
Lab 7 Bagging and Random Forest
1) survived is a numeric value. We need to first transform it to a categorical value and saved
it as a new variable survived01. Use titanic3$survived01 = as.factor(titanic3$survived) to
do so and check that this variable has been included in the dataset.
library(dplyr)

titanic3 <- read.csv("C:\\Users\\tingting\\Dropbox\\modules\\BigData\\sessions\\labs\\Lab7 RF\\titanic3.csv")
titanic3 <- select(titanic3,-name, -ticket, -boat, -body, -home.dest, -cabin) %>%

mutate(embarked = factor(embarked),
sex = factor(sex),
pclass = factor(pclass),
survived01 = as.factor(titanic3$survived))

#embed survived01=as.factor(titanic3$survived) in the mutate() function
#to simplify the code. Use help to see more about mutate().
#Here, it is same to use survived01 = factor(titanic3$survived)

summary(titanic3)

pclass survived sex age
1 :323 Min. :0.000 : 1 Min. : 0.1667
2 :277 1st Qu.:0.000 female:466 1st Qu.:21.0000
3 :709 Median :0.000 male :843 Median :28.0000
NA's: 1 Mean :0.382 Mean :29.8811
3rd Qu.:1.000 3rd Qu.:39.0000
Max. :1.000 Max. :80.0000
NA's :1 NA's :264
sibsp parch fare embarked survived01
Min. :0.0000 Min. :0.000 Min. : 0.000 : 3 0 :809
1st Qu.:0.0000 1st Qu.:0.000 1st Qu.: 7.896 C:270 1 :500
Median :0.0000 Median :0.000 Median : 14.454 Q:123 NA's: 1
Mean :0.4989 Mean :0.385 Mean : 33.295 S:914
3rd Qu.:1.0000 3rd Qu.:0.000 3rd Qu.: 31.275
Max. :8.0000 Max. :9.000 Max. :512.329
NA's :1 NA's :1 NA's :2

2) Install the package of randomForest and include this package into your code. In order
to call the randomForest() function, all the missing value rows need to be dealt with. The
simplest way is to remove those rows. Use titanic3 <- na.omit(titanic3) to do that.
library(randomForest)
nrow(titanic3)

[1] 1310
titanic3 <- na.omit(titanic3)
nrow(titanic3)

[1] 1045

3) Use a seed to set half of the dataset to be training dataset and the other half to be test
dataset.

1

set.seed(8)
train <- sample(1:nrow(titanic3), nrow(titanic3)/2)
test <- titanic3[-train,] #the test set
x_test <- test[,-c(2,9)] #the predictors in the test set
#-c(2,9) is to remove survived and survived01
names(titanic3)
#[1] "pclass" "survived" "sex" "age" "sibsp"
#[6] "parch" "fare" "embarked" "survived01"

survived.test <- titanic3$survived[-train]
survived01.test <- titanic3$survived01[-train]

4) Use the training dataset to build a bagged model for

• y: survived
• x: all the features other than survived and survived01.

Compute the mean error rate on the test dataset.

Remark: You might get a warning message, saying that

In randomForest.default(m, y, ...) : The response has five or fewer unique values. Are you sure you want to
do regression?

Ignore the message for now. It’s doable and you will get a bagged model anyway.
#set.seed(6)
bag.titanic <- randomForest(survived ~ .-survived01,

data = titanic3,
subset = train,
mtry=7,
importance = TRUE)

print(bag.titanic)

##
Call:
randomForest(formula = survived ~ . - survived01, data = titanic3, mtry = 7, importance = TRUE, subset = train)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 7
##
Mean of squared residuals: 0.157021
% Var explained: 34.99
bag.pred <- predict(bag.titanic, newdata = test)
bag.pred.class <- ifelse(bag.pred <= 0.5, "0", "1")
print(mean(bag.pred.class!=survived.test))

[1] 0.2141491

5) Using the same training and test dataset, build a bagged model for

• y: survived01
• x: all the features other than survived and survived01

a) Find out on how many trees your model is built and the OOB error
b) Compute the mean error rate on the test dataset.

2

bag.titanic01 <- randomForest(survived01 ~ .-survived,
data = titanic3,
subset = train,
mtry = 7,
importance = TRUE)

print(bag.titanic01)

##
Call:
randomForest(formula = survived01 ~ . - survived, data = titanic3, mtry = 7, importance = TRUE, subset = train)
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 7
##
OOB estimate of error rate: 22.99%
Confusion matrix:
0 1 class.error
0 252 57 0.1844660
1 63 150 0.2957746
bag.pred01 <- predict(bag.titanic01, newdata = test, type="class")
print(mean(bag.pred01!=survived.test))

[1] 0.2198853
bag.titanic01

##
Call:
randomForest(formula = survived01 ~ . - survived, data = titanic3, mtry = 7, importance = TRUE, subset = train)
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 7
##
OOB estimate of error rate: 22.99%
Confusion matrix:
0 1 class.error
0 252 57 0.1844660
1 63 150 0.2957746

The OOB error is 23.18% and the number of trees grown is 500. Note that OOB error rate is only available
for classification trees.

6) Plot the variable importance plot for the two bagged models you built in 4) and 5) and
comment whether the importance coincides.
importance(bag.titanic)

%IncMSE IncNodePurity
pclass 38.229329 10.849789
sex 86.458487 36.213718
age 21.035222 26.957278
sibsp 5.935803 4.086833
parch 5.980129 2.445480
fare 26.427893 29.075916
embarked 4.639885 3.399932

3

varImpPlot(bag.titanic)

embarked

sibsp

parch

age

fare

pclass

sex

20 40 60 80
%IncMSE

parch

embarked

sibsp

pclass

age

fare

sex

0 10 20 30
IncNodePurity

bag.titanic

importance(bag.titanic01)

0 1 MeanDecreaseAccuracy MeanDecreaseGini
pclass 11.399214 37.737466 36.553497 21.030430
sex 53.103426 76.214604 85.343731 72.729657
age 8.835855 17.323586 17.412895 64.234899
sibsp 8.869927 -1.126593 7.706300 10.239392
parch 4.270089 4.041387 6.158348 6.105879
fare 1.914595 34.483210 24.830863 66.760682
embarked 7.354944 -1.949526 4.858996 6.133310
varImpPlot(bag.titanic01)

4

embarked

parch

sibsp

age

fare

pclass

sex

20 40 60 80
MeanDecreaseAccuracy

parch

embarked

sibsp

pclass

age

fare

sex

0 20 40 60
MeanDecreaseGini

bag.titanic01

#The barplot can be:

barplot(sort(importance(bag.titanic)[,1], decreasing = TRUE),
xlab = "Relative Importance",
horiz = TRUE,
col = "red",
las=1 #The las argument will allow rotation of 90 degrees for labels
)

5

sex

pclass

fare

age

parch

sibsp

embarked

Relative Importance

0 20 40 60 80

Yes, the importance of both models coincide if we look at the %IncMSE.

7) Plot a graph that shows the test error rate of a single tree (red dashed line), the mean
test error rates for majority vote (black curve) and the test error rates for averaging the
probabilities (blue curve), both in relation to the number of trees. Add a legend if you can.

%or –>
calculate the black line:
#Here we insert the test set (xtest and ytest) when building the model.
#Please read the last three slides of Session 7 for more information.
bag.titanic01=randomForest(survived01 ~ .-survived,

data=titanic3,
subset = train,
importance = TRUE,
xtest=x_test,
ytest=survived01.test,
mtry=7,
ntree=200)

#plot the black line
plot(1:200, bag.titanic01$test$err.rate[,1],

type="l",
xlab="Number of Bootstrap Data Sets",
ylab="Test Error Rate",

6

ylim=c(0.17,0.30), xlim=c(0,205))

#plot the red dashed line
abline(h = bag.titanic01$test$err.rate[1,1],

lty=2,col="red")

yhat.ter.ave <- rep(0,200) # a vector for Test Error Rate using averaging
for(j in 1:200){

#set.seed(6)
bag.titanic <- randomForest(survived ~ .-survived01,

data=titanic3,
subset = train,
mtry=7,
importance = TRUE,
ntree=j)

bag.pred <- predict(bag.titanic, newdata = test)
bag.pred.class <- ifelse(bag.pred<=0.5, "0", "1")
yhat.ter.ave[j] <- mean(bag.pred.class!=survived.test)

}

lines(yhat.ter.ave,col="blue")

legend("topright",
c("single tree","majority vote","averaging prob"),
lty=c(2,1,1),
col=c("red","black","blue"))

7

0 50 100 150 200

0.
18

0.
22

0.
26

0.
30

Number of Bootstrap Data Sets

Te
st

 E
rr

or
 R

at
e

single tree
majority vote
averaging prob

8) Plot a graph that shows the best value of mtry for the random forest model

• y: survived01
• x: all the features other than survived and survived01
• mtry: range from 1 to 7

%–>
testErrorRate <- rep(0,7)
for(i in 1:7){

set.seed(6)
bag.titanic01 <- randomForest(survived01 ~ .-survived,

data=titanic3,
subset=train,
mtry=i,
importance=TRUE,
xtest=x_test,
ytest=survived01.test,
ntree=500)

testErrorRate[i] <- bag.titanic01$test$err.rate[500,1]
}
plot(testErrorRate,type="b",xlab="mtry",ylab="Test Error Rate")

8

1 2 3 4 5 6 7

0.
19

0
0.

19
5

0.
20

0
0.

20
5

0.
21

0

mtry

Te
st

 E
rr

or
 R

at
e

9) Play with mtry and ntree, plot a graph that shows test error rate vs ntree for different
mtry, and find the best/reasonably good combination of mtry and ntree from the plot. Add a
legend if you can.
plot(0,

xlab="Number of Trees",ylab="Test Error Rate",
xlim=c(1,540), ylim =c(0.18,0.28))

for(i in 1:7){
It's also possible to call randomForest using x and y as the training set.
bag.titanic01=randomForest(x=x_train, y=y_train01,
importance = TRUE,
xtest=x_test, ytest=survived01.test,
mtry=7,ntree=500)
bag.titanic01=randomForest(survived01 ~ .-survived,

data=titanic3,
subset=train,
importance = TRUE,
xtest=x_test,
ytest=survived01.test,
mtry=i,
ntree=500)

lines(bag.titanic01$test$err.rate[,1],col=i,type="l")
}

9

legend(title = "mtry",
"topright",
c("1","2","3","4","5","6","7"),
lty=rep(1,7),col=1:7)

0 100 200 300 400 500

0.
18

0.
20

0.
22

0.
24

0.
26

0.
28

Number of Trees

Te
st

 E
rr

or
 R

at
e

mtry

1
2
3
4
5
6
7

From the plot, we can see that mtry = 2 and 3 are better than the others in the long run. This result
coincides with the empirical result: pick mtry = sqrt(p) when it is a classification tree. Here p = 7 and
sqrt(p) = sqrt(7) = 2.65 ∈ [2, 3].

10

