
Big Data Analytics

Session 6

Decision Trees

Where were we last week

• To assess the model accuracy, the measure of fit is

– Test MSE for regression

– Test error rate for classification

• Bias and Variance tradeoff

– Generally,

• The more flexible a method is, the less bias it will generally have.

• The more flexible a method is, the more variance it has.

• Cross Validation

– Estimate the test MSE/error rate in the absence of the designated test data

– Compare different models and select the best one

• Validation set approach, LOOCV and k-fold CV

– Once the best model is selected

• Use the whole dataset to train a model

• Make prediction using this model

Outline

• The Basics of Decision Trees

– Regression Trees

– Classification Trees

– Pruning Trees

– Trees vs. Linear Models

– Advantages and Disadvantages of Trees

An Example

4

Partitioning Up the Predictor Space

• In the example:

– X: Average marks in Level 7 modules

• ranging from 0 to 100 (predictor space)

– Y: Grades

• ranging from Fail, Pass, Merit, Distinction

– Divide [0,100] into four regions

• R1: [0,50) – Fail

• R2: [50,60) – Pass

• R3: [60,70) – Merit

• R4: [70,100] – Distinction

5

Partitioning Up the Predictor Space

• One way to make predictions in a regression problem is to

divide the predictor space (i.e. all the possible values for

X1,X2,…,Xp) into distinct regions, say R1,R2,…,Rk

– Suppose for example we have two regions R1 and R2 with

• Then for every X that falls in a particular region (say Rj) we

make the same prediction.

– Then for any value of X such that we would predict 10,

otherwise if we would predict 20.

20ˆ,10ˆ
21 YY

1RX
2RX

R1 R2

X

10

20

Decision Tree

• Decision tree

– A flow-chart-like tree structure

– Internal node denotes a test on an attribute

– Branch represents an outcome of the test

– Leaf nodes represent class labels or class distribution

Regression Trees

Predicting a quantitative response

e.g., predicting baseball players’ salary

The General View

• Here we have two

predictors and five distinct

regions

• Depending on which region

our new X comes from we

would make one of five

possible predictions for Y

• Predict Y based on

– X1 = 15, X2 = 15

– X1 = 28, X2 = 24

– X1 = 5, X2 = 29

– X1 = 22, X2 = 25

0 10 19 30

26

21

31

12

23

2321

Splitting the X Variables

• Generally we create

the partitions by

iteratively splitting

one of the X

variables into two

regions

Splitting the X Variable

1. First split on

X1 = t1

Splitting the X Variable

1. First split on

X1 = t1

2. If X1 < t1, split

on X2 = t2

Splitting the X Variable

1. First split on

X1 = t1

2. If X1 < t1, split

on X2 = t2

3. If X1 > t1, split

on X1 = t3

Splitting the X Variable

1. First split on

X1 = t1

2. If X1 < t1, split

on X2 = t2

3. If X1 > t1, split

on X1 = t3

4. If X1 > t3, split

on X2 = t4

Splitting the X Variable

• When we create partitions this

way we can always represent

them using a tree structure.

• This provides a very simple

way to explain the model to a

non-expert e.g. your boss!

Example: Baseball Players’ Salaries

• To predict baseball player’s salaries

by regression tree based on

– Years

– Hits

• Note that in the dataset, Salary is

measured in 1000s. Here, Salary is

then log-transformed (Why?)

• The predicted salary for a player

who played in the league for more

than 4.5 years and had less than

117.5 hits last year is

308 8. Tree-Based Methods

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74

F I G U R E 8.1. For the Hi t t er s data, a regression tree for predicting the log

salary of a basebal l player, based on the number of years that he has played in

the major leagues and the number of hi ts that he made in the previous year. At a

given internal node, the label (of the form X j < t k) indicates the left-hand branch

emanating from that spli t, and the right-hand branch corresponds to X j ≥ t k .

For instance, the spli t at the top of the tree results in two large branches. The

left-hand branch corresponds to Year s<4. 5, and the r ight-hand branch corresponds

to Year s>=4. 5. The tree has two internal nodes and three terminal nodes, or

leaves. The number in each leaf is the mean of the response for the observations

that fal l there.

8.1.1 Regression Trees

In order to mot ivate regression trees, we begin with a simple example.
regression t ree

Predict ing Baseball Players’ Salaries Using Regression Trees

We use the Hi t t er s data set to predict a baseball player ’s Sal ar y based on

Year s (the number of years that he has played in the major leagues) and

Hi t s (thenumber of hits that hemade in thepreviousyear). Wefirst remove

observat ions that are missing Sal ar y values, and log-t ransform Sal ar y so

that its dist ribut ion has more of a typical bell-shape. (Recall that Sal ar y

is measured in thousands of dollars.)

Figure 8.1 shows a regression tree fit to this data. It consists of a series

of split t ing rules, start ing at the top of the t ree. The top split assigns

observat ions having Year s<4. 5 to the left branch.1 The predicted salary

for these players is given by the mean response value for the players in

the data set with Year s<4. 5. For such players, the mean log salary is 5.107,

and so we make a predict ion of e5.107 thousands of dollars, i.e. $165,174, for

1Both Year s and Hi t s are integers in these data; the t r ee() funct ion in R labels

the split s at the midpoint between two adjacent values.

$1000´e6.00 = $402,834

Hitters is a dataset in the ISLR

Hitters Dataset

summary(Hitters$Salary)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

67.5 190.0 425.0 535.9 750.0 2460.0 59

summary(log(Hitters$Salary))

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

4.212 5.247 6.052 5.927 6.620 7.808 59

Example: Baseball Players’ Salaries

• Step 1: Building the tree:

library(tree)

nrow(Hitters)

[1] 322

Hitters <- na.omit(Hitters) #remove rows with missing observations

nrow(Hitters)

[1] 263

tree.hitters <- tree(log(Hitters$Salary)~Years+Hits, Hitters)

type in tree.hitters or summary(tree.hitters) to see more details

plot(tree.hitters) #Why is this tree different from the one before?

text(tree.hitters)

Can you 1) build a regression tree using Years and Hits and

2) make the prediction for a player with Years = 5 and Hits = 100 using R?

Example: Baseball Players’ Salaries

> tree.hitters

node), split, n, deviance, yval

* denotes terminal node

1) root 263 207.200 5.927

2) Years < 4.5 90 42.350 5.107

4) Years < 3.5 62 23.010 4.892

8) Hits < 114 43 17.150 4.727

16) Hits < 40.5 5 10.400 5.511 *

17) Hits > 40.5 38 3.280 4.624 *

9) Hits > 114 19 2.069 5.264 *

5) Years > 3.5 28 10.130 5.583 *

3) Years > 4.5 173 72.710 6.354

6) Hits < 117.5 90 28.090 5.998

12) Years < 6.5 26 7.238 5.689 *

13) Years > 6.5 64 17.350 6.124

26) Hits < 50.5 12 2.689 5.730 *

27) Hits > 50.5 52 12.370 6.215 *

7) Hits > 117.5 83 20.880 6.740 *

n: the number of observations in that branch

yval: the overall prediction for the branch

deviance: node residual sums of squares summed over the terminal nodes of the tree

Example: Baseball Players’ Salaries

• Step 2: Making predictions

Given Years=5 and Hits=100, what is the prediction?

yhat <- predict(tree.hitters, newdata=list("Years"=5, "Hits"=100))

yhat

1

5.688925

A Comparison

log-transformed NOT log-transformed

Given Years=5 and Hits=100, what is the prediction?

Another way of visualising the
decision tree

Linking two visualisations308 8. Tree-Based Methods

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74

F I G U R E 8.1. For the Hi t t er s data, a regression tree for predicting the log

salary of a basebal l player, based on the number of years that he has played in

the major leagues and the number of hi ts that he made in the previous year. At a

given internal node, the label (of the form X j < t k) indicates the left-hand branch

emanating from that spli t, and the right-hand branch corresponds to X j ≥ t k .

For instance, the spli t at the top of the tree results in two large branches. The

left-hand branch corresponds to Year s<4. 5, and the r ight-hand branch corresponds

to Year s>=4. 5. The tree has two internal nodes and three terminal nodes, or

leaves. The number in each leaf is the mean of the response for the observations

that fal l there.

8.1.1 Regression Trees

In order to mot ivate regression trees, we begin with a simple example.
regression t ree

Predict ing Baseball Players’ Salaries Using Regression Trees

We use the Hi t t er s data set to predict a baseball player ’s Sal ar y based on

Year s (the number of years that he has played in the major leagues) and

Hi t s (thenumber of hits that hemade in thepreviousyear). Wefirst remove

observat ions that are missing Sal ar y values, and log-t ransform Sal ar y so

that its dist ribut ion has more of a typical bell-shape. (Recall that Sal ar y

is measured in thousands of dollars.)

Figure 8.1 shows a regression tree fit to this data. It consists of a series

of split t ing rules, start ing at the top of the t ree. The top split assigns

observat ions having Year s<4. 5 to the left branch.1 The predicted salary

for these players is given by the mean response value for the players in

the data set with Year s<4. 5. For such players, the mean log salary is 5.107,

and so we make a predict ion of e5.107 thousands of dollars, i.e. $165,174, for

1Both Year s and Hi t s are integers in these data; the t r ee() funct ion in R labels

the split s at the midpoint between two adjacent values.

5.11 is the mean salary in region R1

6.00 is the mean salary in region R2

6.74 is the mean salary in region R3

• The predicted Salary is the number in

each leaf node.

• It is the mean of the response for the

observations that fall there

Terminology of Decision Tree

• Terminal nodes (leaves) of

the tree

• Internal nodes

• Branches

– The segments of the trees that

connect the nodes

• Upside down

308 8. Tree-Based Methods

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74

F I G U R E 8.1. For the Hi t t er s data, a regression tree for predicting the log

salary of a basebal l player, based on the number of years that he has played in

the major leagues and the number of hi ts that he made in the previous year. At a

given internal node, the label (of the form X j < t k) indicates the left-hand branch

emanating from that spli t, and the right-hand branch corresponds to X j ≥ t k .

For instance, the spli t at the top of the tree results in two large branches. The

left-hand branch corresponds to Year s<4. 5, and the r ight-hand branch corresponds

to Year s>=4. 5. The tree has two internal nodes and three terminal nodes, or

leaves. The number in each leaf is the mean of the response for the observations

that fal l there.

8.1.1 Regression Trees

In order to mot ivate regression trees, we begin with a simple example.
regression t ree

Predict ing Baseball Players’ Salaries Using Regression Trees

We use the Hi t t er s data set to predict a baseball player ’s Sal ar y based on

Year s (the number of years that he has played in the major leagues) and

Hi t s (thenumber of hits that hemade in thepreviousyear). Wefirst remove

observat ions that are missing Sal ar y values, and log-t ransform Sal ar y so

that its dist ribut ion has more of a typical bell-shape. (Recall that Sal ar y

is measured in thousands of dollars.)

Figure 8.1 shows a regression tree fit to this data. It consists of a series

of split t ing rules, start ing at the top of the t ree. The top split assigns

observat ions having Year s<4. 5 to the left branch.1 The predicted salary

for these players is given by the mean response value for the players in

the data set with Year s<4. 5. For such players, the mean log salary is 5.107,

and so we make a predict ion of e5.107 thousands of dollars, i.e. $165,174, for

1Both Year s and Hi t s are integers in these data; the t r ee() funct ion in R labels

the split s at the midpoint between two adjacent values.

yes

yes no

no

Interpreting the Decision Tree

• Years is the most important

factor in determining Salary

– Players with less experience tend

to earn less

• For less experienced players

– The number of hits plays little

role in the salaries

• For experienced players

– The more hits being made, the

higher salary they tend to earn

308 8. Tree-Based Methods

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74

F I G U R E 8.1. For the Hi t t er s data, a regression tree for predicting the log

salary of a basebal l player, based on the number of years that he has played in

the major leagues and the number of hi ts that he made in the previous year. At a

given internal node, the label (of the form X j < t k) indicates the left-hand branch

emanating from that spli t, and the right-hand branch corresponds to X j ≥ t k .

For instance, the spli t at the top of the tree results in two large branches. The

left-hand branch corresponds to Year s<4. 5, and the r ight-hand branch corresponds

to Year s>=4. 5. The tree has two internal nodes and three terminal nodes, or

leaves. The number in each leaf is the mean of the response for the observations

that fal l there.

8.1.1 Regression Trees

In order to mot ivate regression trees, we begin with a simple example.
regression t ree

Predict ing Baseball Players’ Salaries Using Regression Trees

We use the Hi t t er s data set to predict a baseball player ’s Sal ar y based on

Year s (the number of years that he has played in the major leagues) and

Hi t s (thenumber of hits that hemade in thepreviousyear). Wefirst remove

observat ions that are missing Sal ar y values, and log-t ransform Sal ar y so

that its dist ribut ion has more of a typical bell-shape. (Recall that Sal ar y

is measured in thousands of dollars.)

Figure 8.1 shows a regression tree fit to this data. It consists of a series

of split t ing rules, start ing at the top of the t ree. The top split assigns

observat ions having Year s<4. 5 to the left branch.1 The predicted salary

for these players is given by the mean response value for the players in

the data set with Year s<4. 5. For such players, the mean log salary is 5.107,

and so we make a predict ion of e5.107 thousands of dollars, i.e. $165,174, for

1Both Year s and Hi t s are integers in these data; the t r ee() funct ion in R labels

the split s at the midpoint between two adjacent values.

yes

yes no

no

Some Natural Questions

Q2. What values should we use for
?

• Simple!

• For region Rj, the best prediction is simply the average of all

the responses from our training data that fell in region Rj.

Q1. Where to Split?

• We consider splitting into

two regions, Xj > s and

Xj< s for all possible

values of s and j.

• We then choose the s and

j that results in the lowest

MSE on the training data.

• X1: Years

• X2: Hits

Q1. Where to Split?

• Here the optimal split
was on X1 at point t1.

• Now we repeat the
process looking for the
next best split except
that we must also
consider whether to
split the first region or
the second region up.

• Again the criteria is
smallest training MSE.

Where to Split?

• Here the optimal
split was the left
region on X2 at
point t2.

• [Stopping criteria]
This process
continues until our
regions have too
few observations to
continue e.g. all
regions have 5 or
fewer points.

Tree Pruning

Improving Tree Accuracy

• A large tree (i.e. one with many terminal nodes) may tend to

over fit the training data.

•Large tree: lower bias, higher variance, worse interpretation

•Small tree: higher bias, lower variance, better interpretation

• Generally, we can improve accuracy by “pruning” the tree i.e.

cutting off some of the terminal nodes.

• How do we know how far back to prune the tree?

•We use cross validation to see which tree has the lowest error rate.

Outline of the Decision Tree Approach

• Split the dataset DS into two subsets:

– DS.train and DS.test

• Use DS.train to build a decision tree tree.train

• Use cross validation (cv.tree()) to see

– whether pruning the tree will improve performance

– If yes, how many leaves (w) the best tree will have

• Use prune.tree(tree.train,best=w)to prune the tree

if necessary

• Make predictions on the test set DS.test and evaluate how

well the model performs

– Calculate the test MSE or test error rate

Example: Baseball Players’ Salaries

Can anyone get the same tree as this one when building a regression

tree of Salary on 9 predictors?

Y: salary

X: 9 predictors
Hits+Runs+RBI+Walks+Years+PutOuts+AtBat+Assists+Errors

Example: Baseball Players’ Salaries

set.seed(1) #choosing a different seed a different tree

train <- sample(1:nrow(Hitters),132)

tree.hitters.train <- tree(log(Hitters$Salary)~ Hits+Runs+RBI+

Walks+Years+PutOuts+AtBat+Assists+Errors,

Hitters,subset=train)

plot(tree.hitters.train)

text(tree.hitters.train)

Use summary(tree.hitters.train) to see how many

predictors actually contributed to the tree
Variables actually used in tree construction:

[1] "Years" "Walks" "Assists" "PutOuts" "Hits" "RBI"

"Runs"

Number of terminal nodes: 14

Example: Baseball Players’ Salaries

This is what I’ve got:

With other seeds, you

might get a different tree

Example: Baseball Players’ Salaries

Now we use cv.tree() function to see whether pruning the tree

will improve performance.

cv.hitters <- cv.tree(tree.hitters.train)

plot(cv.hitters$size,cv.hitters$dev,type='b')

Recall: deviance is node residual

sums of squares summed over the

terminal nodes of the tree

Example: Baseball Players’ Salaries

• Cross Validation indicated

that the minimum MSE is

when the tree size is 4 or 5

(i.e. the number of leaf

nodes is 4 or 5)

• Now, we prune the tree to

be of size 4:

prune.hitters <- prune.tree(tree.hitters.train,best=4)

plot(prune.hitters)

text(prune.hitters)

Example: Baseball Players’ Salaries

Tree pruned to be of size 4

prune.hitters <- prune.tree(tree.hitters.train, best=5)

plot(prune.hitters)

text(prune.hitters,pretty=0)

Tree pruned to be of size 5

Making Predictions

Example: Baseball Players’ Salaries

• In the book, with an unspecified seed to random split the data

set, the minimum cross validation error occurs at a tree size of 3

Example: Baseball Players’ Salaries

• Cross Validation indicated

that the minimum MSE is

when the tree size is three

(i.e. the number of leaf

nodes is 3)

• Now, we prune the tree to

be of size 3:

prune.hitters.3 <- prune.tree(tree.hitters.train,best=3)

plot(prune.hitters.3)

text(prune.hitters.3,pretty=0)

How to plot this?

plot(Hitters$Years, Hitters$Hits, col="orange", pch=16, xlab="Years", ylab="Hits")

partition.tree(prune.hitters, ordvars=c("Years","Hits"), add=TRUE)

ordvars: The ordering of the variables to be used in a 2D plot. Specify the

names in a character string of length 2; the first will be used on the x axis.

Classification Trees

Predicting a qualitative response

e.g., Predicting whether a customer will default,

whether an email is a spam, etc

Growing a Classification Tree

• A classification tree is very similar to a regression tree except
that we try to make a prediction for a categorical rather than
continuous Y.

• For each region (or node) we predict the most common
category among the training data within that region.

• What measure can it be?

• The tree is grown (i.e. the splits are chosen) in exactly the
same way as with a regression tree except that minimising
MSE no longer makes sense.

• There are several possible different criteria to use such as the
“gini index” and “cross-entropy” but the easiest one to think
about is to minimise the error rate.

Evaluation of classification models

• Recall: Counts of test records that are correctly (or incorrectly)

predicted by the classification model

• Confusion matrix

Class = 1 Class = 0

Class = 1 f11 f10

Class = 0 f01 f00

Predicted Class

A
c
tu

a
l

C
la

s
s

00011011

0011

sprediction of # total

spredictioncorrect #
Accuracy

ffff

ff

Error rate =
wrong predictions

total # of predictions
=

f10 + f01

f11 + f10 + f01 + f00

Example: Carseats

• Goal: to analyse the Carseats data set

library(ISLR)

Sales, CompPrice, Income, Advertising, Population, Price, ShelveLoc, Age, Education, Urban, US

• Sales is a continuous variable, discretise it using ifelse()

High <- ifelse(Carseats$Sales<=8,"No","Yes")

• Merge High with the rest of the Carseats data

Carseats <- data.frame(Carseats,High)

• Fitting a classification tree

tree.carseats <- tree(High~.-Sales,Carseats)

summary(tree.carseats) #How many predictors are used?

Example: Carseats

> summary(tree.carseats)

Classification tree:

tree(formula = High ~ . - Sales, data = Carseats)

Variables actually used in tree construction:

[1] "ShelveLoc" "Price" "Income" "CompPrice" "Population"

[6] "Advertising" "Age" "US"

Number of terminal nodes: 27

Residual mean deviance: 0.4575 = 170.7 / 373

Misclassification error rate: 0.09 = 36 / 400 training error rate is 9%

Plotting the tree

plot(tree.carseats)

text(tree.carseats,pretty=0)

pretty=0 includes the

category names for any qualitative

predictors, rather than simply

displaying a letter for each

category

Test Error Rate Estimation

• Estimate the test error rather than computing the training error

– Split the observations into a training set and a test set

– Build the tree using the training set

– Evaluate its performance on the test data

• By predict(), where type=“class” returns the actual class prediction

set.seed(2)

train <- sample(1:nrow(Carseats),nrow(Carseats)/2) # 1: can be omitted

Carseats.test <- Carseats[-train,]

High.test <- High[-train]

tree.carseats.train <- tree(High~.-Sales, Carseats, subset=train)

tree.pred.test <- predict(tree.carseats.train, Carseats.test, type="class")

table(tree.pred.test,High.test)

High.test

tree.pred.test No Yes

No 86 27

Yes 30 57

Test Error Rate is 28.5%

What is training error rate? 9%

> (27+30)/200

[1] 0.285

Pruning a Tree

• Consider whether pruning the tree might lead to improved results

Step 1: Use cv.tree() to determine the optimal level of tree complexity
set.seed(3)

cv.carseats <- cv.tree(tree.carseats.train, FUN=prune.misclass)

cv.carseats

$size

[1] 19 17 14 13 9 7 3 2 1

$dev this is the cv error rate (here: number of misclassified)

[1] 55 55 53 52 50 56 69 65 80

Step 2: Use prune.misclass() to prune the tree
prune.carseats <- prune.misclass(tree.carseats.train, best=9)

Step 3: Performance evaluation
tree.pred <- predict(prune.carseats, Carseats.test, type="class")

table(tree.pred,High.test)

High.test

tree.pred No Yes

No 94 24

Yes 22 60

> (24+22)/200 test error rate

[1] 0.23 better than that without pruning 28.5%

Pruning improved interpretability and classification accuracy

Pruning a Tree

• If we increase the value of best, we obtain a larger pruned tree

with lower classification accuracy

prune.carseats <- prune.misclass(tree.carseats, best=15)

tree.pred <- predict(prune.carseats, Carseats.test, type="class")

table(tree.pred,High.test)

High.test

tree.pred No Yes

No 86 22

Yes 30 62

(30+22)/200

[1] 0.26 higher error rate than unpruned tree 0.23

Summary: Decision Tree Induction

• Decision tree generation consists of two phases:

– Tree construction

• At start, all the training examples are at the root

• Partition examples recursively based on selected attributes

– Tree pruning

• Identify and remove branches that reflect noise or outliers

• Use of decision tree:

– Regressing or classifying an unknown sample

• Test the attribute values of the sample against the decision tree

Trees vs. Linear models

Trees vs. Linear Models

• Which model is better?

– If the relationship between the predictors and response is

linear, then classical linear models such as linear regression

would outperform regression trees

– On the other hand, if the relationship between the

predictors is non-linear, then decision trees would

outperform classical approaches

Trees vs. Linear Model:
Classification Example

• Top row: the true decision

boundary is linear

– Left: linear model (good)

– Right: decision tree

• Bottom row: the true decision

boundary is non-linear

– Left: linear model

– Right: decision tree (good)

Pros and Cons of Decision Trees

• Pros:

– Trees are very easy to explain to people (probably even easier

than linear regression)

– Trees can be plotted graphically, and are easily interpreted

even by non-expert

– They work fine on both classification and regression problems

• Cons:

– Trees don’t have the same prediction accuracy as some of the

more complicated approaches that we examine in this course

Fitting Classification Trees

• The tree library is used to construct classification and

regression trees

– Install this library if necessary (How?)

• Several key points:

– Fitting a tree

– Plotting a tree

– Pruning a tree

– Estimating test error of the fitting

Fitting a Tree

• Goal: to analyse the Carseats data set

library(ISLR)

attach(Carseats)

• Sales is a continuous variable, discretise it using ifelse()

High <- ifelse(Sales<=8,"No","Yes")

• Merge High with the rest of the Carseats data

Carseats <- data.frame(Carseats,High)

• Fitting a classification tree

tree.carseats <- tree(High~.-Sales,Carseats)

summary(tree.carseats)

Plotting a Tree

• Trees can be naturally graphically displayed

– plot() to display structure

– text() to display the node labels

• pretty=0 includes the category names for any qualitative predictors,

rather than simply displaying a letter for each category

plot(tree.carseats) text(tree.carseats,pretty=0)

Showing More Info

> tree.carseats

node), split, n, deviance, yval, (yprob) * denotes terminal node

1) root 400 541.500 No (0.59000 0.41000)

2) ShelveLoc: Bad,Medium 315 390.600 No (0.68889 0.31111)

4) Price < 92.5 46 56.530 Yes (0.30435 0.69565)

8) Income < 57 10 12.220 No (0.70000 0.30000)

16) CompPrice < 110.5 5 0.000 No (1.00000 0.00000) *

17) CompPrice > 110.5 5 6.730 Yes (0.40000 0.60000) *

9) Income > 57 36 35.470 Yes (0.19444 0.80556)

18) Population < 207.5 16 21.170 Yes (0.37500 0.62500) *

19) Population > 207.5 20 7.941 Yes (0.05000 0.95000) *

5) Price > 92.5 269 299.800 No (0.75465 0.24535)

10) Advertising < 13.5 224 213.200 No (0.81696 0.18304)

20) CompPrice < 124.5 96 44.890 No (0.93750 0.06250)

40) Price < 106.5 38 33.150 No (0.84211 0.15789)

80) Population < 177 12 16.300 No (0.58333 0.41667)

160) Income < 60.5 6 0.000 No (1.00000 0.00000) *

161) Income > 60.5 6 5.407 Yes (0.16667 0.83333) *

81) Population > 177 26 8.477 No (0.96154 0.03846) *

41) Price > 106.5 58 0.000 No (1.00000 0.00000) *

21) CompPrice > 124.5 128 150.200 No (0.72656 0.27344)

Test Error Rate Estimation

• Estimate the test error rather than computing the training error

– Split the observations into a training set and a test set

– Build the tree using the training set

– Evaluate its performance on the test data

• By predict(), where type=“class” returns the actual class prediction

set.seed(2)

train <- sample(1:nrow(Carseats),200)

Carseats.test <- Carseats[-train,]

High.test <- High[-train]

tree.carseats <- tree(High~.-Sales, Carseats, subset=train)

tree.pred <- predict(tree.carseats, Carseats.test, type="class")

table(tree.pred,High.test)

High.test

tree.pred No Yes

No 86 27

Yes 30 57

(86+57)/200

[1] 0.715

Pruning a Tree

• Consider whether pruning the tree might lead to improved results

Step 1: Use cv.tree() to determine the optimal level of tree complexity
set.seed(3)

cv.carseats <- cv.tree(tree.carseats.train,FUN=prune.misclass)

cv.carseats

$size

[1] 19 17 14 13 9 7 3 2 1

$dev this is the cv error rate

[1] 55 55 53 52 50 56 69 65 80

Step 2: Use prune.misclass() to prune the tree
prune.carseats <- prune.misclass(tree.carseats.train,best=9)

Step 3: Performance evaluation
tree.pred <- predict(prune.carseats,Carseats.test,type="class")

table(tree.pred,High.test)

High.test

tree.pred No Yes

No 94 24

Yes 22 60

> (94+60)/200

[1] 0.77 better than that without pruning

REGRESSION TREES

Fitting Regression Trees

• Fit a regression tree to the Boston data

– Create a training set and fit the tree to the training set

library(MASS)

set.seed(1)

train <- sample(1:nrow(Boston),nrow(Boston)/2)

tree.boston <- tree(medv~.,Boston,subset=train)

summary(tree.boston)

Regression tree:

tree(formula = medv ~ ., data = Boston, subset = train)

Variables actually used in tree construction:

[1] "lstat" "rm" "dis" only 3 variables have been used

Number of terminal nodes: 8

Residual mean deviance: 12.65 = 3099 / 245

Distribution of residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-14.10000 -2.04200 -0.05357 0.00000 1.96000 12.60000

Fitting Regression Trees

– Plot the tree
plot(tree.boston)

text(tree.boston, pretty=0)

Decide Whether to Prune

– Using cv.tree() function to see whether pruning the tree will

improve performance
set.seed(1)

cv.boston <- cv.tree(tree.boston)

cv.boston

$size

[1] 8 7 6 5 4 3 2 1

$dev

[1] 6475.338 6273.382 6852.736 7599.829 7615.683 8265.076 13824.821 22419.739

$k

[1] -Inf 255.6581 451.9272 768.5087 818.8885 1559.1264 4276.5803 9665.3582

$method

[1] "deviance"

attr(,"class")

[1] "prune" "tree.sequence”

The result shows that the best tree is the one with 7 terminals.

Decide Whether to Prune

plot(cv.boston$size, cv.boston$dev, type='b')

Pruning a Regression Tree

prune.boston <- prune.tree(tree.boston, best=7)

summary(prune.boston)

Regression tree:

snip.tree(tree = tree.boston, nodes = 17L)

Variables actually used in tree construction:

[1] "lstat" "rm" "dis"

Number of terminal nodes: 7

Residual mean deviance: 13.64 = 3354 / 246

Distribution of residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-14.1000 -2.2610 -0.1033 0.0000 2.1210 12.6000

Pruning a Regression Tree

plot(prune.boston)

text(prune.boston, pretty = 0)

Regression Trees for Prediction

Use the unpruned tree to make predictions on the test set

yhat <- predict(tree.boston, newdata=Boston[-train,])

boston.test <- Boston[-train,"medv"]

plot(yhat,boston.test)

abline(0,1)

mean((yhat-boston.test)^2)

[1] 25.04559 The test set MSE associated with the

regression tree

sqrt(25.04559)

[1] 5.004557 The square root of the MSE, which means

that this model leads to test predictions that are within around

$5,005 of the true median home value for the suburb

Regression Trees for Prediction

Use the pruned tree to make predictions on the test set

yhat.prune <- predict(prune.boston, newdata=Boston[-train,])

boston.test <- Boston[-train,"medv"]

mean((yhat.prune-boston.test)^2)

[1] 25.72341 The estimated test MSE associated with the regression tree

sqrt(25.72341)

[1] 5.071825 This is higher than the unpruned tree!

