

## **Big Data Analytics**

#### Session 5(a) Assessing Model Accuracy

## Outline

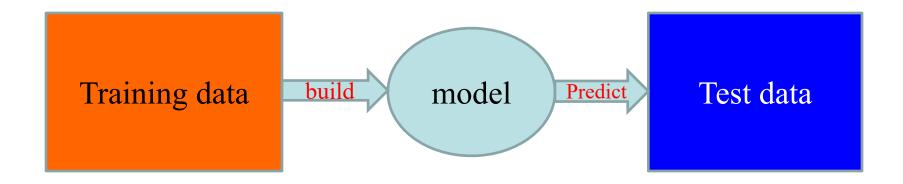


- Assessing Model Accuracy (Chapter 2.2)
  - Measuring the Quality of Fit
  - The Bias-Variance Trade-off
  - The Classification Setting

## The big picture



• The general way of statistical learning



- Training data: the existing known data
- Test data: the new data that we would like to explore

## **Measuring Quality of Fit**



- Suppose we have a regression problem.
  - Recall residual sum of squares (RSS):

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• Where  $\hat{y}_i$  is the prediction our method gives for the observation in our training data.

## **Measuring Quality of Fit**



- Suppose we have a regression problem.
  - Recall residual sum of squares (RSS):

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• One common measure of accuracy is the mean squared error (MSE) i.e.

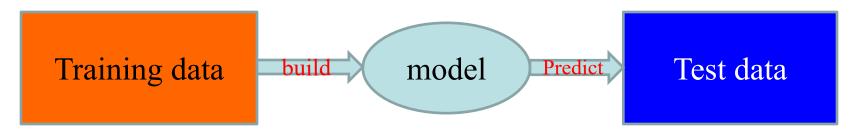
$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} RSS$$

• Where  $\hat{y}_i$  is the prediction our method gives for the observation in our training data.

#### **A Problem**



- Our method has generally been designed to make MSE small on the training data we are looking at
  - e.g. with linear regression we choose the line such that MSE (RSS) is minimised  $\rightarrow$  least squares line.



- What we really care about is how well the method works on the test data.
- There is no guarantee that the method with the smallest training MSE will have the smallest test MSE.

#### Training vs. Test MSE's

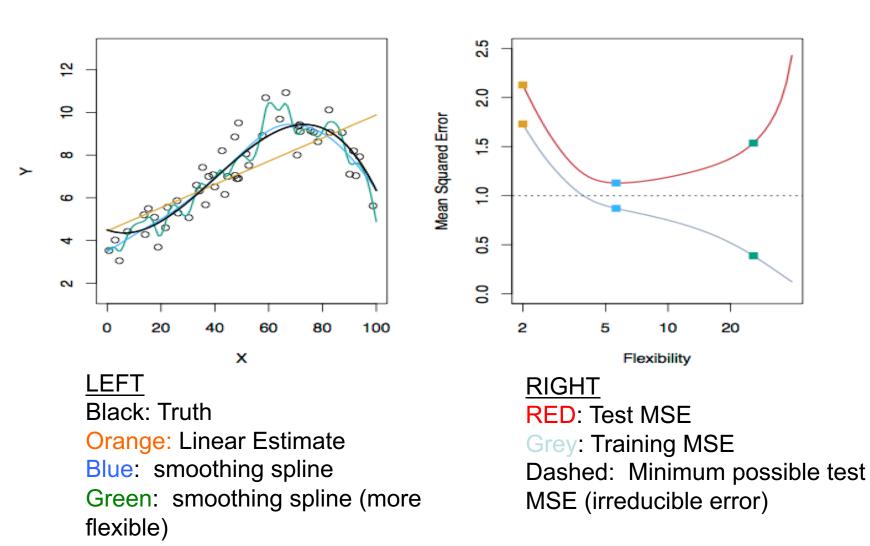


• In general,

the more flexible a method is,the lower its training MSE will bei.e. it will "fit" or explain the training data very well.

• However, the test MSE may in fact be higher for a more flexible method than for a simple approach like linear regression.

# **Examples with Different Levels of Flexibility**





### **Bias/Variance Tradeoff**



- The previous graph of test versus training MSE's illustrates a very important tradeoff that governs the choice of statistical learning methods.
- There are always two competing forces that govern the choice of learning method i.e. bias and variance.

## **Bias of Learning Methods**



- Bias refers to the error that is introduced by modeling a real life problem (that is usually extremely complicated) by a much simpler problem.
- For example, linear regression assumes that there is a linear relationship between Y and X.
  It is unlikely that, in real life, the relationship is exactly linear so some bias will be present.
- The more flexible/complex a method is the less bias it will generally have.

## Variance of Learning Methods



- Variance refers to how much your estimate for *f* would change by if you had a different training data set (from the same population).
- Generally, the more flexible a method is the more variance it has.

## The Trade-Off



• The expected test MSE is equal to

$$Expected Test MSE = Bias^{2} + Var +$$

Irreducible Error

 $\sigma^2$ 

| Method       | Bias     | Variance | Expected<br>TestMSE   |
|--------------|----------|----------|-----------------------|
| more complex | decrease | increase | Decrease or increase? |
| simpler      | increase | decrease | Unknown!              |

- It is a challenge to find a method for which both the variance and the squared bias are low.
  - This trade-off is one of the most important recurring themes in this course.

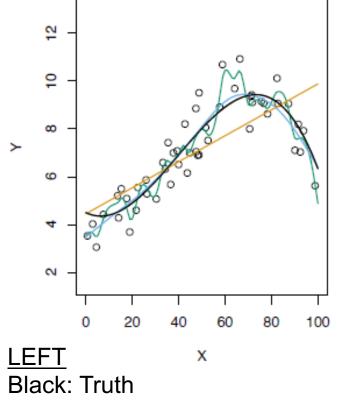
#### Test MSE, Bias and Variance



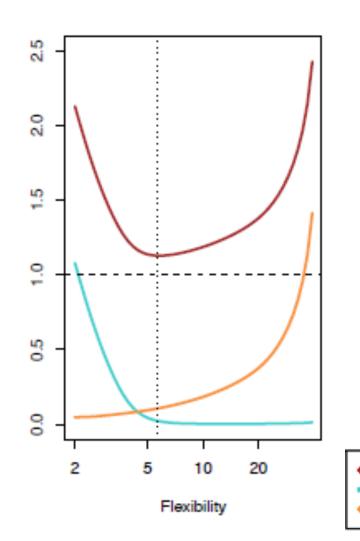
MSE

Bias

Var



Orange: Linear Estimate Blue: smoothing spline Green: smoothing spline (more flexible)



#### How to calculate MSE in R?



• Consider the linear regression models

- Recall 
$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- Given the dataset DS, we compute its training MSE
  >lm.fit <- lm(y~x,data=DS)
  >mean((y-predict(lm.fit,DS))^2)
- Try it on the Auto data set
   y: mpg -- gas mileage (miles per gallon)
   x: horsepower -- engine horsepower
   Training MSE is 23.94366

#### **The Classification Setting**



• For a regression problem, we used the MSE to assess the accuracy of the statistical learning method

• For a classification problem we can use the error rate.

#### **Evaluation of classification models**



- First, get a confusion matrix
  - Counts of test records that are correctly (or incorrectly) predicted by the classification model

| Class  | Predicted Class |                        |                        |  |  |  |  |
|--------|-----------------|------------------------|------------------------|--|--|--|--|
|        |                 | Class = 1              | Class = 0              |  |  |  |  |
| Actual | Class = 1       | <b>f</b> <sub>11</sub> | <b>f</b> <sub>10</sub> |  |  |  |  |
| Ac     | Class = 0       | <b>f</b> <sub>01</sub> | <b>f</b> <sub>00</sub> |  |  |  |  |

• Then compute error rate

 $\mathbf{f}_{11}$  is the number of records that are actually 1 and are predicted to be 1 .

 $\mathbf{f}_{10}$  is the number of records that are actually 1 and are predicted to be 0 .

 $\mathbf{f}_{00}$  and  $\mathbf{f}_{01}$  are defined similarly.

Accuracy =  $\frac{\# \text{ correct predictions}}{\text{total }\# \text{ of predictions}} = \frac{f_{11} + f_{00}}{f_{11} + f_{10} + f_{01} + f_{00}}$ Error rate =  $\frac{\# \text{ wrong predictions}}{\text{total }\# \text{ of predictions}} = \frac{f_{10} + f_{01}}{f_{11} + f_{10} + f_{01} + f_{00}}$ 

#### **An Example for Confusion Matrix**



- Given the following table of 10 observations with their actual y value and predicted y value.
  - Draw your confusion matrix.
  - Calculate the accuracy rate and error rate.

| Obs.            | 1   | 2   | 3   | 4   | 5  | 6   | 7   | 8  | 9   | 10 |
|-----------------|-----|-----|-----|-----|----|-----|-----|----|-----|----|
| Actual<br>value | Yes | Yes | No  | No  | No | No  | No  | No | Yes | No |
| Predicted value | No  | Yes | Yes | Yes | No | Yes | Yes | No | No  | No |

#### An Example for Confusion Matrix



• Confusion matrix:

| SS     |             | Predicted Class |            |  |  |  |  |
|--------|-------------|-----------------|------------|--|--|--|--|
| Clas   |             | Class = Yes     | Class = No |  |  |  |  |
| ual    | Class = Yes |                 |            |  |  |  |  |
| Actual | Class = No  |                 |            |  |  |  |  |

| Obs.            | 1   | 2   | 3   | 4   | 5  | 6   | 7   | 8  | 9   | 10 |
|-----------------|-----|-----|-----|-----|----|-----|-----|----|-----|----|
| Actual<br>value | Yes | Yes | No  | No  | No | No  | No  | No | Yes | No |
| Predicted value | No  | Yes | Yes | Yes | No | Yes | Yes | No | No  | No |

#### An Example for Confusion Matrix



• Confusion matrix:

| SS  |             | Predicte    |            |                                                          |
|-----|-------------|-------------|------------|----------------------------------------------------------|
| Cla |             | Class = Yes | Class = No |                                                          |
| ual | Class = Yes | 1           | 2          | Accuracy = $(1+3)/10=0.4$<br>Error rate = $(4+2)/10=0.6$ |
| Act | Class = No  | 4           | 3          | L1101  rate = (4+2)/10=0.0                               |

| Obs.            | 1   | 2   | 3   | 4   | 5  | 6   | 7   | 8  | 9   | 10 |
|-----------------|-----|-----|-----|-----|----|-----|-----|----|-----|----|
| Actual<br>value | Yes | Yes | No  | No  | No | No  | No  | No | Yes | No |
| Predicted value | No  | Yes | Yes | Yes | No | Yes | Yes | No | No  | No |

# How to Calculate Error Rate in R



- In logistic regression, calculate the training error rate •
  - Building the glm.fit
  - Using glm.fit to make probability predictions
  - Set a threshold (could be 0.5, or other number) to make qualitative predictions based on the probability predictions
  - Using table() function to build a confusion matrix
  - Using mean() function to calculate the error rate
- Try it on the Default data set

#### Code



glm.fit <- glm(default~balance,data = Default, family=binomial) dim(Default) #[1] 10000 4

glm.probs <- predict(glm.fit, Default, type="response") glm.pred <- rep("Yes",10000) glm.pred[glm.probs<.5] <- "No" table(glm.pred,default)

default glm.pred No Yes No 9625 233 Yes 42 100