
Lab 4 Solutions
To load the data:
library(aod)

## Warning: package 'aod' was built under R version 3.4.2
mydata <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")
#mydata <- read.csv("D:/binary.csv")
head(mydata)

## admit gre gpa rank
## 1 0 380 3.61 3
## 2 1 660 3.67 3
## 3 1 800 4.00 1
## 4 1 640 3.19 4
## 5 0 520 2.93 4
## 6 1 760 3.00 2

1) Get basic descriptives for the entire data set using summary(). View the dataset using view().

summary(mydata)

## admit gre gpa rank
## Min. :0.0000 Min. :220.0 Min. :2.260 Min. :1.000
## 1st Qu.:0.0000 1st Qu.:520.0 1st Qu.:3.130 1st Qu.:2.000
## Median :0.0000 Median :580.0 Median :3.395 Median :2.000
## Mean :0.3175 Mean :587.7 Mean :3.390 Mean :2.485
## 3rd Qu.:1.0000 3rd Qu.:660.0 3rd Qu.:3.670 3rd Qu.:3.000
## Max. :1.0000 Max. :800.0 Max. :4.000 Max. :4.000
View(mydata)

2) How many observations are there in this dataset?
nrow(mydata)

## [1] 400

3) Get the standard deviations. Hint: use sapply to apply the sd function to each variable in
the dataset: sapply(mydata, sd). Now get the mean for the first three variables (i.e., admit,
gre and gpa) in a similar way.
sapply(mydata[,-4], mean)

## admit gre gpa
## 0.3175 587.7000 3.3899

mydata[,-4] indicates all the rows and all the columns except for the 4th column (the rank). We exclude
rank as it is a categorical variable and calculating its mean is not appropriate.

1



4) Convert rank to a factor to indicate that rank should be treated as a categorical variable.
mydata$rank <- factor(mydata$rank)

5) Estimate a logistic regression model using the glm function, and get the results using the
summary command.
glm.admit.fit <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")
summary(glm.admit.fit)

##
## Call:
## glm(formula = admit ~ gre + gpa + rank, family = "binomial",
## data = mydata)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.6268 -0.8662 -0.6388 1.1490 2.0790
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.989979 1.139951 -3.500 0.000465 ***
## gre 0.002264 0.001094 2.070 0.038465 *
## gpa 0.804038 0.331819 2.423 0.015388 *
## rank2 -0.675443 0.316490 -2.134 0.032829 *
## rank3 -1.340204 0.345306 -3.881 0.000104 ***
## rank4 -1.551464 0.417832 -3.713 0.000205 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 499.98 on 399 degrees of freedom
## Residual deviance: 458.52 on 394 degrees of freedom
## AIC: 470.52
##
## Number of Fisher Scoring iterations: 4

6) Do you notice variable rank is replaced with categorical variables rank2, rank3, and rank4
that can only take values of 0 or 1? Recall that the original variable rank can take values of 1,
2, 3, or 4. Why isn’t a variable rank1 needed? If rank is 1, what are the values of rank2, rank3
and rank4?

If rank is 1, then rank2 is 0, rank3 is 0 and rank4 is 0.

If rank is 2, then rank2 is 1, rank3 and rank4 are 0.

If rank is 3, then rank2 is 0, rank3 is 1 and rank4 is 0.

If rank is 4, then rank2 and rank3 are 0 and rank4 is 1.

7) From the z-statistics and p-values of the variables, report which variables are statistically
significant.

The z-statistics of all the variables are large and the p-values of all the variables are small (<0.05). All the
variables are statistically significant.

2



8) Use the model to predict the training dataset and store the results to a vector of probabilities
admit.prob.
admit.prob <- predict(glm.admit.fit, type = "response")
head(admit.prob)

## 1 2 3 4 5 6
## 0.1726265 0.2921750 0.7384082 0.1783846 0.1183539 0.3699699

Note that this is a vector of probabilities. admit in the original dataset has values 0 or 1 (0 for reject and 1
for admitted).

9) Create another vector admit.pred to show 0 or 1 for admit.prob. Let’s set the value to be 0
if the probability is less than 0.5, and 1 if the probability is no less than 0.5.
admit.pred <- rep(1,400)
admit.pred[admit.prob<0.5] <- 0
head(admit.pred)

## [1] 0 0 1 0 0 0

10) Using table() function to create a confusion matrix to determines how many observations
were correctly or incorrectly classified. Calculate the percentage that the observations were
correctly classified.
table(admit.pred, mydata$admit)

##
## admit.pred 0 1
## 0 254 97
## 1 19 30
mean(admit.pred == mydata$admit)

## [1] 0.71

11) Use the model to predict the average cases in each rank, that is, four new data with mean
gre, mean gpa and rank from 1 to 4.
newdata1 <- with(mydata, data.frame(gre = mean(gre), gpa = mean(gpa), rank = factor(1:4)))
newdata1$admit1.prob <- predict(glm.admit.fit, newdata = newdata1, type = "response")
newdata1

## gre gpa rank admit1.prob
## 1 587.7 3.3899 1 0.5166016
## 2 587.7 3.3899 2 0.3522846
## 3 587.7 3.3899 3 0.2186120
## 4 587.7 3.3899 4 0.1846684
newdata1$admit1.pred <- rep(1,4)
newdata1$admit1.pred[newdata1$admit1.prob<0.5] <- 0
newdata1

## gre gpa rank admit1.prob admit1.pred
## 1 587.7 3.3899 1 0.5166016 1
## 2 587.7 3.3899 2 0.3522846 0
## 3 587.7 3.3899 3 0.2186120 0

3



## 4 587.7 3.3899 4 0.1846684 0

Note that the above commands add two new columns to newdata1.

Or alternatively, we can use
newdata2 <- data.frame(gre = mean(mydata$gre), gpa = mean(mydata$gpa), rank = factor(1:4))
newdata2$admit1.prob <- predict(glm.admit.fit, newdata = newdata2, type = "response")
newdata2

## gre gpa rank admit1.prob
## 1 587.7 3.3899 1 0.5166016
## 2 587.7 3.3899 2 0.3522846
## 3 587.7 3.3899 3 0.2186120
## 4 587.7 3.3899 4 0.1846684
newdata2$admit1.pred <- rep(1,4)
newdata2$admit1.pred[newdata2$admit1.prob<0.5] <- 0

with(data, expression) applies an expression to a dataset.

For more exercises and more detailed explanations, please refer to https://stats.idre.ucla.edu/r/dae/
logit-regression/.

Exercises on Functions

1) In Session 1, we learned to combine elements into a vector using the c function, e.g. x <-
c(“A”, “B”, “C”) creates a vector x with three elements. Furthermore, we can extend that
vector again using c, e.g. y <- c(x, “D”) creates a vector y with four elements. Write a function
called fence that takes two vectors as arguments, called original and wrapper, and returns a
new vector that has the wrapper vector at the beginning and end of the original.
fence <- function(original, wrapper) {

answer <- c(wrapper, original, wrapper)
return(answer)

}

best_practice <- c("Write", "programs", "for", "people", "not", "computers")
asterisk <- "***" # R interprets a variable with a single value as a vector

# with one element.
fence(best_practice, asterisk)

## [1] "***" "Write" "programs" "for" "people" "not"
## [7] "computers" "***"

2) If the variable v refers to a vector, then v[1] is the vector’s first element and v[length(v)]
is its last (the function length returns the number of elements in a vector). Write a function
called outside that returns a vector made up of just the first and last elements of its input.
outside <- function(v) {

first <- v[1]
last <- v[length(v)]
answer <- c(first, last)
return(answer)

}

4

https://stats.idre.ucla.edu/r/dae/logit-regression/
https://stats.idre.ucla.edu/r/dae/logit-regression/


dry_principle <- c("Don't", "repeat", "yourself", "or", "others")
outside(dry_principle)

## [1] "Don't" "others"

3) Write a function that calculates number a to the power of b, but let b have a default value
of 2.
powerof <- function(a, b = 2) {

a^b
}
powerof(4)

## [1] 16
powerof(2, 3)

## [1] 8

4) Re-write the function from 3) so that a has a default value of b+1 already from the formals
(from the argument definition.)
powerof <- function(a = b + 1, b = 2) {

a^b
}
powerof()

## [1] 9

5


	Exercises on Functions

