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Pros and Cons of Decision Trees

• Pros: 

– Trees are very easy to explain to people (probably even easier than 

linear regression)

– Trees can be plotted graphically

– They work fine on both classification and regression problems

• Cons:

– Trees don’t have the same prediction accuracy as some of the more 

complicated approaches that we examine in this course

– High variance

 By aggregating many decision trees, the predictive performance of 

trees can be substantially improved.  How?

 using methods like bagging, random forests, and boosting
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Problem

• Decision trees discussed earlier suffer from high variance!

– If we randomly split the training data into 2 parts, and fit decision trees 

on both parts, the results could be quite different

• We would like to have models with low variance

• To solve this problem, we can use bagging (bootstrap 

aggregating).
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Random Sampling

• Before introducing bootstrapping, we introduce random 

sampling with/without replacement

– Random sampling without replacement

• One deliberately avoids choosing any member of the population more 

than once

• Once a member is chosen, it cannot be chosen again

– Random sampling with replacement

• The population is “replaced” every time a member is chosen

• The same member can be chosen more than once
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Bootstrapping is simple! 

• Resampling of the observed dataset (and of equal size to the 

observed dataset), each of which is obtained by random sampling 

with replacement from the original dataset.
192 5. Resampling Methods
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F I G U R E 5.11. A graphical i l lustration of the bootstrap approach on a smal l

sample containing n = 3 observations. Each bootstrap data set contains n obser-

vations, sampled with replacement from the original data set. Each bootstrap data

set is used to obtain an estimate of α.
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This serves as an est imate of the standard error of α̂ est imated from the

original data set .

The bootst rap approach is illust rated in the center panel of Figure 5.10,

which displays a histogram of 1,000 bootst rap est imates of α, each com-

puted using a dist inct bootst rap data set . This panel was constructed on

the basis of a single data set , and hence could be created using real data.

Note that the histogram looks very similar to the left -hand panel which dis-

plays the idealized histogram of the est imates of α obtained by generat ing

1,000 simulated data sets from the true populat ion. In part icular the boot-

st rap est imate SE(α̂) from (5.8) is 0.087, very close to the est imate of 0.083

obtained using 1,000 simulated data sets. The right -hand panel displays the

informat ion in the center and left panels in a different way, via boxplots of

the est imates for α obtained by generat ing 1,000 simulated data sets from

the true populat ion and using the bootst rap approach. Again, the boxplots
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What is bagging?

• Bagging is an extremely powerful idea based on two things: 

– Bootstrapping: plenty of training datasets! 

– Averaging: reduces variance!

• Why does averaging reduces variance?

– Averaging a set of observations reduces variance. 

– Recall that given a set of n independent observations Z1, …, Zn, 

• each with variance  σ2 ,  

• the variance of the mean     of the observations is given by σ2/nZ
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How does bagging work?

• Generate B different bootstrapped training datasets

• Train the statistical learning method (e.g. a decision tree) on 

each of the B training datasets, and obtain the prediction 

• For prediction:

– Regression: average all predictions from all B trees

– Classification: majority vote among all B trees

8



Outline

• Bagging

– Bootstrapping

– Bagging for Regression Trees

– Bagging for Classification Trees

– Out-of-Bag Error Estimation

– Variable Importance: Relative Influence Plots

• Random Forests

9



Bagging for Regression Trees

• Construct B regression trees using  B bootstrapped training 

datasets

• Average the resulting predictions

• Note: These trees are not pruned, so each individual tree has 

high variance but low bias

• Averaging these trees reduces variance, and thus we end up 

lowering both variance and bias
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Example: Boston Housing Data

• Apply bagging to the Boston data, using the randomForest

package in R

– Later, we will see bagging is a special case of a random forest
library(randomForest) 

library(MASS)

set.seed(1)

train <- sample(1:nrow(Boston),nrow(Boston)/2)

set.seed(6)

bag.boston <- randomForest(medv~., data=Boston, subset=train, mtry=13, 

importance=TRUE)   

#importance: Should importance of predictors be assessed?

#mtry: number of predictors sampled for splitting at each node. It indicates that all 13 predicators should be 

considered for each split of the tree, this indicates bagging.

#ntree=500 by default

bag.boston

Call: randomForest(formula = medv ~ ., data = Boston, mtry = 13, importance = TRUE,      

subset = train) 

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 13

Mean of squared residuals: 10.89212                   

% Var explained: 86.81
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Example: Boston Housing Data

• How well does this bagged model perform 

on the test set?

yhat.bag <- predict(bag.boston,newdata=Boston[-train,])

boston.test <- Boston [-train ,"medv"]

plot(yhat.bag,boston.test)

abline(0,1)

mean((yhat.bag-boston.test)^2)

[1]13.33672  the test MSE asscoiated with the bagged regression tree

set.seed(6)

bag.boston <- randomForest(medv ~ ., data=Boston,

subset=train, mtry=13, ntree=25, importance=TRUE)

ntree=25  changing the number of trees grown

yhat.bag <- predict(bag.boston,newdata=Boston[-train,])

mean((yhat.bag-boston.test)^2)

[1] 14.02642  With less trees, the test MSE increases
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A Comparison of Error Rates –
Boston Housing Data
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The red line represents the test MSE using a single tree.

The black line corresponds to the bagging test MSE.



Example: Boston Housing Data

• The code for generating the previous plot:
set.seed(1)

train <- sample(1:nrow(Boston), nrow(Boston)*0.5)

train.df <- Boston[train,]    # training set

test.df <- Boston[-train,]    # test set

x_train <- train.df[-14]  # the predictors (X) in the training set, the 14th column is medv

x_test <- test.df[-14] # train.df [-14] is the same as train.df [,-14]

# row is by default 1:nrow(dataframe)

y_train <- train.df$medv # the response in the training set

y_test <- test.df$medv # the response in the test set

myForest1 <- randomForest(x=x_train, y=y_train, xtest=x_test, 

ytest=y_test, ntree=100, mtry=13)

plot(1:100, myForest1$test$mse,

main = "Test Error from Random Forests on the Boston dataset",

xlab = "Number of Trees", ylab = "Test MSE",

type = "l", ylim = c(12, 22), lwd = 1)

abline(h = myForest1$test$mse[1],lty=2,col="red") #h:the y-value(s) for 

horizontal line(s).
14



Outline

• Bagging

– Bootstrapping

– Bagging for Regression Trees

– Bagging for Classification Trees

– Out-of-Bag Error Estimation

– Variable Importance: Relative Influence Plots

• Random Forests

15



Bagging for Classification Trees

• Construct B classification trees using B bootstrapped training 

datasets

• For prediction, there are two approaches: 

1. Record the class that each bootstrapped data set predicts and provide 

an overall prediction to the most commonly occurring one (majority 

vote).

2. If our classifier produces probability estimates we can just average 

the probabilities and then predict to the class with the highest 

probability.

• Both methods work well. 
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Example: Car Seat Data

• Apply bagging to the Carseats data, using the 

randomForest package in R
library(ISLR)

library(randomForest)

High <- ifelse(Carseats$Sales<=8,"No","Yes")

Carseats <- data.frame(Carseats,High) # add one column High to Carseats

set.seed(2)

train <- sample(1:nrow(Carseats), nrow(Carseats)/2)

Carseats.test <- Carseats[-train,]

High.test <- Carseats[-train, "High"]

bag.carseats <- randomForest(High~.-Sales, Carseats, subset=train, mtry=10)

yhat.carseats <- predict(bag.carseats, newdata=Carseats.test)

table(yhat.carseats,High.test)

High.test

yhat.carseats No Yes

No  95  17

Yes 21  67

(21+17)/200

[1] 0.19
17



A Comparison of Error Rates

• Here the green line 
represents a simple 
majority vote approach

• The purple line 
corresponds to averaging 
the probability estimates

• Both do far better than a 
single tree (dashed red) 
and get close to the Bayes 
error rate (dashed grey)

Bayes error rate is the lowest possible error rate for a given class of classifier.
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Example: Car Seat Data
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Example: Car Seat Data

• Code to obtain the plot on the last slide:

#Prepare the dataset, training set and test set for majority vote:

library(ISLR)

library(randomForest)

data(Carseats)   #reload a fresh dataset

High <- ifelse(Carseats$Sales<=8,"No","Yes")

Carseats.mv<- data.frame(Carseats,High)  # add one column High to Carseats

Carseats.mv <- Carseats.mv[,-1] #remove the Sales column

set.seed(2)

train <- sample(400, 200)  #400 is the number of rows in Carseats/Carseats1

Carseats.mv.test <- Carseats.mv[-train,]  #test dataset

High.mv.test <- Carseats.mv[-train, 11]   #true y value for the test dataset 21



Example: Car Seat Data
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# calculate the black line:

yhat.ter.mv <- rep(0,300)      # a vector for Test Error Rate using majority vote (by default)

for(i in 1:300){ 

set.seed(4)   #randomForest() is a randomised function

bag.carseats <- randomForest(High~., Carseats.mv, subset=train, mtry=10, ntree=i)

yhat.carseats <- predict(bag.carseats, newdata=Carseats.mv.test)

test.error.mv[i] <-

(table(yhat.carseats,High.mv.test)[1,2]+table(yhat.carseats,High.mv.test)[2,1])/200

# or     test.error.mv[i] <- mean(yhat.carseats!=High.mv.test)

}

#plot the black line

plot(test.error.mv, xlab="Number of Bootstrap Data Sets", 

ylab="Test Error Rate", type="l", ylim=c(0.10,0.35))

#plot the red dashed line

abline(h=test.error.mv[1],  lty=2,  col="red")



Example: Car Seat Data

#Prepare the dataset, training set and test set for averaging the probabilities:

Carseats.test <- Carseats[-train, -1]  #test dataset

High.ave.test <- High.mv.test   #true y value for the test dataset

#Calculate the blue line - in this case, we need to build a bagging for REGRESSION trees first and 

discretise the result to “Yes” or “No” later.

test.error.ave <- rep(0,300) # a vector for Test Error Rate using averaging

for(j in 1:300){

set.seed(2)

bag.carseats.ave <- randomForest(Sales ~ ., Carseats, subset=train, mtry=10, ntree=j)

yhat.carseats <- predict(bag.carseats.ave, newdata=Carseats.test)

yhat.carseats.class <- ifelse(yhat.carseats<=8, "No", "Yes")

test.error.ave[j]<-

(table(yhat.carseats.class,High.ave.test)[1,2]+table(yhat.carseats.class,High.ave.test)[2,1])/200

}

#plot the blue line:

lines(test.error.ave, col="blue")
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Example: Car Seat Data 
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The Problem
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• In the previous example, by using a for-loop, how many trees were 

grown in total? 

• We have grown 1+2+3+4+…+300 trees! 

• It’s enough to grow 300 trees only.



For Classification Trees
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• If test set is given in randomForest() through the xtest and/or ytest, a 

component test is created. 

• Assume ntree = 300, and nrow(xtest) = 200.

• For classification, predicted, err.rate, confusion, votes are 

made available.

– predicted: The predicted values for the test set xtest. The length is 200.

– err.rate: the first col. of err.rate is the error rate between predicted

and ytest. 

• The length of err.rate[,1] is 300. 

• err.rate[j,1] means the error rate for the first j trees. 

– confusion: The confusion matrix for the randomForest of 300 trees. 

– votes:  For each predicted value, it shows the percentage of votes for each 

category.

• The size of votes is 200 rows and m categories



Improved Code
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#prepare the datasets

data("Carseats")

High <- ifelse(Carseats$Sales<=8,"No","Yes")

set.seed(2)

train <- sample(1:nrow(Carseats), nrow(Carseats)/2)

Carseats <- data.frame(Carseats, High)

x_train <- Carseats[train,-c(1, 12)]

y_train <- Carseats[train, "High"]

x_test <- Carseats[-train,-c(1, 12)]

y_test <- Carseats[-train, "High"]

set.seed(2)  #randomForest() is a randomised function!

bag.carseats <- randomForest(x=x_train, y=y_train, xtest=x_test, ytest=y_test, ntree=300, mtry=10)

length(bag.carseats$test$err.rate[,1])    # 300 error rates, building upon incrementally

#plot the curve

lines(bag.carseats$test$err.rate[,1], col="orange")



Plot the New Curve 
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For Regression Trees
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• If test set is given in randomForest() through the xtest and/or 

ytest, a component test is created. 

• Assume ntree = 300, and nrow(xtest) = 200.

• For regression, predicted and mse are made available for the test 

set. 

– predicted: The predicted values for the test set xtest. 

• The length of predicted is 200. 

• predicted[i] means the predicted value for the i-th row in xtest

– mse: The MSE between the predicted and ytest. 

• The length of mse is 300.

• mse[j] means the MSE for the first j trees. It is grown incrementally. 



For Regression Trees
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#prepare the training and test sets

x_train.ave <- Carseats[train,-c(1, 12)]

y_train.ave <- Carseats[train, "Sales"]

x_test.ave <- Carseats[-train,-c(1, 12)]

y_test.ave <- Carseats[-train, "Sales"]  

test.error.ave.imp <- rep(0,300)

for(i in 1:300){

set.seed(2)

bag.carseats <- randomForest(x=x_train.ave, y=y_train.ave, xtest=x_test.ave, 

ytest=y_test.ave, ntree=i, mtry=10)

yhat.High.ave <- ifelse(bag.carseats$test$predicted<=8, "No","Yes")

test.error.ave.imp[i] <- mean(yhat.High.ave!=y_test)   

#note compare with y_test (High), not y_test_ave

}

lines(test.error.ave.imp, col="green")

legend("topright", legend = c("single tree", "majority vote", "taking average", 

"majority vote improved", "taking average improved"),

col=c("red", "black", "blue", "orange","green"), lty=c(2,1,1,1,1))

We cannot avoid using the for-loop in 

this case, as the results in test cannot be 

used directly. 



Plot the New Curve

31The blue and green curve coincide!
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Out-of-Bag Error Estimation

• There is a very straightforward way to estimate the test error 

of a bagged model

– No need to perform cross validation or the validation set approach

– Since bootstrapping involves random selection of subsets of 

observations to build a training data set, the remaining non-selected 

part could be the testing data. 

– On average, each bagged tree makes use of around 2/3 of the 

observations, so we end up having 1/3 of the observations used for 

testing.

– The remaining 1/3 of the observations are referred to as the out-of-

bag (OOB) observations. 

– The estimated test error using the OOB observations is called the 

OOB error.
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Out-of-Bag Error Estimation

• When the number of trees B is sufficiently large, OOB error is 

virtually equivalent to LOOCV error. 

• The OOB approach for estimating the test error is particularly 

convenient when performing bagging on large data sets for 

which the CV would be computationally expensive. 

• You may find the OOB error rate when printing the summary
> print(bag.carseats)

Call:

randomForest(formula = High ~ . - Sales, data = Carseats, mtry = 10,      

subset = train) 

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 10

OOB estimate of  error rate: 22%
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Variable Importance Measure

• Bagging typically improves the accuracy over prediction using 

a single tree, but it is now hard to interpret the model! 

– We have hundreds of trees, and it is no longer clear which variables are 

the most important to the procedure

– Thus bagging improves prediction accuracy at the expense of 

interpretability

• But, we can still get an overall summary of the importance of 

each predictor using Relative Influence Plots
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Relative Influence Plots

• How do we decide which variables are most useful in 

predicting the response?

– We can compute something called relative influence plots

– These plots give a score for each variable

– These scores represents the decrease in MSE when splitting on a 

particular variable

• A number close to zero indicates the variable is not important and could be 

dropped

• The larger the score the more influence the variable has.
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Example: Housing Data

• Median 
Income is by 
far the most 
important 
variable.

• Longitude, 
Latitude and 
Average 
occupancy are 
the next most 
important.
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Example: Boston Housing Data

> importance(bag.boston)

%IncMSE IncNodePurity

crim    11.5623632     705.52039

zn       1.2742557      17.50011

indus    7.8148780     187.07632

chas     0.8714603      20.51912

nox     10.2193795     271.39076

rm      47.0763407    7555.54873

age      9.1828854     317.74911

dis     19.3127465    1117.95231

rad      3.5974754      68.49749

tax      7.5277047     344.32668

ptratio 13.7071255     285.55153

black    6.6649845     254.79199

lstat   35.8265510    9437.81585

>varImpPlot(bag.boston)   # find out how to plot in the “bar chart” style as in the previous slide 39
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Random Forests

• It is a very efficient statistical learning method

• It builds on the idea of bagging, but it provides an 

improvement because it de-correlates the trees

• How does it work?

– Build a number of decision trees on bootstrapped training sample, but 

when building these trees, each time a split in a tree is considered, a 

random sample of m predictors is chosen as split candidates from the 

full set of p predictors (Usually m = √p (square root of p))
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Why?

• Why are we considering a random sample of m predictors 

instead of all p predictors for splitting?

– Suppose that we have a very strong predictor in the data set along with 

a number of other moderately strong predictors, then in the collection 

of bagged trees, most or all of them will use the very strong predictor 

for the first split!

– All bagged trees will look similar. Hence all the predictions from the 

bagged trees will be highly correlated

– Averaging many highly correlated quantities does not lead to a large 

variance reduction, and thus random forests “de-correlates” the bagged 

trees leading to more reduction in variance
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Random Forest with Different 
Values of “m”

• Notice when random forests are built using m = p, then this 

amounts simply to bagging.
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Random Forest

• Growing a random forest proceeds in exactly the same way as 

in bagging, except that a smaller mtry is used

– By default, randomForest() uses 

• p/3 variables when building a random forest of regression trees

• √p variables when building a random forest of classification trees

library(MASS)

set.seed(1)

train <- sample(nrow(Boston), nrow(Boston)/2)

set.seed(5)

rf.boston <- randomForest(medv ~ ., data=Boston,

subset=train, mtry=6, importance=TRUE)

yhat.rf <- predict(rf.boston,newdata=Boston[-train,])

boston.test <- Boston[-train, "medv"]

mean((yhat.rf-boston.test)^2)

[1] 11.62716  the test set MSE, smaller than that derived from a bagged model. There is 

an improvement!
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Random Forest

• Find the best value of mtry:

testMSE <- rep(0,13)

for(i in 1:13){

set.seed(5)

rf.boston <- randomForest(medv ~ ., data=Boston, subset=train, mtry=i,importance=TRUE)

yhat.rf <- predict(rf.boston,newdata=Boston[-train,])

testMSE[i] <- mean((yhat.rf-boston.test)^2)

}

plot(testMSE,type="b",xlab="mtry",ylab="Test MSE") 45



Epilogue

• An analogue

– Decision tree: Validation set approach

• Use only half of the training set to build a model

• High variance

• Decision tree is a special case of random forest

• Validation set approach is a special case of K-fold CV

– Bagging: LOOCV

• A way to utilise almost all observations in the data set to train a model

• Bagging is a special case of Random Forest

• LOOCV is a special case of K-fold CV 

– Random Forest: K-fold CV

• De-correlate the training sets

• More reduction on variance
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Ensemble Methods
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• Ensemble methods are techniques that create multiple “weak” 

models and then combine them to obtain better predictive 

performance. 

In Bagging, any element has the same probability to appear in a new data set. 

For Boosting the observations are weighted and therefore some of them will take part in 

the new sets more often. 



Boosting
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In Boosting algorithms each classifier is trained on data, taking into account 

the previous classifiers’ success. 

After each training step, the weights are redistributed.

Misclassified data increases its weights to emphasise the most difficult cases.

In this way, subsequent learners will focus on them during their training.

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/

for more info.

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/
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Hitters
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• Explore the Hitters dataset

• Build a bagged model and a random forest model 

– y: Salary

– x: all the features other than Salary

• Play with 1) set.seed 2) mtry and 3) ntree, plot 

– a graph that shows test MSE vs mtry for different seeds

– a graph that shows test MSE vs ntree for different seeds

– Find the best/reasonably good mtry and ntree

• Check the importance of each predictor

• Check the OOB error estimation

• Compare the bagged model and RF model with the tree model

– Compare the test MSE



A Comparison on Different mtry
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set.seed(1)

train <- sample(1:nrow(Boston), nrow(Boston)*0.5)

train.df <- Boston[train,]

test.df <- Boston[-train,]

x_train <- train.df[-14]  #column 14 is the medv

x_test <- test.df[-14]

y_train <- train.df$medv

y_test <- test.df$medv

p <- ncol(x_train)

myForest1 <-randomForest(x=x_train, y=y_train, xtest=x_test, ytest=y_test, ntree=500, mtry=p)

myForest2 <-randomForest(x=x_train, y=y_train, xtest=x_test, ytest=y_test, ntree=500, mtry=p/2)

myForest3 <-randomForest(x=x_train, y=y_train, xtest=x_test, ytest=y_test, ntree=500, mtry=sqrt(p))

plot(1:500, myForest1$test$mse, main = "Test Error from Random Forests on the Boston dataset",

xlab = "Number of Trees", ylab = "Test MSE",type = "l", ylim = c(10, 20), lwd = 2, las=1, bty="n")

lines(1:500, myForest2$test$mse, col = "blue", lwd = 2)

lines(1:500, myForest3$test$mse, col = "orange", lwd = 2)

legend("topright", c("m = p", "m = p/2", "m = sqrt(p)"),

col = c("black", "blue", "orange"), cex = 1, lty = 1, lwd = 2, bty = "n")

mtext("Dependent variable: median value of owner-occupied homes `medv`")



A Comparison on Different mtry
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Summary
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• If test set is given in randomForest() through the xtest and/or ytest, a component

test is created. Assume ntree = 500, and nrow(xtest) = 200.

– For regression, predicted and mse are made available for the test set. 

• predicted: The predicted values for the test set xtest. 

– The length of predicted is 200. 

– predicted[i] means the predicted value for the i-th row in xtest

• mse: The MSE between the predicted and ytest. 

– The length of mse is 500.

– mse[j] means the MSE for the first j trees. It is grown incrementally. 

– For classification, predicted, err.rate, confusion, votes are made available.

• predicted: The predicted values for the test set xtest. The length is 200.

• err.rate:the first col. of err.rate is the error rate between predicted and ytest. 

– The length of err.rate[,1] is 500. err.rate[j,1] means the error rate for the first j trees. 

• confusion: The confusion matrix for the randomForest of 500 trees. 

• votes:  For each predicted value, it shows the percentage of votes for each category.

– The size of votes is 200 rows and m categories


