
Big Data Analytics

Session 7

Bagging and Random Forests

Pros and Cons of Decision Trees

• Pros:

– Trees are very easy to explain to people (probably even easier than

linear regression)

– Trees can be plotted graphically

– They work fine on both classification and regression problems

• Cons:

– Trees don’t have the same prediction accuracy as some of the more

complicated approaches that we examine in this course

– High variance

 By aggregating many decision trees, the predictive performance of

trees can be substantially improved. How?

 using methods like bagging, random forests, and boosting

2

Outline

• Bagging

– Bootstrapping

– Bagging for Regression Trees

– Bagging for Classification Trees

– Out-of-Bag Error Estimation

– Variable Importance: Relative Influence Plots

• Random Forests

3

Problem

• Decision trees discussed earlier suffer from high variance!

– If we randomly split the training data into 2 parts, and fit decision trees

on both parts, the results could be quite different

• We would like to have models with low variance

• To solve this problem, we can use bagging (bootstrap

aggregating).

4

Random Sampling

• Before introducing bootstrapping, we introduce random

sampling with/without replacement

– Random sampling without replacement

• One deliberately avoids choosing any member of the population more

than once

• Once a member is chosen, it cannot be chosen again

– Random sampling with replacement

• The population is “replaced” every time a member is chosen

• The same member can be chosen more than once

5

Bootstrapping is simple!

• Resampling of the observed dataset (and of equal size to the

observed dataset), each of which is obtained by random sampling

with replacement from the original dataset.
192 5. Resampling Methods

2.8 5.3 3

1.1 2.1 2

2.4 4.3 1

Y X Obs

2.8 5.3 3

2.4 4.3 1

2.8 5.3 3

Y X Obs

2.4 4.3 1

2.8 5.3 3

1.1 2.1 2

Y X Obs

2.4 4.3 1

1.1 2.1 2

1.1 2.1 2

Y X Obs

Original Data (Z)

1*Z

2*Z

Z *B

1*â

2*â

â *B

F I G U R E 5.11. A graphical i l lustration of the bootstrap approach on a smal l

sample containing n = 3 observations. Each bootstrap data set contains n obser-

vations, sampled with replacement from the original data set. Each bootstrap data

set is used to obtain an estimate of α.

bootst rap est imates using the formula

SEB (α̂) =
1

B − 1

B

r = 1

α̂∗ r −
1

B

B

r ′ = 1

α̂∗ r ′

2

. (5.8)

This serves as an est imate of the standard error of α̂ est imated from the

original data set .

The bootst rap approach is illust rated in the center panel of Figure 5.10,

which displays a histogram of 1,000 bootst rap est imates of α, each com-

puted using a dist inct bootst rap data set . This panel was constructed on

the basis of a single data set , and hence could be created using real data.

Note that the histogram looks very similar to the left -hand panel which dis-

plays the idealized histogram of the est imates of α obtained by generat ing

1,000 simulated data sets from the true populat ion. In part icular the boot-

st rap est imate SE(α̂) from (5.8) is 0.087, very close to the est imate of 0.083

obtained using 1,000 simulated data sets. The right -hand panel displays the

informat ion in the center and left panels in a different way, via boxplots of

the est imates for α obtained by generat ing 1,000 simulated data sets from

the true populat ion and using the bootst rap approach. Again, the boxplots

We could have

distinct “training

sets” by repeatedly

sampling from the

original data set

Distinct test sets

are usually there to

obtain a measure of

variability – how the

test MSE/error rate

varies

Bootstrapped

Sample Set 1

Bootstrapped

Sample Set 2

Bootstrapped

Sample Set B

6

…

…

…

What is bagging?

• Bagging is an extremely powerful idea based on two things:

– Bootstrapping: plenty of training datasets!

– Averaging: reduces variance!

• Why does averaging reduces variance?

– Averaging a set of observations reduces variance.

– Recall that given a set of n independent observations Z1, …, Zn,

• each with variance σ2 ,

• the variance of the mean of the observations is given by σ2/nZ

7

How does bagging work?

• Generate B different bootstrapped training datasets

• Train the statistical learning method (e.g. a decision tree) on

each of the B training datasets, and obtain the prediction

• For prediction:

– Regression: average all predictions from all B trees

– Classification: majority vote among all B trees

8

Outline

• Bagging

– Bootstrapping

– Bagging for Regression Trees

– Bagging for Classification Trees

– Out-of-Bag Error Estimation

– Variable Importance: Relative Influence Plots

• Random Forests

9

Bagging for Regression Trees

• Construct B regression trees using B bootstrapped training

datasets

• Average the resulting predictions

• Note: These trees are not pruned, so each individual tree has

high variance but low bias

• Averaging these trees reduces variance, and thus we end up

lowering both variance and bias

10

Example: Boston Housing Data

• Apply bagging to the Boston data, using the randomForest

package in R

– Later, we will see bagging is a special case of a random forest
library(randomForest)

library(MASS)

set.seed(1)

train <- sample(1:nrow(Boston),nrow(Boston)/2)

set.seed(6)

bag.boston <- randomForest(medv~., data=Boston, subset=train, mtry=13,

importance=TRUE)

#importance: Should importance of predictors be assessed?

#mtry: number of predictors sampled for splitting at each node. It indicates that all 13 predicators should be

considered for each split of the tree, this indicates bagging.

#ntree=500 by default

bag.boston

Call: randomForest(formula = medv ~ ., data = Boston, mtry = 13, importance = TRUE,

subset = train)

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 13

Mean of squared residuals: 10.89212

% Var explained: 86.81

11

Example: Boston Housing Data

• How well does this bagged model perform

on the test set?

yhat.bag <- predict(bag.boston,newdata=Boston[-train,])

boston.test <- Boston [-train ,"medv"]

plot(yhat.bag,boston.test)

abline(0,1)

mean((yhat.bag-boston.test)^2)

[1]13.33672 the test MSE asscoiated with the bagged regression tree

set.seed(6)

bag.boston <- randomForest(medv ~ ., data=Boston,

subset=train, mtry=13, ntree=25, importance=TRUE)

ntree=25 changing the number of trees grown

yhat.bag <- predict(bag.boston,newdata=Boston[-train,])

mean((yhat.bag-boston.test)^2)

[1] 14.02642 With less trees, the test MSE increases

12

A Comparison of Error Rates –
Boston Housing Data

13

The red line represents the test MSE using a single tree.

The black line corresponds to the bagging test MSE.

Example: Boston Housing Data

• The code for generating the previous plot:
set.seed(1)

train <- sample(1:nrow(Boston), nrow(Boston)*0.5)

train.df <- Boston[train,] # training set

test.df <- Boston[-train,] # test set

x_train <- train.df[-14] # the predictors (X) in the training set, the 14th column is medv

x_test <- test.df[-14] # train.df [-14] is the same as train.df [,-14]

row is by default 1:nrow(dataframe)

y_train <- train.df$medv # the response in the training set

y_test <- test.df$medv # the response in the test set

myForest1 <- randomForest(x=x_train, y=y_train, xtest=x_test,

ytest=y_test, ntree=100, mtry=13)

plot(1:100, myForest1$test$mse,

main = "Test Error from Random Forests on the Boston dataset",

xlab = "Number of Trees", ylab = "Test MSE",

type = "l", ylim = c(12, 22), lwd = 1)

abline(h = myForest1$test$mse[1],lty=2,col="red") #h:the y-value(s) for

horizontal line(s).
14

Outline

• Bagging

– Bootstrapping

– Bagging for Regression Trees

– Bagging for Classification Trees

– Out-of-Bag Error Estimation

– Variable Importance: Relative Influence Plots

• Random Forests

15

Bagging for Classification Trees

• Construct B classification trees using B bootstrapped training

datasets

• For prediction, there are two approaches:

1. Record the class that each bootstrapped data set predicts and provide

an overall prediction to the most commonly occurring one (majority

vote).

2. If our classifier produces probability estimates we can just average

the probabilities and then predict to the class with the highest

probability.

• Both methods work well.

16

Example: Car Seat Data

• Apply bagging to the Carseats data, using the

randomForest package in R
library(ISLR)

library(randomForest)

High <- ifelse(Carseats$Sales<=8,"No","Yes")

Carseats <- data.frame(Carseats,High) # add one column High to Carseats

set.seed(2)

train <- sample(1:nrow(Carseats), nrow(Carseats)/2)

Carseats.test <- Carseats[-train,]

High.test <- Carseats[-train, "High"]

bag.carseats <- randomForest(High~.-Sales, Carseats, subset=train, mtry=10)

yhat.carseats <- predict(bag.carseats, newdata=Carseats.test)

table(yhat.carseats,High.test)

High.test

yhat.carseats No Yes

No 95 17

Yes 21 67

(21+17)/200

[1] 0.19
17

A Comparison of Error Rates

• Here the green line
represents a simple
majority vote approach

• The purple line
corresponds to averaging
the probability estimates

• Both do far better than a
single tree (dashed red)
and get close to the Bayes
error rate (dashed grey)

Bayes error rate is the lowest possible error rate for a given class of classifier.
19

Example: Car Seat Data

0 20 40 60 80 100

0
.1

5
0

.2
0

0
.2

5
0

.3
0

0
.3

5
0

.4
0

Number of Bootstrap Data Sets

T
e

s
t
E

rr
o

r
ra

te

• The red line

represents the test

error rate using a

single tree.

• The black line

corresponds to the

bagging error rate

using majority vote

while the blue line

averages the

probabilities.

20

Example: Car Seat Data

• Code to obtain the plot on the last slide:

#Prepare the dataset, training set and test set for majority vote:

library(ISLR)

library(randomForest)

data(Carseats) #reload a fresh dataset

High <- ifelse(Carseats$Sales<=8,"No","Yes")

Carseats.mv<- data.frame(Carseats,High) # add one column High to Carseats

Carseats.mv <- Carseats.mv[,-1] #remove the Sales column

set.seed(2)

train <- sample(400, 200) #400 is the number of rows in Carseats/Carseats1

Carseats.mv.test <- Carseats.mv[-train,] #test dataset

High.mv.test <- Carseats.mv[-train, 11] #true y value for the test dataset 21

Example: Car Seat Data

22

calculate the black line:

yhat.ter.mv <- rep(0,300) # a vector for Test Error Rate using majority vote (by default)

for(i in 1:300){

set.seed(4) #randomForest() is a randomised function

bag.carseats <- randomForest(High~., Carseats.mv, subset=train, mtry=10, ntree=i)

yhat.carseats <- predict(bag.carseats, newdata=Carseats.mv.test)

test.error.mv[i] <-

(table(yhat.carseats,High.mv.test)[1,2]+table(yhat.carseats,High.mv.test)[2,1])/200

or test.error.mv[i] <- mean(yhat.carseats!=High.mv.test)

}

#plot the black line

plot(test.error.mv, xlab="Number of Bootstrap Data Sets",

ylab="Test Error Rate", type="l", ylim=c(0.10,0.35))

#plot the red dashed line

abline(h=test.error.mv[1], lty=2, col="red")

Example: Car Seat Data

#Prepare the dataset, training set and test set for averaging the probabilities:

Carseats.test <- Carseats[-train, -1] #test dataset

High.ave.test <- High.mv.test #true y value for the test dataset

#Calculate the blue line - in this case, we need to build a bagging for REGRESSION trees first and

discretise the result to “Yes” or “No” later.

test.error.ave <- rep(0,300) # a vector for Test Error Rate using averaging

for(j in 1:300){

set.seed(2)

bag.carseats.ave <- randomForest(Sales ~ ., Carseats, subset=train, mtry=10, ntree=j)

yhat.carseats <- predict(bag.carseats.ave, newdata=Carseats.test)

yhat.carseats.class <- ifelse(yhat.carseats<=8, "No", "Yes")

test.error.ave[j]<-

(table(yhat.carseats.class,High.ave.test)[1,2]+table(yhat.carseats.class,High.ave.test)[2,1])/200

}

#plot the blue line:

lines(test.error.ave, col="blue")
23

Example: Car Seat Data

24

The Problem

25

• In the previous example, by using a for-loop, how many trees were

grown in total?

• We have grown 1+2+3+4+…+300 trees!

• It’s enough to grow 300 trees only.

For Classification Trees

26

• If test set is given in randomForest() through the xtest and/or ytest, a

component test is created.

• Assume ntree = 300, and nrow(xtest) = 200.

• For classification, predicted, err.rate, confusion, votes are

made available.

– predicted: The predicted values for the test set xtest. The length is 200.

– err.rate: the first col. of err.rate is the error rate between predicted

and ytest.

• The length of err.rate[,1] is 300.

• err.rate[j,1] means the error rate for the first j trees.

– confusion: The confusion matrix for the randomForest of 300 trees.

– votes: For each predicted value, it shows the percentage of votes for each

category.

• The size of votes is 200 rows and m categories

Improved Code

27

#prepare the datasets

data("Carseats")

High <- ifelse(Carseats$Sales<=8,"No","Yes")

set.seed(2)

train <- sample(1:nrow(Carseats), nrow(Carseats)/2)

Carseats <- data.frame(Carseats, High)

x_train <- Carseats[train,-c(1, 12)]

y_train <- Carseats[train, "High"]

x_test <- Carseats[-train,-c(1, 12)]

y_test <- Carseats[-train, "High"]

set.seed(2) #randomForest() is a randomised function!

bag.carseats <- randomForest(x=x_train, y=y_train, xtest=x_test, ytest=y_test, ntree=300, mtry=10)

length(bag.carseats$test$err.rate[,1]) # 300 error rates, building upon incrementally

#plot the curve

lines(bag.carseats$test$err.rate[,1], col="orange")

Plot the New Curve

28

For Regression Trees

29

• If test set is given in randomForest() through the xtest and/or

ytest, a component test is created.

• Assume ntree = 300, and nrow(xtest) = 200.

• For regression, predicted and mse are made available for the test

set.

– predicted: The predicted values for the test set xtest.

• The length of predicted is 200.

• predicted[i] means the predicted value for the i-th row in xtest

– mse: The MSE between the predicted and ytest.

• The length of mse is 300.

• mse[j] means the MSE for the first j trees. It is grown incrementally.

For Regression Trees

30

#prepare the training and test sets

x_train.ave <- Carseats[train,-c(1, 12)]

y_train.ave <- Carseats[train, "Sales"]

x_test.ave <- Carseats[-train,-c(1, 12)]

y_test.ave <- Carseats[-train, "Sales"]

test.error.ave.imp <- rep(0,300)

for(i in 1:300){

set.seed(2)

bag.carseats <- randomForest(x=x_train.ave, y=y_train.ave, xtest=x_test.ave,

ytest=y_test.ave, ntree=i, mtry=10)

yhat.High.ave <- ifelse(bag.carseats$test$predicted<=8, "No","Yes")

test.error.ave.imp[i] <- mean(yhat.High.ave!=y_test)

#note compare with y_test (High), not y_test_ave

}

lines(test.error.ave.imp, col="green")

legend("topright", legend = c("single tree", "majority vote", "taking average",

"majority vote improved", "taking average improved"),

col=c("red", "black", "blue", "orange","green"), lty=c(2,1,1,1,1))

We cannot avoid using the for-loop in

this case, as the results in test cannot be

used directly.

Plot the New Curve

31The blue and green curve coincide!

Outline

• Bagging

– Bootstrapping

– Bagging for Regression Trees

– Bagging for Classification Trees

– Out-of-Bag Error Estimation

– Variable Importance: Relative Influence Plots

• Random Forests

32

Out-of-Bag Error Estimation

• There is a very straightforward way to estimate the test error

of a bagged model

– No need to perform cross validation or the validation set approach

– Since bootstrapping involves random selection of subsets of

observations to build a training data set, the remaining non-selected

part could be the testing data.

– On average, each bagged tree makes use of around 2/3 of the

observations, so we end up having 1/3 of the observations used for

testing.

– The remaining 1/3 of the observations are referred to as the out-of-

bag (OOB) observations.

– The estimated test error using the OOB observations is called the

OOB error.

33

Out-of-Bag Error Estimation

• When the number of trees B is sufficiently large, OOB error is

virtually equivalent to LOOCV error.

• The OOB approach for estimating the test error is particularly

convenient when performing bagging on large data sets for

which the CV would be computationally expensive.

• You may find the OOB error rate when printing the summary
> print(bag.carseats)

Call:

randomForest(formula = High ~ . - Sales, data = Carseats, mtry = 10,

subset = train)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 10

OOB estimate of error rate: 22%

…… 34

Outline

• Bagging

– Bootstrapping

– Bagging for Regression Trees

– Bagging for Classification Trees

– Out-of-Bag Error Estimation

– Variable Importance: Relative Influence Plots

• Random Forests

35

Variable Importance Measure

• Bagging typically improves the accuracy over prediction using

a single tree, but it is now hard to interpret the model!

– We have hundreds of trees, and it is no longer clear which variables are

the most important to the procedure

– Thus bagging improves prediction accuracy at the expense of

interpretability

• But, we can still get an overall summary of the importance of

each predictor using Relative Influence Plots

36

Relative Influence Plots

• How do we decide which variables are most useful in

predicting the response?

– We can compute something called relative influence plots

– These plots give a score for each variable

– These scores represents the decrease in MSE when splitting on a

particular variable

• A number close to zero indicates the variable is not important and could be

dropped

• The larger the score the more influence the variable has.

37

Example: Housing Data

• Median
Income is by
far the most
important
variable.

• Longitude,
Latitude and
Average
occupancy are
the next most
important.

38

Example: Boston Housing Data

> importance(bag.boston)

%IncMSE IncNodePurity

crim 11.5623632 705.52039

zn 1.2742557 17.50011

indus 7.8148780 187.07632

chas 0.8714603 20.51912

nox 10.2193795 271.39076

rm 47.0763407 7555.54873

age 9.1828854 317.74911

dis 19.3127465 1117.95231

rad 3.5974754 68.49749

tax 7.5277047 344.32668

ptratio 13.7071255 285.55153

black 6.6649845 254.79199

lstat 35.8265510 9437.81585

>varImpPlot(bag.boston) # find out how to plot in the “bar chart” style as in the previous slide 39

Outline

• Bagging

– Bootstrapping

– Bagging for Regression Trees

– Bagging for Classification Trees

– Out-of-Bag Error Estimation

– Variable Importance: Relative Influence Plots

• Random Forests

40

Random Forests

• It is a very efficient statistical learning method

• It builds on the idea of bagging, but it provides an

improvement because it de-correlates the trees

• How does it work?

– Build a number of decision trees on bootstrapped training sample, but

when building these trees, each time a split in a tree is considered, a

random sample of m predictors is chosen as split candidates from the

full set of p predictors (Usually m = √p (square root of p))

41

Why?

• Why are we considering a random sample of m predictors

instead of all p predictors for splitting?

– Suppose that we have a very strong predictor in the data set along with

a number of other moderately strong predictors, then in the collection

of bagged trees, most or all of them will use the very strong predictor

for the first split!

– All bagged trees will look similar. Hence all the predictions from the

bagged trees will be highly correlated

– Averaging many highly correlated quantities does not lead to a large

variance reduction, and thus random forests “de-correlates” the bagged

trees leading to more reduction in variance

42

Random Forest with Different
Values of “m”

• Notice when random forests are built using m = p, then this

amounts simply to bagging.

43

Random Forest

• Growing a random forest proceeds in exactly the same way as

in bagging, except that a smaller mtry is used

– By default, randomForest() uses

• p/3 variables when building a random forest of regression trees

• √p variables when building a random forest of classification trees

library(MASS)

set.seed(1)

train <- sample(nrow(Boston), nrow(Boston)/2)

set.seed(5)

rf.boston <- randomForest(medv ~ ., data=Boston,

subset=train, mtry=6, importance=TRUE)

yhat.rf <- predict(rf.boston,newdata=Boston[-train,])

boston.test <- Boston[-train, "medv"]

mean((yhat.rf-boston.test)^2)

[1] 11.62716 the test set MSE, smaller than that derived from a bagged model. There is

an improvement!

44

Random Forest

• Find the best value of mtry:

testMSE <- rep(0,13)

for(i in 1:13){

set.seed(5)

rf.boston <- randomForest(medv ~ ., data=Boston, subset=train, mtry=i,importance=TRUE)

yhat.rf <- predict(rf.boston,newdata=Boston[-train,])

testMSE[i] <- mean((yhat.rf-boston.test)^2)

}

plot(testMSE,type="b",xlab="mtry",ylab="Test MSE") 45

Epilogue

• An analogue

– Decision tree: Validation set approach

• Use only half of the training set to build a model

• High variance

• Decision tree is a special case of random forest

• Validation set approach is a special case of K-fold CV

– Bagging: LOOCV

• A way to utilise almost all observations in the data set to train a model

• Bagging is a special case of Random Forest

• LOOCV is a special case of K-fold CV

– Random Forest: K-fold CV

• De-correlate the training sets

• More reduction on variance

46

Ensemble Methods

47

• Ensemble methods are techniques that create multiple “weak”

models and then combine them to obtain better predictive

performance.

In Bagging, any element has the same probability to appear in a new data set.

For Boosting the observations are weighted and therefore some of them will take part in

the new sets more often.

Boosting

48

In Boosting algorithms each classifier is trained on data, taking into account

the previous classifiers’ success.

After each training step, the weights are redistributed.

Misclassified data increases its weights to emphasise the most difficult cases.

In this way, subsequent learners will focus on them during their training.

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/

for more info.

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/

LAB

Hitters

50

• Explore the Hitters dataset

• Build a bagged model and a random forest model

– y: Salary

– x: all the features other than Salary

• Play with 1) set.seed 2) mtry and 3) ntree, plot

– a graph that shows test MSE vs mtry for different seeds

– a graph that shows test MSE vs ntree for different seeds

– Find the best/reasonably good mtry and ntree

• Check the importance of each predictor

• Check the OOB error estimation

• Compare the bagged model and RF model with the tree model

– Compare the test MSE

A Comparison on Different mtry

51

set.seed(1)

train <- sample(1:nrow(Boston), nrow(Boston)*0.5)

train.df <- Boston[train,]

test.df <- Boston[-train,]

x_train <- train.df[-14] #column 14 is the medv

x_test <- test.df[-14]

y_train <- train.df$medv

y_test <- test.df$medv

p <- ncol(x_train)

myForest1 <-randomForest(x=x_train, y=y_train, xtest=x_test, ytest=y_test, ntree=500, mtry=p)

myForest2 <-randomForest(x=x_train, y=y_train, xtest=x_test, ytest=y_test, ntree=500, mtry=p/2)

myForest3 <-randomForest(x=x_train, y=y_train, xtest=x_test, ytest=y_test, ntree=500, mtry=sqrt(p))

plot(1:500, myForest1$test$mse, main = "Test Error from Random Forests on the Boston dataset",

xlab = "Number of Trees", ylab = "Test MSE",type = "l", ylim = c(10, 20), lwd = 2, las=1, bty="n")

lines(1:500, myForest2$test$mse, col = "blue", lwd = 2)

lines(1:500, myForest3$test$mse, col = "orange", lwd = 2)

legend("topright", c("m = p", "m = p/2", "m = sqrt(p)"),

col = c("black", "blue", "orange"), cex = 1, lty = 1, lwd = 2, bty = "n")

mtext("Dependent variable: median value of owner-occupied homes `medv`")

A Comparison on Different mtry

52

Summary

53

• If test set is given in randomForest() through the xtest and/or ytest, a component

test is created. Assume ntree = 500, and nrow(xtest) = 200.

– For regression, predicted and mse are made available for the test set.

• predicted: The predicted values for the test set xtest.

– The length of predicted is 200.

– predicted[i] means the predicted value for the i-th row in xtest

• mse: The MSE between the predicted and ytest.

– The length of mse is 500.

– mse[j] means the MSE for the first j trees. It is grown incrementally.

– For classification, predicted, err.rate, confusion, votes are made available.

• predicted: The predicted values for the test set xtest. The length is 200.

• err.rate:the first col. of err.rate is the error rate between predicted and ytest.

– The length of err.rate[,1] is 500. err.rate[j,1] means the error rate for the first j trees.

• confusion: The confusion matrix for the randomForest of 500 trees.

• votes: For each predicted value, it shows the percentage of votes for each category.

– The size of votes is 200 rows and m categories

