
Big Data Analytics

Session 5(b)
Cross Validation

So far

• Compute MSE/error rate on the training data
– Easy!

• Calculate MSE/error rate on the test data
– Easy, if the designated test set is available
èUnfortunately, this is usually not the case

• Training MSE/error rate can dramatically underestimate
the test MSE/error rate.

• Main question: How to estimate the test MSE/error rate in
the absence of the designated test data? (Based on Ch. 5.1)

Cross Validation

• Solution:
– Estimate the test error rate by

• holding out a subset of the training observations from the fitting process, and then
• applying the statistical learning method to those held out observations.

Training data for fitting the model

Training data
for fitting ß Held out data for testing

Outline

• Cross Validation on Regression Problems

1. The Validation Set Approach

2. Leave-One-Out Cross Validation

3. K-fold Cross Validation
• Bias-Variance Trade-off for k-fold Cross Validation

• Cross Validation on Classification Problems

1. The Validation Set Approach

• Suppose that we would like estimate the test error associated
with fitting a particular statistical learning method

• We can achieve this goal by randomly splitting the data into
– training part and
– validation (testing, or hold-out) part

Training Data Testing Data

Example: Auto Data

• Suppose that we want to predict mpg from horsepower

• Linear model:
– mpg ~ horsepower

• How to do it?
– Randomly split Auto data set (392 obs.) into training (196 obs.) and

validation data (196 obs.)
set.seed(1)
train <- sample(392,196)

– Fit the model using the training data set
lm.fit.train <- lm(mpg~horsepower,data=Auto,subset=train)

– Then, evaluate the model using the validation data set
mean((Auto$mpg-predict(lm.fit.train,Auto))[-train]^2)
[1] 26.14142

Plot the observations and linear relationship between mpg and horsepower

horsepower vs mpg
plot(Auto$horsepower, Auto$mpg,

xlab="horsepower",
ylab="mpg",
col="blue")

abline(lm.fit.train,col="red")

A way to improve

• From the plot, there appears to be a non-linear relationship between
mpg and horsepower.

• Try the quadratic model: mpg ~ horsepower + horsepower2

• Repeat the procedure
– Randomly split Auto data set (392 obs.) into training (196 obs.) and validation

data (196 obs.) – the same as before
– Fit the model using the training data set
lm.fit2.train <- lm(mpg~poly(horsepower,2),data=Auto, subset=train)

– Then, evaluate the model using the validation data set
mean((Auto$mpg-predict(lm.fit2.train,Auto))[-train]^2)
[1] 19.82259 #linear model: 26.14142

• Compare the two test errors
– The quadratic model has a smaller test error, thus is better!

Results: Auto Data

• Left: Validation error rate for a single split
• Right: Validation method repeated 10 times, each time the

split is done randomly!
• There is a lot of variability among the MSE’s… Not good! We

need more stable methods!

Code to Plot Slide 9’s Left Figure

Slide 9 Left:
errors <- rep(0,10) ## errors is a vector of size 10, initially all 0. It records the

MSE for models that varying in degrees.

set.seed(1)
train <- sample(392,196)

for(i in 1:10){
lm.fit.train <- lm(mpg~poly(horsepower,i),data=Auto,subset=train)
errors[i] <- mean((Auto$mpg-predict(lm.fit.train,Auto))[-train]^2)

}

#Plot left figure on Slide 9:
plot(errors,

col="red",
pch=16, ## 16 means solid round dots
type="b", ## "b" stands for broken lines, use "l" if you need continuous lines
xlab="Degrees of Polynomial", ylab="Mean Squared Error",
main="10 times random split")

Code to Plot Slide 9’s
Right Figure (Base Graph)

Next, to plot the figure on the right on Slide 9:
There are two approaches.
The first approach is to keep only one vector for errors. It is easier to understand, but all
the previous data will be lost.
The second approach is to keep a two-dimensional matrix. It will store all the errors
calculated so far. But it may take a while to understand.

No matter which approach you choose, you need to plot a base graph. All the lines will
be added on this base graph.

Base graph: just a 0, it is to create an empty graph
plot(0,

xlab="Degrees of Polynomial",ylab="Mean Squared Error",
main="10 times random split",
ylim = c(14,27), xlim=c(0,10),
type="l”)

#The first approach:

errors <- rep(0,10) # errors is a vector of size 10, initially evaluated to all 0’s

for(i in 1:10){

set.seed(i) #can try 100+i, or 874+i #to change a seed before a new error is calculated

train <- sample(392,196) #this is to get a new training set

#for each training set we draw one line as follows:

for(j in 1:10){

lm.fit.train <- lm(mpg~poly(horsepower,j),data=Auto,subset=train)

errors[j] <- mean((Auto$mpg-predict(lm.fit.train,Auto))[-train]^2)

}

lines(errors,col=i)

}

Code to Plot Slide 9’s Right
Figure (1st Approach)

##The second approach:
errorMatrix <- matrix(nrow=10, ncol=10) # the matrix to record errors
the number errorMatrix[i,j] records the error using i’s training set with degree j
for(i in 1 : 10){
set.seed(i)
train <- sample(392,196)
for(j in 1:10){
lm.fit.train <- lm(mpg~poly(horsepower,j),data=Auto,subset=train)
errorMatrix[i,j] <- mean((Auto$mpg-predict(lm.fit.train,Auto))[-train]^2)

}
lines(errorMatrix[i,],col=i)

}

##The legend function will draw a list of legends on the plot on the position you determined.
legend("topleft",c("1","2","3","4","5","6","7","8","9","10"),

lty=rep(1,10), col=1:10, lwd=rep(2.5,10), cex=0.6)
#lty is line type, lwd is line width, cex is the size

Code to Plot Slide 9’s Right
Figure (2nd Approach)

The Validation Set Approach

• Advantages:

– Simple

– Easy to implement

• Disadvantages:

– The validation MSE can be highly variable

– Only a subset of observations are used to fit the model (training data).
Statistical methods tend to perform worse when trained on fewer observations.

2. Leave-One-Out Cross Validation
(LOOCV)

• This method is similar to the Validation
Set Approach, but it tries to address the
latter’s disadvantages.

• For each suggested model, do:
– Split the data set of size n into

• Training data set (blue) size: n -1

• Validation data set (beige) size: 1

– Fit the model using the training data

– Validate model using the validation data,
and compute the corresponding MSE

– Repeat this process n times

– The MSE for the model is computed as
follows:

5.1 Cross-Validation 181














FIGURE 5.3. A schematic display of LOOCV. A set of n data points is repeat-
edly split into a training set (shown in blue) containing all but one observation,
and a validation set that contains only that observation (shown in beige). The test
error is then estimated by averaging the n resulting MSE’s. The first training set
contains all but observation 1, the second training set contains all but observation
2, and so forth.

observations, and a prediction ŷ1 is made for the excluded observation,
using its value x1. Since (x1, y1) was not used in the fitting process, MSE1 =
(y1 − ŷ1)2 provides an approximately unbiased estimate for the test error.
But even though MSE1 is unbiased for the test error, it is a poor estimate
because it is highly variable, since it is based upon a single observation
(x1, y1).
We can repeat the procedure by selecting (x2, y2) for the validation

data, training the statistical learning procedure on the n− 1 observations
{(x1, y1), (x3, y3), . . . , (xn, yn)}, and computing MSE2 = (y2−ŷ2)2. Repeat-
ing this approach n times produces n squared errors, MSE1, . . . , MSEn.
The LOOCV estimate for the test MSE is the average of these n test error
estimates:

CV(n) =
1

n

n∑

i=1

MSEi. (5.1)

A schematic of the LOOCV approach is illustrated in Figure 5.3.
LOOCV has a couple of major advantages over the validation set ap-

proach. First, it has far less bias. In LOOCV, we repeatedly fit the statis-
tical learning method using training sets that contain n − 1 observations,
almost as many as are in the entire data set. This is in contrast to the
validation set approach, in which the training set is typically around half
the size of the original data set. Consequently, the LOOCV approach tends
not to overestimate the test error rate as much as the validation set ap-
proach does. Second, in contrast to the validation approach which will yield
different results when applied repeatedly due to randomness in the train-

LOOCV vs. Validation Set Approach

• LOOCV has less bias
– We repeatedly fit the statistical learning method using training data that

contains n - 1 obs., i.e. almost all the data set is used

• LOOCV produces a less variable MSE
– The validation set approach produces different MSE when applied

repeatedly due to randomness in the splitting process
– Performing LOOCV multiple times will always yield the same results,

because we split based on 1 obs. each time

• LOOCV is computationally intensive (disadvantage)
– We fit a model n times!

Perform LOOCV in R

• Using the Auto data set again, building a linear model
glm.fit <- glm(mpg~horsepower,data=Auto)
This is the same as lm(mpg~horsepower,data=Auto)

library(boot) #cv.glm() is in the boot library
cv.err <- cv.glm(Auto,glm.fit)
cv.glm() does the LOOCV

cv.err$delta
[1] 24.23151 24.23114 (raw CV est., adjusted CV est.)

The MSE is 24.23151.

3. k-fold Cross Validation

• LOOCV is computationally intensive, so we can run k-fold Cross
Validation instead

• With k-fold CV, we divide the data set into k different parts (e.g. k = 5,
or k = 10, etc.)

• We then remove the first part, fit the model on the remaining k-1 parts,
and see how good the predictions are on the left out part (i.e. compute
the MSE on the first part)

• We then repeat this k different times taking out a different part each
time

• By averaging the k different MSE’s we get an estimated validation
(test) error rate for new observations

5.1 Cross-Validation 183













FIGURE 5.5. A schematic display of 5-fold CV. A set of n observations is
randomly split into five non-overlapping groups. Each of these fifths acts as a
validation set (shown in beige), and the remainder as a training set (shown in
blue). The test error is estimated by averaging the five resulting MSE estimates.

chapters. The magic formula (5.2) does not hold in general, in which case
the model has to be refit n times.

5.1.3 k-Fold Cross-Validation

An alternative to LOOCV is k-fold CV. This approach involves randomly
k-fold CV

dividing the set of observations into k groups, or folds, of approximately
equal size. The first fold is treated as a validation set, and the method
is fit on the remaining k − 1 folds. The mean squared error, MSE1, is
then computed on the observations in the held-out fold. This procedure is
repeated k times; each time, a different group of observations is treated
as a validation set. This process results in k estimates of the test error,
MSE1,MSE2, . . . ,MSEk. The k-fold CV estimate is computed by averaging
these values,

CV(k) =
1

k

k∑

i=1

MSEi. (5.3)

Figure 5.5 illustrates the k-fold CV approach.
It is not hard to see that LOOCV is a special case of k-fold CV in which k

is set to equal n. In practice, one typically performs k-fold CV using k = 5
or k = 10. What is the advantage of using k = 5 or k = 10 rather than
k = n? The most obvious advantage is computational. LOOCV requires
fitting the statistical learning method n times. This has the potential to be
computationally expensive (except for linear models fit by least squares,
in which case formula (5.2) can be used). But cross-validation is a very
general approach that can be applied to almost any statistical learning
method. Some statistical learning methods have computationally intensive
fitting procedures, and so performing LOOCV may pose computational

K-fold Cross Validation

k = ?

Perform K-fold CV in R

• Very easy!

> glm.fit <- glm(mpg~horsepower,data=Auto)
># This is the same as in LOOCV

> library(boot) # This is the same as in LOOCV
> cv.err <- cv.glm(Auto,glm.fit, K=10)
#K means K-fold, can be 5, 10 or other numbers

> cv.err$delta
[1] 24.3120 24.2926

The MSE is 24.3120.

Auto Data: LOOCV vs. k-fold CV

• Left: LOOCV error curve
• Right: 10-fold CV was run many times, and the figure shows the slightly

different CV error rates
• LOOCV is a special case of k-fold, where k = n
• They are both stable, but LOOCV is more computationally intensive!

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

LOOCV

Degree of Polynomial

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

10−fold CV

Degree of Polynomial

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Auto Data: Validation Set
Approach vs. k-fold CV Approach

• Left: Validation Set Approach
• Right: 10-fold Cross Validation Approach
• Indeed, 10-fold CV is more stable!

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

Degree of Polynomial

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

Degree of Polynomial

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

LOOCV

Degree of Polynomial

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

10−fold CV

Degree of Polynomial

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Bias-Variance Trade-off for k-fold CV

• Putting aside that LOOCV is more computationally intensive than
k-fold CV… Which is better LOOCV or k-fold CV?
– LOOCV is less bias than k-fold CV (when k < n)

• LOOCV: uses n-1 observations
• K-fold CV: uses (k-1)n/k observations

– But, LOOCV has higher variance than k-fold CV (when k < n)
• The mean of many highly correlated quantities has higher variance

– Thus, there is a trade-off between what to use

• Conclusion:
– We tend to use k-fold CV with (k = 5 and k = 10)

– These are the magical k’s J

– It has been empirically shown that they yield test error rate estimates that
suffer neither from excessively high bias, nor from very high variance

Cross Validation on
Classification Problems

• So far, we have been dealing with CV on regression problems

• We can use cross validation in a classification situation in a
similar manner

– Divide data into k parts

– Hold out one part, fit using the remaining data and compute the
error rate on the held out data

– Repeat k times

– CV error rate is the average over the k errors we have computed

