Lab 5 Resampling Methods

Problem Statement

Estimate the test MSE (mean squared error) by using
(I) Validation set approach
(II) LOOCY

(IIT) K-fold CV

Report which approach is the best.

Dataset

Use Auto dataset in the package of ISLR. Focus on the following pair of variables: mpg and horsepower.

Questions

(I) Validation set approach

1) Randomly pick half of the data as the training data. Remember to set a seed to make your
result repeatable.

2) Build a linear regression model based the training data.
3) Estimate the test MSE based on the other half (as test data)

4) Now try to build polynomial regression of degree 2 and 3 using lm(y~poly(x,i)), where y
is the response variable, x is the predictor variable and i is the highest degree of x. Compute
the test MSE for the two models.

5) What conclusion could we draw from the above comparison of degree 1 (linear) and degree
2 (quadratic) and degree 3 (cubic) regression models?

6) Choose 10 different seeds. For each seed, calculate the test MSE for models of degree from
1 to 10. You may use a nested for-loop to do that. Plot the variability on the results. Can
you obtain a similar plot as in Figure 1.

o Hint:

In order to do that you need to plot one curve first, and repeat the same procedure for another 9 times (using
a for-loop) where each time a different seed is chosen.

In order to plot one curve, you need to obtain a vector of size 10, where each element of the vector records
the test MSE of the model with degree i (i = 1, 2, .10). This can be implemented by a for-loop to go
through degree from 1 to 10.
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Figure 1: Validation Set Approach - MSE vs Degree of Polynomial

e Some examples on for-loop in R:

x <- ¢(2,5,3,9,8,11,6)
count <- 0
for (val in x) {
if(val %% 2 == 0) count = count+l # J/ returns the remainder of the division

;rint (count)

## [1] 3

The above program counts how many odd numbers there are in x.
Or

foo = seq(1, 100, by=2)

foo.squared = NULL

for (i in 1:50) {
foo.squared[i] = foo[i]"2

}

See what happened to the vector foo.



(I) LOOCV
Function glm()

o In logistic regression: glm(y~x,family="binomial",data=..)

o In linear regression: glm(y~x, data=..)

> glm.fit=glm (mpg~horsepower ,data=Auto)
> coef(glm. fit)

(Intercept) horsepower
39.936 -0.158

is the same as 1lm(y ~ x, data = ...)

> Ilm.fit=1m(mpg~horsepower ,data=Auto)
> coef (1lm.fit)
(Intercept) horsepower

39.936 -0.158

Function cv.glm() in boot library

e Produces a list with several components, including the cross-validation estimate for the test error:
delta

e cv.glm(data, glmfit, K)

library (boot)
glm.fit=glm (mpg~horsepower ,data=Autoc)
cv.err=cv.glm(Auto,glm.fit)
cv.err$delta

1 1
24.23 24.23

vV Vv vV v

e delta is a vector of length two. For LOOCYV, the two are the same.

7) Experiment on the LOOCYV for increasingly complex polynomial fits. More specifically,
write a for-loop to increase the degree i, as in 1m(y~poly(x,i)), from 1 to 10 and record the
LOOCYV estimate for the test error for each degree.

8) Plot the result from 7) where x-axis is the degree i and y-axis is the LOOCYV estimate for
the test error. Can you plot a similar one as in Figure 27



LOOCV

24 26 28

Mean Squared Error

18 20 22

16

| | | | |
2 4 6 8 10

Degree of Polynomial

Figure 2: LOOCYV - MSE vs Degree of Polynomial

(I1T) K-fold CV

Implement k-fold CV by passing the argument K in cv.glm(data, glmfit, cost, K).
The errors are recorded in delta. There are two numbers associated with delta:

o The first number is the raw/standard CV estimate of prediction error.
e The second number is the adjusted CV estimate. The adjustment is designed to compensate for the
bias introduced by not using leave-one-out cross-validation.

It is sufficient to report the raw CV error to estimate the test errors.

The following three questions can be answered by one chunk of code.

9) Set a seed. Write a for-loop to increase the degree i, as in lm(y~poly(x,i)), from 1 to 10
and record the 10-fold CV estimate for the test error for each degree.

10) Plot the result from 9) where x-axis is the degree i and y-axis is the 10-fold CV estimate
for the test error.

11) Set 9 different seeds and repeat 9) and 10). Plot all the results into one plot like the one
in Figure 3.
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Figure 3: 10-fold CV - MSE vs Degree of Polynomial
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