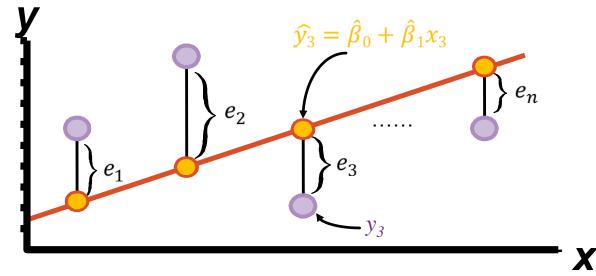


Residual Sum of Squares

- $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ is the prediction of *Y* based on the *i*th value of *X*
- y_i is the observed value \leftarrow Real value!
- $e_i = y_i \hat{y}_i$ is the *i*th residual (residual = observed predicted)
- Residual sum of squares (RSS)

• RSS =
$$e_1^2 + e_2^2 + \dots + e_n^2$$

RSS = $(y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \dots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$



Least Squares Line

- The least squares line $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ is one that has the following two properties:
 - The sum of the residuals equals 0, that is, mean residual = 0
 - The residual sum of squares is minimised

Least Squares Line

- The least squares line $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ is one that has the following two properties:
 - The sum of the residuals equals 0, that is, mean residual = 0
 - The residual sum of squares is minimised
- Using some calculus, one can show that the minimisers are

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \qquad \bar{x} \equiv \frac{1}{n} \sum_{i=1}^n x_i$$
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \qquad \bar{y} \equiv \frac{1}{n} \sum_{i=1}^n y_i$$

• In other words, the above equation defines the least squares coefficient estimates for simple linear regression.

Least Squares Line

- The least squares line $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ is one that has the following two properties:
 - The sum of the residuals equals 0, that is, mean residual = 0
 - The residual sum of squares is minimised
- Using some calculus, one can show that the minimisers are

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \qquad \bar{x} \equiv \frac{1}{n} \sum_{i=1}^n x_i$$
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \qquad \bar{y} \equiv \frac{1}{n} \sum_{i=1}^n y_i$$

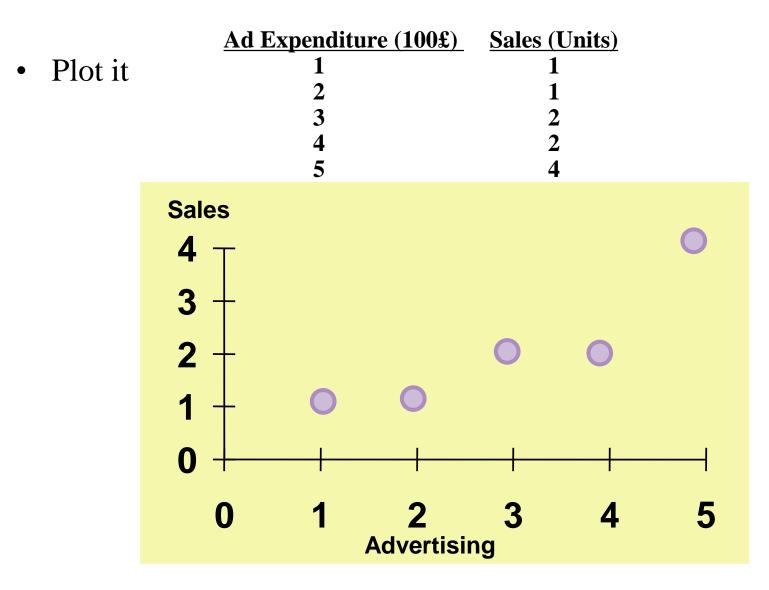
• In other words, the above equation defines the least squares coefficient estimates for simple linear regression.

Least Squares Example

You're a marketing analyst for Hasbro Toys. You gather the following data:

Ad Expenditure (100£)Sales (Units)1121324254

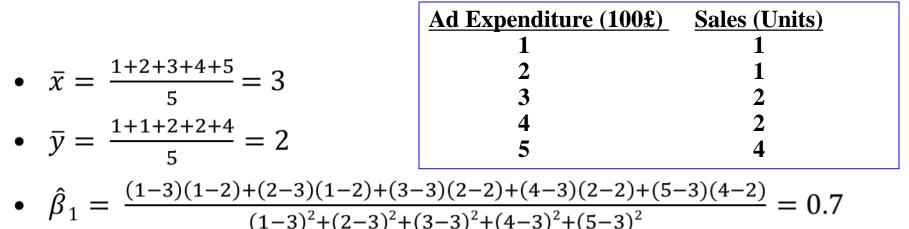
Scatter Plot -- Sales vs. Advertising



Minimising RSS

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \qquad \bar{x} \equiv \frac{1}{n} \sum_{i=1}^n x_i$$
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \qquad \bar{y} \equiv \frac{1}{n} \sum_{i=1}^n y_i$$

Minimising RSS



•
$$\hat{\beta}_0 = 2 - 0.7 * 3 = -0.1$$

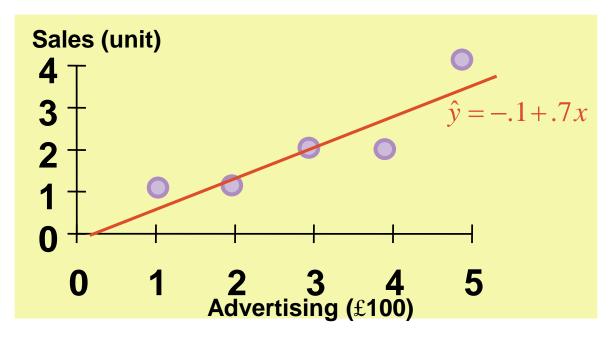
• Least Squares Line:

$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i = -0.1 + 0.7 x_i$$

Recall:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \qquad \bar{x} \equiv \frac{1}{n} \sum_{i=1}^{n} x_{i} \\
\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{x} \qquad \bar{y} \equiv \frac{1}{n} \sum_{i=1}^{n} y_{i}$$

Regression Line Fitted to the Data



- 1. Slope (β_1)
 - Sales Volume (y) is expected to increase by 0.7 unit for each £100 increase in advertising (x), over the sampled range of advertising expenditures from £100 to £500
- 2. *y*-Intercept (β_0)
 - Since 0 is outside of the range of the sampled values of *x*, the *y*-intercept has no meaningful interpretation

Overview of Step 1

- Step 1: use training data to estimate coefficients (parameters)
 - How to estimate?
 - Assessing the accuracy of the coefficient estimates
 - Assessing the accuracy of the Model

Assessing the accuracy of coefficient estimates

- Three different lines:
 - True relationship:

$$X = f(X) + \epsilon$$

Y

• *E* is a mean-zero random error term

Assessing the accuracy of coefficient estimates

- Three different lines:
 - True relationship: $Y = f(X) + \epsilon$
 - *E* is a mean-zero random error term
 - Population regression line: $Y = \beta_0 + \beta_1 X + \varepsilon$
 - *f* is to be approximated by a linear function
 - ε is a catch-all for what we miss with this simple model:
 - The true relationship is probably not linear; (reducible error)
 - There may be other variables that cause variation in *Y*; (reducible error)
 - There may be measurement error (irreducible error)
 - Assume that ε is independent of *X*
 - The best linear approximation to the true relationship between X and Y

Assessing the accuracy of coefficient estimates

- Three different lines:
 - True relationship: $Y = f(X) + \epsilon$
 - *E* is a mean-zero random error term
 - Population regression line: $Y = \beta_0 + \beta_1 X + \varepsilon$
 - *f* is to be approximated by a linear function
 - ε is a catch-all for what we miss with this simple model:
 - The true relationship is probably not linear; (reducible error)
 - There may be other variables that cause variation in *Y*; (reducible error)
 - There may be measurement error
 - Assume that ε is independent of *X*
 - The best linear approximation to the true relationship between X and Y
 - Least squares line: $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$
 - With the least squares regression coefficient estimates

Sample Mean and Population Mean

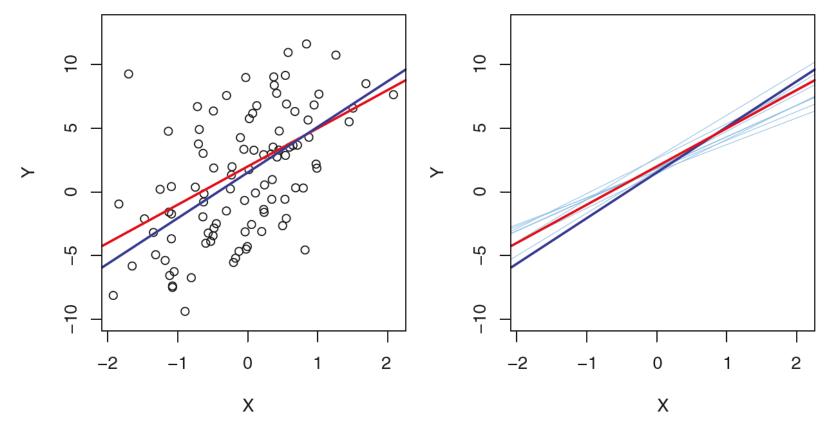
• Recall in Session 2:

- Sample mean
$$\bar{x} = \frac{\sum x_i}{n}$$
 - population mean $\mu = \frac{\sum x_i}{N}$

- Use
$$\bar{x}$$
 to estimate $\mu \rightarrow$ write $\hat{\mu} = \bar{x}$

- $\hat{\mu}$ is the estimate of μ

An Analogue



Red line: population regression line f(X) = 2+3X, usually unknown Dark blue line: least square line – based on one set of observations Light blue lines: least square lines – each based on a separate random set of obs.

An Analogue

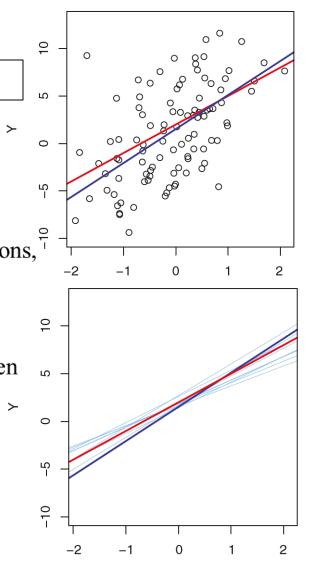
- Population regression line:
- Least squares line:
- Use $\hat{\beta}_0$ and $\hat{\beta}_1$ to estimate β_0 and β_1
- If $\hat{\beta}_0$ and $\hat{\beta}_1$ are based on one particular set of observations,

 $= \beta_0 + \beta_1 X + \varepsilon$

 $\hat{\beta}_0 + \hat{\beta}_1 X$

 $\hat{\beta}_0$ and $\hat{\beta}_1$ may under or over estimate β_0 and β_1

- If we could average a huge number of the parameters, then the resulting $\hat{\beta}_0$ and $\hat{\beta}_1$ will be the accurate population \succ regression line parameters



Х

Standard Error

- How close is a single sample mean $\hat{\mu}$ to the population mean μ ?
 - Use standard error (SE): the average amount that this estimate $\hat{\mu}$ differs from μ

 $\operatorname{SE}(\hat{\mu})^2 = \frac{\sigma^2}{n} \quad \leftarrow \sigma$: the standard deviation, σ^2 : variance $\leftarrow the more observations we have, the smaller the SE is$

- When sample size increases
 - the standard error of the sample will tend to 0
 - because the estimate of the population mean will improve

An Analogy

- Population regression line:
- Least squares line:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$$

• How close \hat{B}_{n} and \hat{B}_{1} are to the true value B_{n} and B_{1} ?

$$\operatorname{SE}(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right], \quad \operatorname{SE}(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2},$$

Overview of Step 1

- Step 1: use training data to estimate coefficients (parameters)
 - How to estimate?
 - Assessing the accuracy of the coefficient estimates
 - Are the coefficient estimates statistically significant?
 - Assessing the accuracy of the Model

Hypothesis Tests

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- Is β₁=0 or not? If we can't be sure that β₁≠0 then there is no point in using X as our predictor
 - Use a hypothesis test to answer this question

Hypothesis Tests

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- Is β₁=0 or not? If we can't be sure that β₁≠0 then there is no point in using X as our predictor
 - Use a hypothesis test to answer this question
- Hypothesis tests
 - Null hypothesis
 - H_0 : There is no relationship between X and Y (H_0 : $\beta_1 = 0$)
 - Alternative hypothesis
 - H_a : There is some relationship between X and Y $(H_a: \beta_1 \neq 0)$

Hypothesis Tests

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

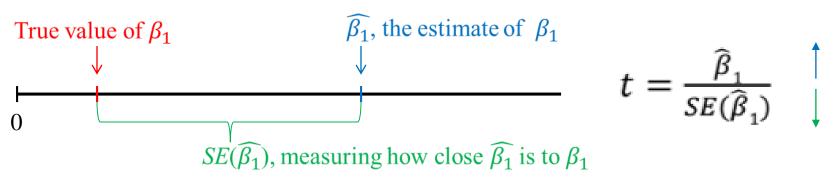
- Is β₁=0 or not? If we can't be sure that β₁≠0 then there is no point in using X as our predictor
 - Use a hypothesis test to answer this question
- Hypothesis tests
 - Null hypothesis
 - H_0 : There is no relationship between X and Y (H_0 : $\beta_1 = 0$)
 - Alternative hypothesis
 - H_a : There is some relationship between X and Y $(H_a: \beta_1 \neq 0)$
 - To test whether $\hat{\beta}_1$, the estimate of β_1 , is sufficiently far from 0
 - How far is far enough? Compute t-value

t-value

- How far is $\widehat{\beta_1}$, the estimate of β_1 , sufficiently far from 0?
 - This depends on the accuracy of $\widehat{\beta_1}$, that is, the standard error of β_1 .
 - Recall: $SE(\widehat{\beta_1})$ measures how close $\widehat{\beta_1}$ is to the true value β_1 .

t-value

- How far is $\widehat{\beta_1}$, the estimate of β_1 , sufficiently far from 0?
 - This depends on the accuracy of $\widehat{\beta_1}$, that is, the standard error of β_1 .
 - Recall: $SE(\widehat{\beta_1})$ measures how close $\widehat{\beta_1}$ is to the true value β_1 .
 - If $SE(\widehat{\beta_1})$ is small, then even relatively small values of $\widehat{\beta_1}$ may provide strong evidence that $\beta_1 \neq 0$, and hence there is a relationship between X and Y.
 - If $SE(\widehat{\beta_1})$ is large, then $\widehat{\beta_1}$ must be large in absolute value in order to claim that there is a relationship between X and Y.



- The higher t-value is, the more possible X and Y are related

t-value does not have a fixed range! Convert it to a p-value

P-value

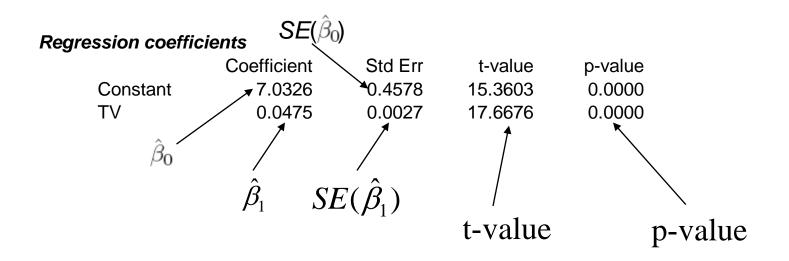
- Given a t-value, we can calculate a p-value (a probability, between 0 and 1).
- P values address only one question: how likely are your data, assuming a true null hypothesis?
- P values evaluate how well the sample data support that the null hypothesis is true. It measures how compatible your data are with the null hypothesis
 - A small *p*-value (typically ≤ 0.05) indicates your sample provides strong evidence against the null hypothesis, so you reject the null hypothesis.
 - A large *p*-value (> 0.05) indicates weak evidence against the null hypothesis, so you fail to reject the null hypothesis.
 - *p*-values very close to the cutoff (0.05) are considered to be marginal (could go either way).
 Always report the *p*-value so your readers can draw their own conclusions.
- P values <u>do not</u> measure support for the alternative hypothesis.

t-value and *p*-value

If t is large (equivalently p-value is small), we can be sure that $\hat{\beta}_1$ is not 0.

- → We reject the Null Hypothesis.
- \rightarrow We declare a relationship to exist between X and Y.

Typical p-value cutoffs for rejecting the null hypothesis are 5 or 1%.

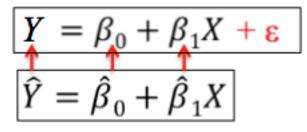


Overview of Step 1

- Step 1: use training data to estimate coefficients
 - How to estimate?
 - Assessing the accuracy of the coefficient estimates
 - Comparing coefficients only
 - Assessing the accuracy of the model
 - Quantifying the extent to which the model fits the data

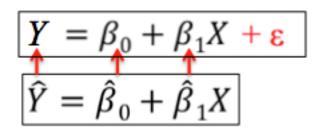
• Recall:

Population regression line: Least squares line:



• Recall:

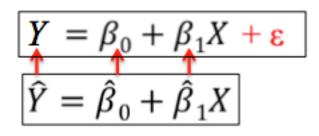
Population regression line: Least squares line:



- Measuring the extent to which the model fits the data
 - Residual Standard Error (RSE)
 - Even if it is a true regression line ($\hat{\beta}_0 = \beta_0$ and $\hat{\beta}_1 = \beta_1$), we would not be able to perfectly predict Y from X due to the *error term* ε

• Recall:

Population regression line: Least squares line:



- Measuring the extent to which the model fits the data
 - Residual Standard Error (RSE)
 - Even if it is a true regression line ($\hat{\beta}_0 = \beta_0$ and $\hat{\beta}_1 = \beta_1$), we would not be able to perfectly predict Y from X due to the *error term* ε
 - RSE is the estimate of the standard deviation of ε
 - Quantifies average amount that the response will deviate from the population regression line

- Measuring the extent to which the model fits the data
 - Residual Standard Error (RSE)
 - Example: regressing number of units sold on TV advertising budget
 - RSE = 3.26
 - Even if the model were correct, any prediction on sales on the basis of TV advertising budget would still be off by about 3260 units on average
 - An absolute measure of lack of fit of the model to the data
 - Measured in the units of Y
 - Not always clear whether it is a good fit

Measures of Fit: R²

- Measuring the extent to which the model fits the data
 - R^2 statistic
 - Some of the variation in Y can be explained by variation in the X's and some cannot.
 - R² tells you the proportion of variance that can be explained by X.

$$R^{2} = 1 - \frac{RSS}{\sum (Y_{i} - \overline{Y})^{2}} \approx 1 - \frac{\text{Ending Variance}}{\text{Starting Variance}}$$

- Starting variance: the amount of variability inherent in the response before the regression is performed
- Ending variance: the amount of variability that is left unexplained after performing regression

Measures of Fit: R²

- Measuring the extent to which the model fits the data
 - R^2 statistic
 - R² is always between 0 and 1.
 - Zero means no variance has been explained.
 - One means it has all been explained (perfect fit to the data).
 - In simple linear regression, $R^2 = Cor(X, Y)^2$
 - Both measure the linear relationship between X and Y

Remark: Cor(X,Y) = 0 means there is no linear relationship between X and Y, but there could be other relationship.

Example: X <- c(-3, -2, -1, 0, 1, 2, 3) Y <- c(9, 4, 1, 0, 1, 4, 9) # cor(X,Y) = 0 $\#But Y = X^2 \rightarrow Y$ and X has quadratic relationship

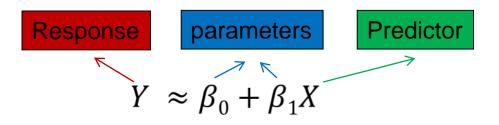
Measure of Fit


```
> summary(lm.fit)
call:
lm(formula = y \sim x)
Residuals:
     Min
                10 Median
                                    3Q
                                            Max
-0.099458 -0.032353 -0.000164 0.029921 0.128230
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.002402 0.004654 -215.37 <2e-16 ***
            0.486823 0.005353 90.94 <2e-16 ***
X
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.04642 on 98 degrees of freedom
Multiple R-squared: 0.9883, Adjusted R-squared: 0.9882
F-statistic: 8271 on 1 and 98 DF, p-value: < 2.2e-16
```

Adjusted R-squared: penalize for adding irrelevant/non-significant variables Model with multiple variables: use adjusted R-squared Model with single variable: use R squared and adjusted R squared interchangably

Simple Linear Regression

To predict a quantitative response *Y* on the basis of a single predictor variable *X*.



We are regressing Y on X.

Step1: ← Done!

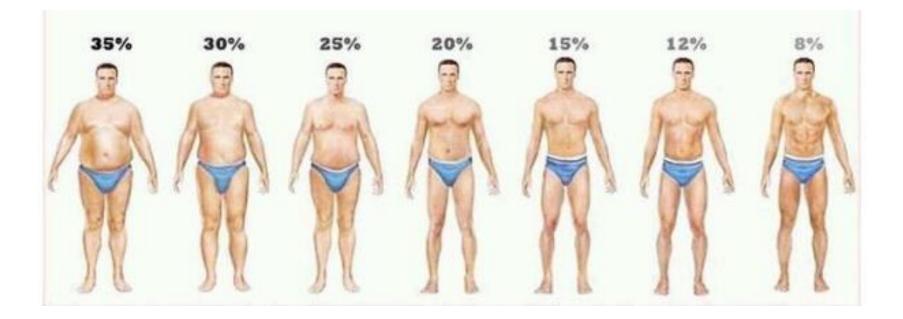
Use the training data to produce estimates $\hat{\beta}_0$ and $\hat{\beta}_1$

Use $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ to predict Y (as \hat{y}) on the basis of X = x

But how confident we are with the predicted \hat{y} ?

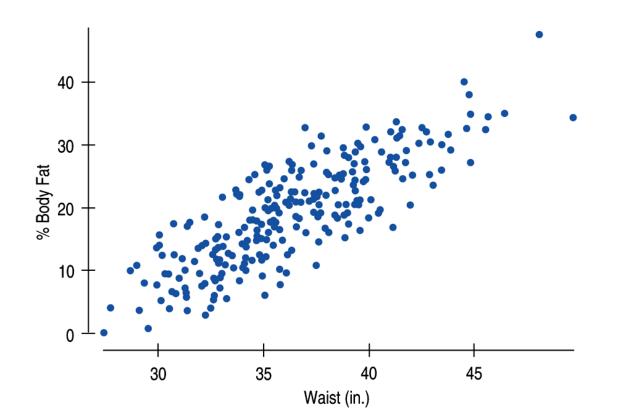
An Example: Body Fat and Waist Size

- Investigating the relationship in adult males between •
 - Y: % Body Fat and X: Waist size (in inches).



An Example: Body Fat and Waist Size

- Investigating the relationship in adult males between •
 - Y: % Body Fat and X: Waist size (in inches).
- Here is a scatterplot of the data for 250 adult males of various ages:

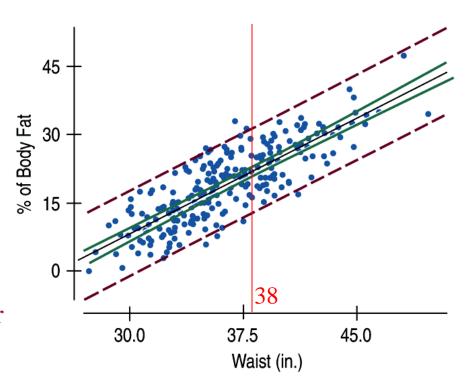


Confidence Intervals and Prediction Intervals for Predicted Values

- For our *%body fat* and *waist size* example, there are two questions we could ask:
 - 1. Do we want to know the mean $\frac{6}{body fat}$ for <u>all men with</u> <u>a waist size of, say, 38 inches</u>? \rightarrow predicting for a mean
 - 2. Do we want to estimate the %body fat for a particular man with a 38-inch waist? \rightarrow predicting for an individual
- The predicted %body fat is the same in both questions, but we can predict the mean %body fat for all men whose waist size is 38 inches with a lot more precision than we can predict the %body fat of a particular individual whose waist size happens to be 38 inches.

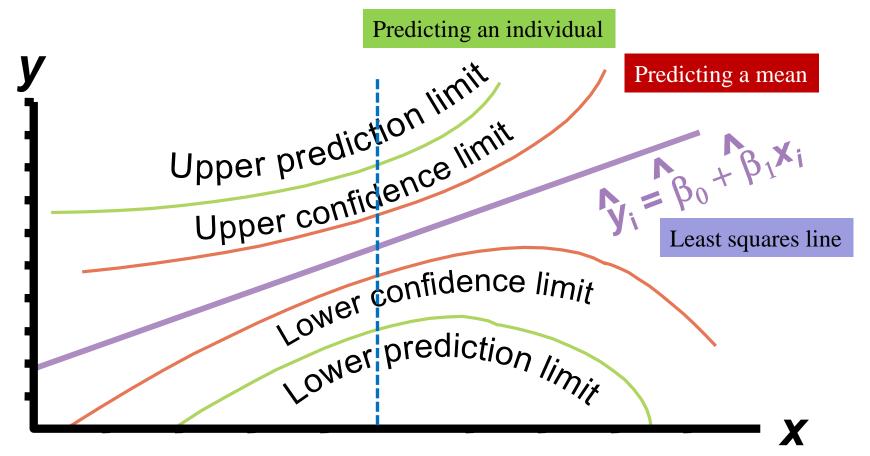
Confidence/Prediction Intervals for Predicted Values

- Here's a look at the difference between predicting for a mean and predicting for an individual.
- The solid green lines near the regression line show the 95% confidence intervals for the mean predicted value, and the dashed red lines show the prediction intervals for individuals.
- The solid green lines and the dashed red lines curve away from the least squares line as x moves farther away from \bar{x} .



Prediction interval (PI) is an estimate of an interval in which future observations (particular individuals) will fall, with a certain probability, given what has already been observed.

Confidence Intervals vs. Prediction Intervals



Conclusion

- Simple Linear Regression
 - Supervised Learning
 - Prediction
 - Parameterised method
- Variables
 - y = **Dependent** variable (quantitative)
 - *x* = **Independent** variable (quantitative)
- Least Squares Line
 - mean error = 0
 - sum of squared errors is minimum

Conclusion

- Practical Interpretation of *y*-intercept
 - predicted *y* value when x = 0
 - no practical interpretation if x = 0 is either nonsensical or outside range of sample data
- Practical Interpretation of Slope
 - Increase or decrease in y for every 1-unit increase in x
- Analysis of Regression
 - RSE, R²-statistic, p-value, Confidence Interval, Prediction Interval

LAB

Simple Linear Regression

Install packages/Load libs

- install.package() function downloads and installs packages from CRAN-like repositories or from local files.
- library() function loads libraries, or groups of functions and data sets that are not included in the base R distribution.
 - Basic functions for least squares linear regression and other simple analysis → included in the base distribution
 - MASS package, which is a very large collection of data sets and functions
 - ISLR package, includes the data sets associated with the textbook
- > library(MASS)
- > library(ISLR)

Error in library(ISLR) : there is no package called 'ISLR'

- > install.packages("ISLR")
- # or select the Install package option under the Package tab
- > library(ISLR)

The Boston House Data

- The data set records median house value (medv) for 506 neighbourhoods (a.k.a. towns) around Boston.
- We will seek to predict medv using 13 predictors such as
 - rm: average number of rooms per house
 - age: average age of houses
 - lstat: percentage of households with low socio-economic status

```
> fix(Boston)
> names(Boston)
[1] "crim" "zn" "indus" "chas" "nox" "rm" "age" "dis" "rad"
[10] "tax" "ptratio" "black" "lstat" "medv"
> ?Boston
> # open the web page to find out about the data set
```

lm() to Fit Simple LR Models

- Using lm () to fit a simple linear regression model
 - The response (y): medv
 - The predictor (x): lstat
 - Basic syntax: lm(y~x, data)

> lm.fit=lm(medv~lstat)

Error in eval(expr, envir, enclos) : object 'medv' not found # we need to let R know where to find the variables medv and lstat # we have two ways to solve this:

first way: indicate where the variables are in the lm func

> lm.fit=lm(medv~lstat,data=Boston)

second way: attach the dataset (not recommended)

- > attach(Boston)
- > lm.fit=lm(medv~lstat)

Check model details

> lm.fit # basic information Call: lm(formula = medv ~ lstat) Coefficients: (Intercept) lstat 34.55 -0.95 # medv = -0.95 * 1stat + 34.55 > summary(lm.fit) # more details Call: How to read the results? lm(formula = medv ~ lstat) Residuals: Min 10 Median 30 Max -15.168 -3.990 -1.318 2.034 24.500 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 34.55384 0.56263 61.41 <2e-16 *** lstat -0.95005 0.03873 -24.53 <2e-16 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 6.216 on 504 degrees of freedom Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432

F-statistic: 601.6 on 1 and 504 DF, p-value: < 2.2e-16

Extract Quantities

• Use names (lm.fit) to find out what other pieces of information are stored in lm.fit

```
> names(lm.fit)
[1] "coefficients" "residuals" "effects" "rank" "fitted.values" "assign"
[7] "qr" "df.residual" "xlevels" "call" "terms" "model"
```

- How to extract the quantities?
 - By name: e.g., lm.fit\$coefficients
 - By the extractor functions: e.g., coef(lm.fit)
- > lm.fit\$coefficients
- (Intercept) lstat
- 34.5538409 -0.9500494
- > coef(lm.fit)
- (Intercept) lstat
- 34.5538409 -0.9500494

Obtaining CI and PI

• To obtain a confidence interval for the coefficient estimates:

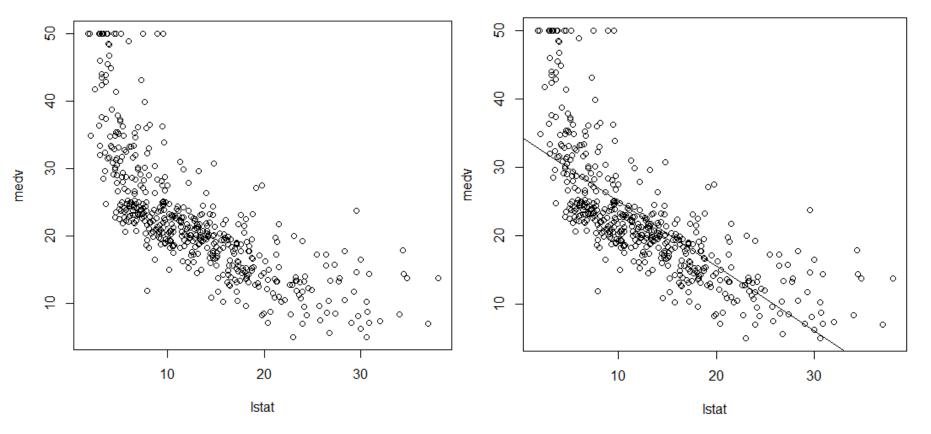
• To obtain a confidence and prediction interval for the prediction of medv for a given value of lstat.

> predict(lm.fit,data.frame(lstat=(c(5,10,15))),interval="confidence")

Plot the results



> abline(lm.fit)



Try out other options on the width of the regression line, colour, symbols, etc abline(lm.fit, lwd=3,col="red", pch="+"), ...

Least Squares - Exercise

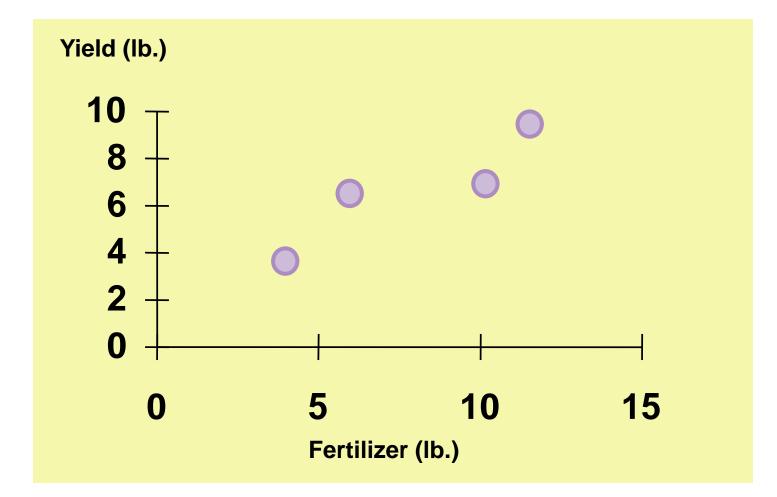
You're an economist for the county cooperative. You gather the following data:

<u>Fertilizer (lb.)</u>	Yield (lb.)	
4	3.0	
6	5.5	
10	6.5	
12	9.0	

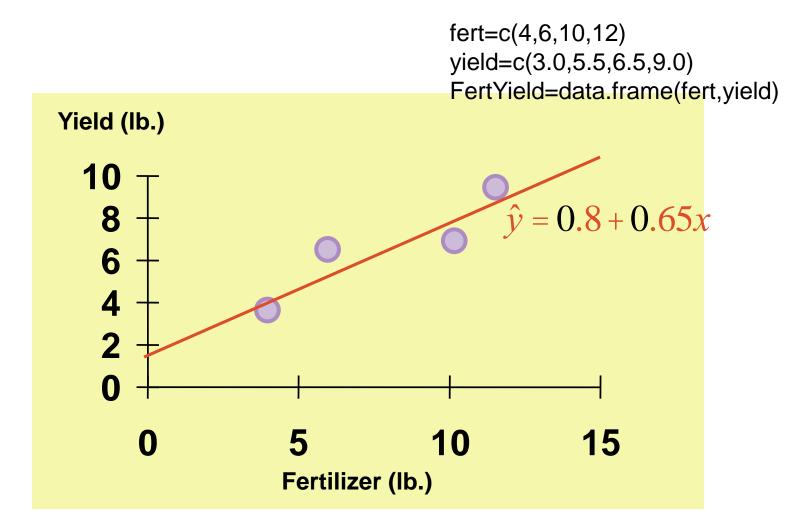
Find the **least squares line** relating crop yield and fertilizer.

© 1984-1994 T/Maker Co.

Scatter Plot Crop Yield vs. Fertilizer



Regression Line Fitted to the Data



Predict

- Predict the yield when 2.5, 5.5 and 8.5 lb of fertilizer are used
- What is the 95% CI and PI?
 - for the coefficients
 - for the prediction of yield given 2.5, 5.5 and 8.5 lb of fertilizer
- Find the following measures:
 - p value,
 - t value,
 - the RSE,
 - the R^2
- Do you think fert is related with yield? Why?

How to draw the CI/PI Curves?

lm.fit.Fert=lm(yield~fert,data=FertYield)

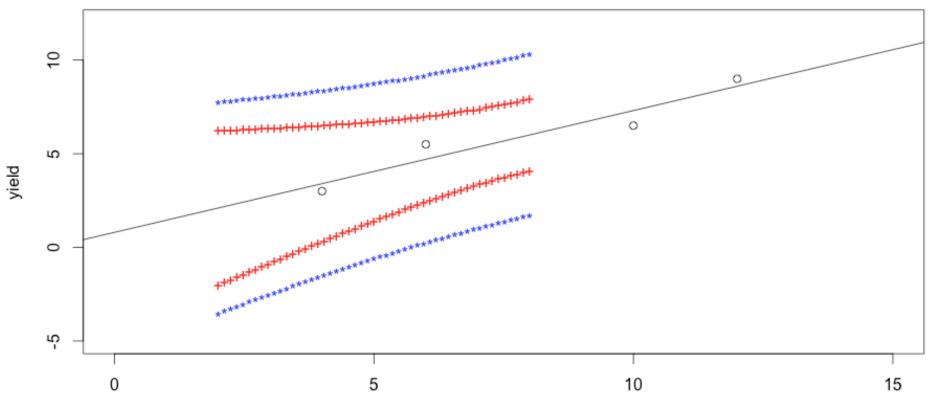
nd <- data.frame(fert=seq(2,8,length=51))

p_conf <- predict(lm.fit.Fert,interval="confidence",newdata=nd) p_pred <- predict(lm.fit.Fert,interval="prediction",newdata=nd)

plot(fert, yield, data=FertYield, ylim=c(-5,12), xlim=c(0,15)) ## data abline(lm.fit.Fert) ## fit

lines(nd\$fert, p_conf[,"lwr"], col="red", type="b", pch="+") lines(nd\$fert, p_conf[,"upr"], col="red", type="b", pch="+") lines(nd\$fert, p_pred[,"upr"], col="blue", type="b", pch="*") lines(nd\$fert, p_pred[,"lwr"], col="blue", type="b", pch="*")

The CI/PI Plot



fert