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Big Data Analytics

Session 3
Simple Linear Regression



Where were we last week? o Birkbeck

Data: Scale of measurement
— Nominal, Ordinal, Interval, Ratio

Univariate analysis: describing the distribution of a single variable
— Measures of central tendency: Mean, Median, Mode

— Measures of spread: Variance, Standard Deviation

— Measures of dispersion: Range, Quartiles, Interquartile Range

Bivariate analysis: describing the relationship between pairs of variables
— Quantitative measures of dependence: Correlation, Covariance

Tabular and graphical presentation
— Frequency distribution, Histogram, Box plot, Scatter plot



Today: Linear Regression 3 Birkbeck

 Predicting a quantitative response

Supervised Unsupervised
Learning Learning

Regression Classification

Logistic regression
Decision trees
Simple linear regression Support Vector Machines Clustering
Tree Based Methods
Ensemble Methods

Choosing the best methods for a given application: Cross-validation

Applications: e.g., Social Networks.



Sales

1’; Birkbeck

INIVERSITY OF LONDON

Example: Advertising

Sales for a particular product as a function of advertising
budgets for TV, radio and newspaper media

Sales
Sales
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Radio MNewspaper
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Linear Functions

UNIVERSITY OF LONDON

 Linear functions refer to equations such as:
— Linear functions are linear with respect to the variables
— f(x)=-0.4x-2
— f(Xy, X,)=4 X, +53%, - 7
— f(Xy, Xgy Xg)= -7 Xq + 5 X, - V2 x5- 1

* Non-linear functions refers to equations such as:
— f(Xy, Xo) = 2%,% + 3X,
— f(Xq, X5, X3) = -2X 1% + 3%,° — 0.7%,°
— f(Xy, X5) = 2%, + 3X, + 3%, X,

« If we assume x,2 and X, are known and fixed:
— Isf(a,b) = ax,? + bx, linear or non-linear?
— Yes, let's assume x,2 =4 and x, = 3. Then f(a,b)=4a+3b



First-Order Linear Functions e Bl"kbc"k

A first-order linear function is a straight line of the form:

y =yt BiX
where

[, = y-intercept of the line y

the point at which the line intercepts or
cuts through the y-axis

S, = slope of the line

the change (amount of increase or
decrease) in the deterministic component of y
for every 1-unit increase in X

By = v-intercept




Outline a Birkbeck

« Simple linear regression
— asingle predictor variable: Y ~ X
— E.g., The relationship between sales and TV advertising budget

« Multiple linear regression (self-study, optional)
— More than one predictor variable: Y ~ X, X, ...

— E.g., The relationship between sales and TV, radio and
newspaper advertising budgets



Simple Linear Regression i Birkbeck

To predict a quantitative response Y on the basis of a single predictor variable X.

Y = By+ 6 X

We are regressing Y on X.



Simple Linear Regression i Birkbeck

To predict a quantitative response Y on the basis of a single predictor variable X.

Y = By+ 6 X

We are regressing Y on X.

Stepl:
Use the training data to produce estimates 3, and 3,
Step2:
Use § = B, + Bx to predict Y (as ¥) on the basis of X = x



Overview of Step 1 i Birkbeck

« Step 1: use training data to estimate coefficients (parameters)

— How to estimate?
— Assessing the accuracy of the coefficient estimates

— Assessing the accuracy of the model



Overview of Step 1 i Birkbeck

« Step 1: use training data to estimate coefficients (parameters)

— How to estimate?
— Assessing the accuracy of the coefficient estimates

— Assessing the accuracy of the model



Plotting Training Data i Birkbeck

« Given n observations (X;, ¥,),-.., (X, ¥,), plot all (x;, y;) pairs by scatter plots

60
40 +
20 +
0 —t—+—+—+—x




How to fit? ap Birkbeck

* How would you draw a line through the points?




How to fit? ap Birkbeck

* How would you draw a line through the points?
 How do you determine which line ‘fits best’?




Residual Sum of Squares i Birkbeck

1s the prediction of Y based on the ith value of X

v; 1s the observed value < Real value!
¢, =y;-  1stheithresidual (residual = observed — predicted)

Residual sum of squares (RSS)
RSS = e%+e%+---+ei.
RSS = (y1 — 5’0 — 31 T )2 + (y2 — 30 — 31 T9 )2 +ooit (yn — 30 — .,5)1 Ty )2




Least Squares Line i Birkbeck

e The least squares line y; = % ot % 1X; 1s one that has the
following two properties:
— The sum of the residuals equals 0, that is, mean residual = 0
— The residual sum of squares is minimised



Least Squares Line i Birkbeck

e The least squares line y; = % ot % 1X; 1s one that has the
following two properties:
— The sum of the residuals equals 0, that is, mean residual = 0
— The residual sum of squares is minimised

« Using some calculus, one can show that the minimisers| are
v i@ =)y — 7)) =137 a2,
431 — — T, ) o £r = n 1=1 "I:?;

> i1 (T — ) |
JA . JA . ’lj E l ZTI} ’Ej
.-’:30 — y — :51 h e T =1 J1°

* In other words, the above equation defines the least squares

coefficient estimates for simple linear regression.




Least Squares Line i Birkbeck

e The least squares line y; = % ot % 1X; 1s one that has the
following two properties:
— The sum of the residuals equals 0, that is, mean residual = 0
— The residual sum of squares is minimised

« Using some calculus, one can show that the minimisers| are

5 _ Tio— D)= 0) R

ZZLl(Ig — T)Q n i—1 41
1 n

:Bg =Y — ,.Blif Yy = n Zg‘:l Yi
* In other words, the above equation defines the|least squares
coefficient estimates|for simple linear regression.




Least Squares Example a Birkbeck

You’re a marketing analyst for Hasbro Toys.
You gather the following data:

Ad Expenditure (100£) Sales (Units)
1
2
3
4
5

Find the least squares line relating
sales and advertising.

ANONR R




Scatter Plot -- Sales vs. Advertising %Blrkl’“k

Ad Expenditure (100£) Sales (Units)
e Plotit 1

AN

2
3
4
5

Advertising
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Minimising RSS

.-3’1 _ Z?zl(‘r@ _ f)(yﬁ - 37) 7 = 1 .
! — — P — . 4
 Recall: | E ?:1(113 — I)2 n =1

M, . - B _ _ 1




Minimising RSS

qu Birkbcck

NIVERSITY OF LONDON

Ad Expenditure (100£) Sales (Units)
1 1
o v — 1¥2+43+445 2 1
X = 5 =3 3 2
— _ 1+1+242+4 4 2
e Y= - =2 5 4
. 3 _ (1-3)(1-2)+(2-3)(1-2)+(3-3)(2-2)+(4-3)(2-2)+(5-3)(4—2) _ 0.7
! (1-3)2+(2-3)%+(3-3)%+(4—3)2+(5-3)? '
e f,b=2—-0.7%3=-0.1
e |east Squares Line:
yf — 30 + ﬁAlxi — _01 ‘I‘ O.7xi
L@ -0 -y 1y
+ Recall: | S (z — T)2 — nea=l T
A _ 5 — — 1
Bo =1y — 1T y=— ?’:1 i




Regression Line Fitted to the Data %B“’kl’“k

Sales (unit)

O 1 2 3 4 5

Advertising (£100)

1. Slope (5,)

« Sales VVolume (y) is expected to increase by 0.7 unit for each £100 increase in
advertising (x), over the sampled range of advertising expenditures from £100 to
£500

2. y-Intercept (5,)

 Since 0 is outside of the range of the sampled values of X, the y-intercept has no
meaningful interpretation



Overview of Step 1 i Birkbeck

« Step 1: use training data to estimate coefficients (parameters)

— How to estimate?
— Assessing the accuracy of the coefficient estimates

— Assessing the accuracy of the Model



Assessing the accuracy of % Birkbeck
coefficient estimates sl

NIVERSITY OF LONDON

e Three different lines:

— True relationship: Y=f(X)+¢
e € IS amean-zero random error term



Assessing the accuracy of 25 Birkbeck
coefficient estimates .

UNIVERSITY OF LONDON

e Three different lines:

— True relationship: Y=f(X)+¢
e € IS amean-zero random error term

— Population regression line: 'Y = f,+ B X +¢
« fis to be approximated by a linear function

* ¢ is a catch-all for what we miss with this simple model:
— The true relationship is probably not linear; (reducible error)
— There may be other variables that cause variation in Y; (reducible error)
— There may be measurement error (irreducible error)

» Assume that ¢ Is independent of X

» The best linear approximation to the true relationship between X and Y



Assessing the accuracy of 25 Birkbeck
coefficient estimates .

UNIVERSITY OF LONDON

e Three different lines:

— True relationship: Y=f(X)+¢
e € IS amean-zero random error term

— Population regression line: Y = f,+ B X +¢
 fisto be approximated by a linear function

* ¢ is a catch-all for what we miss with this simple model:
— The true relationship is probably not linear; (reducible error)
— There may be other variables that cause variation in Y; (reducible error)
— There may be measurement error

» Assume that ¢ Is independent of X
» The best linear approximation to the true relationship between X and Y

— Least squares line: Y =B,+B,X
« With the least squares regression coefficient estimates



Sample Mean and Population Mean %Blrkl’“k

 Recall in Session 2:

— Sample mean X = % - population mean { = Z};Ci

— Use X toestimate il =» write I = X

— [l is the estimate of U



An Analogue a Birkbeck

10

-10

Red line: population regression line f(X) = 2+3X, usually unknown
Dark blue line: least square line — based on one set of observations
Light blue lines: least square lines — each based on a separate random set of obs.



An Analogue

Population regression line: \_{ =

Least squares line:

ﬁ‘ ['31‘1X+8
=pot+ B

Use fB, and B, to estimate 3, and /3,

f, and f; may under or over estimate £,

- If we could average a huge number of the parameters, then

the resulting 3, and 3; will be the accurate population

regression line parameters

If B, and B; are based on one particular set of observations, "

and £,

\ijrﬁ Birkbeck

UNIVERSITY OF LONDON

10

w —

-10




Standard Error ap Birkbeck

 How close is a single sample mean /i to the population mean u?
— Use standard error (SE): the average amount that this estimate i differs from u
— o2 < o: the standard deviation, ¢2: variance

A2
SE(1)” = o < the more observations we have, the smaller the SE is

 When sample size increases

— the standard error of the sample will tend to 0
 because the estimate of the population mean will improve



An Analogy g Birkbeck

F LONDON

* Population regression line: |} = [, + 31‘1X + g

* Least squares line: Y = 30 + p 1K




Overview of Step 1 i Birkbeck

« Step 1: use training data to estimate coefficients (parameters)

— How to estimate?

— Assessing the accuracy of the coefficient estimates
 Are the coefficient estimates statistically significant?

— Assessing the accuracy of the Model



Hypothesis Tests i Birkbeck

Y = 60 + 31X + g
« Is f,=0 or not? If we can’t be sure that £,#0 then there 1s no point
in using X as our predictor

— Use a hypothesis test to answer this question




Hypothesis Tests i Birkbeck

Y = 60 + ﬁlX + g
« Is f,=0 or not? If we can’t be sure that £,#0 then there 1s no point
in using X as our predictor

— Use a hypothesis test to answer this question

* Hypothesis tests

— Null hypothesis
» H,: There is no relationship between X and Y (H,: £, =0)
— Alternative hypothesis
» H,: There is some relationship between X and Y (H,: f, #0)



Hypothesis Tests i Birkbeck

Y = 60 + 31X + g
« Is f,=0 or not? If we can’t be sure that £,#0 then there 1s no point
in using X as our predictor

— Use a hypothesis test to answer this question

* Hypothesis tests

— Null hypothesis
» H,: There 1s no relationship between X and Y (H,: S, =0)
— Alternative hypothesis
» H,: There is some relationship between X and Y (H,: f, #0)

— To test whether 3, the estimate of /3, is sufficiently far from 0
* How far is far enough? Compute t-value



t-value i Birkbeck

 How far is B4, the estimate of S, sufficiently far from 0?
— This depends on the accuracy of B, that is, the standard error of S;.

— Recall: SE(B,) measures how close f; is to the true value £3; .



t-value 1?; Bir l(b(‘(,l(

How far is By, the estimate of f3;, sufficiently far from 0?
— This depends on the accuracy of B, that is, the standard error of S;.

— Recall: SE(B,) measures how close f; is to the true value £3; .

— If SE(B,) is small, then even relatively small values of B; may provide strong
evidence that 5; # 0, and hence there is a relationship between X and Y.

— IfSE(B,) is large, then B, must be large in absolute value in order to claim that
there is a relationship between X and Y.

True value of 4 B, the estimate of f3;
L 1 \!/ t — + T
5 | | } SE(B) |

SE(B,), measuring how close B is to B4
— The higher t-value 1s, the more possible X and Y are related

t-value does not have a fixed range! Convert it to a p-value



P-value Eﬁ Birkbeck

UNIVERSITY OF LONDON

« Given a t-value, we can calculate a p-value (a probability, between 0 and 1).

« P values address only one question: how likely are your data, assuming a true
null hypothesis?

« P values evaluate how well the sample data support that the null hypothesis is
true. It measures how compatible your data are with the null hypothesis

— A small p-value (typically < 0.05) indicates your sample provides strong evidence against the
null hypothesis, so you reject the null hypothesis.

— Alarge p-value (> 0.05) indicates weak evidence against the null hypothesis, so you fail to
reject the null hypothesis.

— p-values very close to the cutoff (0.05) are considered to be marginal (could go either way).
Always report the p-value so your readers can draw their own conclusions.

« P values do not measure support for the alternative hypothesis.




t-value and p-value i Birkbeck

If t is large (equivalently p-value is small), we can be sure that ,él is not 0.
=>» We reject the Null Hypothesis.

=» We declare a relationship to exist between X and Y.

Typical p-value cutoffs for rejecting the null hypothesis are 5 or 1%.

Regression coefficients SE(':'-}D)
Coefficient\itd Err t-value p-value
Constant 7.0326 4578 15.3603 0.0000
/ 0.0475 0 0027 17.6676 0.0000

/?1 SE(ﬂl) /

t-value p-value



Overview of Step 1 i Birkbeck

« Step 1: use training data to estimate coefficients

— How to estimate?

— Assessing the accuracy of the coefficient estimates
« Comparing coefficients only

— Assessing the accuracy of the model
« Quantifying the extent to which the model fits the data



Measures of Fit: RSE ap Birkbeck

e Recall:

Population regression line: q’ = %ﬂ -+ a X t+ &

Least squares line: Y =8,+8.X
= Po 1




Measures of Fit: RSE %Blrkl’“k

 Recall:
Population regression line: L{ = %ﬂ -+ ﬁ+ X t+ &
Least squares line: V = B‘ﬂ + ﬁ‘l Y

« Measuring the extent to which the model fits the data

— Residual Standard Error (RSE)

 Even ifitisa true regression line ( 3, =4, and 3,=/4,), we would not
be able to perfectly predict Y from X due to the error term ¢



Measures of Fit: RSE %B”kl’“k

 Recall:
Population regression line: H = %ﬂ -+ ﬁj{k X t+ &
Least squares line: ‘}"}‘ — ﬁ"ﬂ + ﬁ‘l X‘

« Measuring the extent to which the model fits the data

— Residual Standard Error (RSE)
 Even ifitisa true regression line ( 3, =4, and 3,=/4,), we would not
be able to perfectly predict Y from X due to the error term ¢

« RSE is the estimate of the standard deviation of ¢

— Quantifies average amount that the response will deviate from the
population regression line



Measures of Fit: RSE o Birkbeck

« Measuring the extent to which the model fits the data
— Residual Standard Error (RSE)

« Example: regressing number of units sold on TV advertising budget
— RSE =3.26

— Even if the model were correct, any prediction on sales on the basis of
TV advertising budget would still be off by about 3260 units on
average

« An absolute measure of lack of fit of the model to the data
— Measured In the units of Y
— Not always clear whether it is a good fit



Measures of Fit: R2 o Birkbeck

« Measuring the extent to which the model fits the data
— R? statistic

* Some of the variation in Y can be explained by variation in the X’s
and some cannot.

« R? tells you the proportion of variance that can be explained by X.

R? _q_ RSS_ 1 Ending Variance
> (Y -Y) Starting Variance

» Starting variance: the amount of variability inherent in the response
before the regression is performed

« Ending variance: the amount of variability that is left unexplained
after performing regression



Measures of Fit: R2 o Birkbeck

« Measuring the extent to which the model fits the data
— R? statistic
« R?is always between 0 and 1.
— Zero means no variance has been explained.
— One means it has all been explained (perfect fit to the data).
« Insimple linear regression, R? = Cor(X,Y)?
— Both measure the linear relationship between X and Y

Remark: Cor(X,Y) = 0 means there is no linear relationship between X and Y,
but there could be other relationship.

Example: X<-¢(-3,-2,-1,0,1,2,3)
Y<-¢(94,101,4,9)
#cor(X,Y)=0
#ButY = X2 = Y and X has quadratic relationship



Measure of Fit ap Birkbeck

= summary{Im. fit)

Call:
Im{formula = y ~ x)

Residuals:
Min 10 Meddan 30 Max
-0.099458 -0.032353 -0.000164 0O.029921 0.128230

Coefficients:

Estimate 5td. Error © value pPri=|t]|)
(Intercept) -1.002402 0.004654 -215.37 <2e-1§ *=®*
X 0.486823 0.005353 90. 94 <le-16 #®¥®

signif. codes: 0 ®##%' 0,001 °#**' Q.01 **' 0.05 °*." 0.1 °* " 1

Residual standard error: 0.04642|on 98 degrees of freedom
Multiple R-squared: 0.9B883, Adjusted R-squared: 0.9882
F-statistic: B271 on 1 and 98 DF, p-value: < 2.2e-16

Adjusted R-squared: penalize for adding irrelevant/non-significant variables
Model with multiple variables: use adjusted R-squared
Model with single variable: use R squared and adjusted R squared interchangably



Simple Linear Regression i Birkbeck

To predict a quantitative response Y on the basis of a single predictor variable X.

Y = By+ 6 X

We are regressing Y on X.

Stepl: | € Done!

Use the training data to produce estimates 3, and 3,
Step2: | € Now!

Use § = B, + Bx to predict Y (as ¥) on the basis of X = x

But how confident we are with the predicted y ?



An Example: Body Fat and Waist Size 1TLIB“H’“I(

Investigating the relationship in adult males between
— Y: % Body Fat and X: Waist size (in inches).

35% 30% 25% 20% 15% 12%

o ) - o - 2 ~
. /; ,‘\\ i ’ - “‘ } i J '_"1 ) ,(
v f \t—'/‘ \ ok w_'_,/'\ | V /‘tv. /
- ! V ll V , , 1 \ / ?\
' ,‘ .“ | 1 R ! g | .’; \ ,‘,



An Example: Body Fat and Waist Size ap Birkbeck

Investigating the relationship in adult males between
— Y: % Body Fat and X: Waist size (in inches).

Here is a scatterplot of the data for 250 adult males of various ages:

@
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Confidence Intervals and Prediction % Birkbeck
Intervals for Predicted Values &

VERSITY OF I

 For our %body fat and waist size example, there are two
questions we could ask:

1. Do we want to know the mean %body fat for all men with
a waist size of, say, 38 inches? —> predicting for a mean

2. Do we want to estimate the %body fat for a particular man
with a 38-inch waist? —> predicting for an individual

« The predicted %body fat is the same in both questions, but
we can predict the mean %body fat for all men whose waist
size I1s 38 inches with a lot more precision than we can predict
the %body fat of a particular individual whose waist size
happens to be 38 inches.



Confidence/Prediction Intervals 25 Birkbeck
for Predicted Values '

Here’s a look at the difference
between predicting for a mean and
predicting for an individual.

The solid green lines near the
regression line show the 95%
confidence intervals for the mean
predicted value, and the dashed red
lines show the prediction intervals for
individuals.

The solid green lines and the dashed
red lines curve away from the least
squares line as x moves farther away
from x.

UNIVERSITY OF LONDON

w -
o o
] ]

—_
(8]
1

% of Body Fat

Waist (in.)

Prediction interval (PI) is an estimate of
an interval in which future observations
(particular individuals) will fall, with a
certain probability, given what has already
been observed.



Confidence Intervals vs.
Prediction Intervals

Eﬁ ?irkbcck

Predicting an individual

X
Y RN

Least squares line




Conclusion o Birkbeck

« Simple Linear Regression
— Supervised Learning
— Prediction
— Parameterised method

« Variables
— y = Dependent variable (quantitative)
— X = Independent variable (quantitative)

 Least Squares Line
— mean error =0
— sum of squared errors is minimum



Conclusion o Birkbeck

 Practical Interpretation of y-intercept
— predicted y value when x =0

— no practical interpretation if x = 0 is either nonsensical or outside range
of sample data

 Practical Interpretation of Slope
— Increase or decrease in y for every 1-unit increase in X

 Analysis of Regression

— RSE, R?-statistic, p-value, Confidence Interval, Prediction Interval



% Birkbccl(

LAB

Simple Linear Regression
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Install packages/Load libs i Birkbeck

install.package () function downloads and installs
packages from CRAN-Ilike repositories or from local files.

library () function loads libraries, or groups of functions and
data sets that are not included in the base R distribution.

— Basic functions for least squares linear regression and other simple
analysis = included in the base distribution

— MASS package, which is a very large collection of data sets and functions
— ISLR package, includes the data sets associated with the textbook

> library (MASS)

> library (ISLR)

Error in library (ISLR) : there is no package called ‘ISLR’
> install.packages ("ISLR")

# orselectthe Install package option under the Package tab

> library (ISLR)



The Boston House Data %Blrkb“k

« The data set records median house value (medv) for 506
neighbourhoods (a.k.a. towns) around Boston.

« We will seek to predict medv using 13 predictors such as
— rm: average number of rooms per house
— age: average age of houses
— lstat: percentage of households with low socio-economic status

> fix (Boston)
> names (Boston)
[1] "crim" "zn" "indus" "chas" "nox" "rm" "age" "dis" "rad"
[10] "tax" "ptratio" "black" "lstat" "medv"“
> ?Boston

> # open the web page to find out about the data set



1m() to Fit Simple LR Models  [rlieGres

« Using 1m () to fit a simple linear regression model

— The response (y): medv
— The predictor (X): 1stat
— Basicsyntax: 1m (y~x, data)

> Im.fit=1Im(medv~lstat)

Error in eval (expr, envir, enclos) : object 'medv' not found
# we need to let R know where to find the variables medv and Istat

# we have two ways to solve this:

# first way: indicate where the variables are in the Im func
> Im.fit=1Im(medv~lstat,data=Boston)

# second way: attach the dataset (not recommended)
> attach (Boston)
> Im.fit=1m (medv~lstat)



Check model details ap Birkbeck

> Im.fit # basic information
Call:
Im(formula = medv ~ lstat)
Coefficients:
(Intercept) lstat
34.55 -0.95 # medv = -0.95 * lstat + 34.55

> summary (lm.fit) # more details
Call:
Im(formula = medv ~ lstat) HOW tO I‘ead the rESUItS?
Residuals:

Min 10 Median 30 Max
-15.168 -3.990 -1.318 2.034 24.500
Coefficients:

Estimate Std. Error t wvalue Pr(>]t])

(Intercept) 34.55384 0.56263 61.41 <2e-16 ***
lstat -0.95005 0.03873  -24.53  <2e-16 ***
Signif. codes: 0 ‘*x*’ 0,001 “** 0.01 “*” 0.05 ‘.” 0.1 ‘7 1
Residual standard error: 6.216 on 504 degrees of freedom
Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432

F-statistic: 601.6 on 1 and 504 DF, p-value: < 2.2e-16



% Birkbeck

Extract Quantities

UNIVERSITY OF LONDON

e Use names (1m.fit) to find out what other pieces of
Information are stored In 1m.fit

> names (lm.fit)
[1] "coefficients" '"residuals" "effects" "rank" "fitted.values" "assign"

(71 "qgr" "df.residual" "xlevels" "call" "terms" "model"

« How to extract the quantities?
— Byname:e.g.,, Im.fitScoefficients
— By the extractor functions: e.g., coef (Im.fit)

> Im.fitScoefficients
(Intercept) lstat
34.5538409 -0.9500494
> coef (Im.fit)
(Intercept) lstat
34.5538409 -0.9500494



Obtaining CI and PI i Birkbeck

 To obtain a confidence interval for the coefficient estimates:

> confint (Im.fit)

2.5 % 97.5 %
(Intercept) 33.448457 35.6592247
lstat -1.026148 -0.8739505

To obtain a confidence and prediction interval for the
prediction of medv for a given value of 1stat.

> predict (lm.fit,data.frame(lstat=(c(5,10,15))),interval="confidence")
fit lwr upr
1 29.80359 29.00741 30.59978 +1 o)
ow to read the results”
2 25.05335 24.47413 25.63256
3 20.30310 19.73159 20.87401
> predict (lm.fit,data.frame(lstat=(c(5,10,15))),interval="prediction")

fit lwr upr
1 29.80359 17.565675 42.04151
2 25.05335 12.827626 37.27907
3 20.30310 8.077742 32.52846

Which interval 1s wider?



medy

Plot the results o Birkbeck

> plot (lstat,medv) > abline (lm.fit)

O
Ly

40

30

20

10

medy

Istat Istat

Try out other options on the width of the regression line, colour, symbols, etc
abline(Im.fit, Iwd=3,col="red", pch="+"), ...



Least Squares - Exercise i Birkbeck

You’re an economist for the county cooperative. You
gather the following data:

Fertilizer (Ib.)  Yield (Ib.) \

4 3.0
0 5.5
10 0.5
12 9.0

Find the least squares line relating
crop yield and fertilizer.



Scatter Plot Crop Yield vs. Fertilizer i Birkbeck
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Regression Line Fitted to the Data

fert=c(4,6,10,12)

yield=c(3.0,5.5,6.5,9.0)

FertYield=data.frame(fert,yield)
Yield (Ib.)

$=0.8+0.65x
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Predict g Birkbeck

Predict the yield when 2.5, 5.5 and 8.5 Ib of fertilizer are used

What is the 95% CI and PI?

— for the coefficients
— for the prediction of yield given 2.5, 5.5 and 8.5 b of fertilizer

Find the following measures:
— p value,

— tvalue,

— the RSE,

— the R?

Do you think fert is related with yield? Why?



How to draw the CI/PI Curves? o Birkbeck

Im.fit.Fert=Im(yield~fert,data=FertYield)
nd <- data.frame(fert=seq(2,8,length=51))
p_conf <- predict(Im.fit.Fert,interval="confidence",newdata=nd)
p_pred <- predict(Im.fit.Fert,interval="prediction",newdata=nd)

plot(fert,yield,data=FertYield,ylim=c(-5,12),xlim=c(0,15)) ## data
abline(Im.fit.Fert) ## fit

lines(nd$fert, p_conf
lines(nd$fert, p_conf
lines(nd$fert, p_pred
lines(nd$fert, p_pred

hwr
"upr
"upr
hwr

'], col="red", type="b", pch="+")
'], col="red", type="b", pch="+")
'], col="blue", type="b", pch="*")
'], col="blue", type="b", pch="*")
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The CI/PI Plot
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