
Big Data Analytics

Session 5(a)
Assessing Model Accuracy

Outline

• Assessing Model Accuracy (Chapter 2.2)

– Measuring the Quality of Fit

– The Bias-Variance Trade-off

– The Classification Setting

The big picture

• The general way of statistical learning

• Training data: the existing known data
• Test data: the new data that we would like to explore

Training data Test datamodelbuild Predict

Measuring Quality of Fit

• Suppose we have a regression problem.
– Recall residual sum of squares (RSS):

• Where is the prediction our method gives for the
observation in our training data.

iŷ

Measuring Quality of Fit

• Suppose we have a regression problem.
– Recall residual sum of squares (RSS):

• One common measure of accuracy is the mean squared error
(MSE) i.e.

= RSS

• Where is the prediction our method gives for the
observation in our training data.

å
=

-=
n

i
ii yy

n
MSE

1

2)ˆ(1

iŷ

A Problem

• Our method has generally been designed to make MSE small
on the training data we are looking at
– e.g. with linear regression we choose the line such that MSE (RSS) is

minimised à least squares line.

• What we really care about is how well the method works on
the test data.

• There is no guarantee that the method with the smallest
training MSE will have the smallest test MSE.

Training data Test datamodelbuild Predict

Training vs. Test MSE’s

• In general,
the more flexible a method is,
the lower its training MSE will be
i.e. it will “fit” or explain the training data very well.

• However, the test MSE may in fact be higher for a more
flexible method than for a simple approach like linear
regression.

Examples with Different Levels
of Flexibility

LEFT
Black: Truth
Orange: Linear Estimate
Blue: smoothing spline
Green: smoothing spline (more
flexible)

RIGHT
RED: Test MSE
Grey: Training MSE
Dashed: Minimum possible test
MSE (irreducible error)

Bias/Variance Tradeoff

• The previous graph of test versus training MSE’s illustrates a
very important tradeoff that governs the choice of statistical
learning methods.

• There are always two competing forces that govern the choice
of learning method i.e. bias and variance.

Bias of Learning Methods

• Bias refers to the error that is introduced by modeling a real
life problem (that is usually extremely complicated) by a much
simpler problem.

• For example, linear regression assumes that there is a linear
relationship between Y and X.
It is unlikely that, in real life, the relationship is exactly linear
so some bias will be present.

• The more flexible/complex a method is the less bias it will
generally have.

Variance of Learning Methods

• Variance refers to how much your estimate for f would change
by if you had a different training data set (from the same
population).

• Generally, the more flexible a method is the more variance it
has.

The Trade-Off

• The expected test MSE is equal to

• It is a challenge to find a method for which both the variance and
the squared bias are low.
– This trade-off is one of the most important recurring themes in this course.

ExpectedTestMSE= Bias2 +Var + σ 2

Irreducible Error
!

Method Bias Variance Expected
TestMSE

more complex decrease increase Decrease or
increase?

simpler increase decrease Unknown!

Test MSE, Bias and Variance

LEFT
Black: Truth
Orange: Linear Estimate
Blue: smoothing spline
Green: smoothing spline (more
flexible)

How to calculate MSE in R?

• Consider the linear regression models
– Recall

– Given the dataset DS, we compute its training MSE
>lm.fit <- lm(y~x,data=DS)
>mean((y-predict(lm.fit,DS))^2)

• Try it on the Auto data set
y: mpg -- gas mileage (miles per gallon)
x: horsepower -- engine horsepower
Training MSE is 23.94366

å
=

-=
n

i
ii yy

n
MSE

1

2)ˆ(1

The Classification Setting

• For a regression problem, we used the MSE to assess the
accuracy of the statistical learning method

• For a classification problem we can use the error rate.

Evaluation of classification models

• First, get a confusion matrix
– Counts of test records that are correctly (or incorrectly) predicted by the
classification model

• Then compute error rate

Class = 1 Class = 0
Class = 1 f11 f10

Class = 0 f01 f00

Predicted Class

A
ct

ua
l C

la
ss

00011011

0011

sprediction of # total
spredictioncorrect #Accuracy

ffff
ff
+++

+
==

00011011

0110

sprediction of # total
sprediction wrong# rateError

ffff
ff
+++

+
==

f11 is the number of records that are
actually 1 and are predicted to be 1 .

f10 is the number of records that are
actually 1 and are predicted to be 0 .

f00 and f01 are defined similarly.

An Example for Confusion Matrix

• Given the following table of 10 observations with their actual
y value and predicted y value.
– Draw your confusion matrix.
– Calculate the accuracy rate and error rate.

Obs. 1 2 3 4 5 6 7 8 9 10

Actual
value

Yes Yes No No No No No No Yes No

Predicted
value

No Yes Yes Yes No Yes Yes No No No

An Example for Confusion Matrix

• Confusion matrix:

Class = Yes Class = No
Class = Yes
Class = No

Predicted Class

A
ct

ua
l C

la
ss

Obs. 1 2 3 4 5 6 7 8 9 10

Actual
value

Yes Yes No No No No No No Yes No

Predicted
value

No Yes Yes Yes No Yes Yes No No No

An Example for Confusion Matrix

• Confusion matrix:

Class = Yes Class = No
Class = Yes 1 2
Class = No 4 3

Predicted Class

A
ct

ua
l C

la
ss

Obs. 1 2 3 4 5 6 7 8 9 10

Actual
value

Yes Yes No No No No No No Yes No

Predicted
value

No Yes Yes Yes No Yes Yes No No No

Accuracy = (1+3)/10=0.4
Error rate = (4+2)/10=0.6

How to Calculate Error Rate in R

• In logistic regression, calculate the training error rate
– Building the glm.fit
– Using glm.fit to make probability predictions
– Set a threshold (could be 0.5, or other number) to make qualitative

predictions based on the probability predictions
– Using table() function to build a confusion matrix
– Using mean() function to calculate the error rate

• Try it on the Default data set

Code

glm.fit <- glm(default~balance,data = Default, family=binomial)
dim(Default)
#[1] 10000 4

glm.probs <- predict(glm.fit, Default, type="response")
glm.pred <- rep("Yes",10000)
glm.pred[glm.probs<.5] <- "No"
table(glm.pred,default)

default
glm.pred No Yes
No 9625 233
Yes 42 100

