
Big Data Analytics

Session 8

Support Vector Machines

1

So far

• Classifiers

– Logistic regression

– Decision trees

– Ensemble learning: Bagging and Random Forests

– SVM: Support Vector Machines

• Developed in 1990s

• Perform well on a variety of settings

• Often considered one of the best "out of the box" classifiers

2

Outline

• Maximal Margin Classifier

• The Support Vector Classifier

• (A glance at) The Support Vector Machine Classifier

3

Linearly Separable Classes

• Imagine a situation where you have a two-class classification
problem with two predictors X1 and X2.

• Suppose that the two classes are “linearly separable” i.e. one can
draw a straight line in which all points on one side belong to the
first class and points on the other side to the second class.

X1 X1

X2 X2

Linearly separable Linearly INseparable

4

Linearly Separable Classes

➔ This is the basic idea of a maximal margin classifier.

Recall:

in linear regression

Least squares line

The one with the

least residual sum

of squares

5

Linearly Separable Classes

• Then a natural approach is to find the straight line that gives the
biggest separation between the classes i.e. the points are as far
from the line as possible.

➔ This is the basic idea of a maximal margin classifier.

Recall:

in linear regression

Least squares line

The one with the

least residual sum

of squares

6

Maximal Margin Line

• Margin: the minimal (perpendicular) distance from all the

observations to the separation line

• Maximal margin line: the line for which the margin is largest

• We can then use maximal margin line to classify a test observation

– The classification of a point depends on which side of the line it falls on.

7

Support Vectors

• Support vectors: observations 1,2,3

– They are on the margin

– They are vectors (here 2-dimensional)

– They support the maximal margin line

• If these three points were moved, then the maximal margin line would move

– The maximal margin line depends only on support vectors

1

2 3

On the correct

side of the

margin

On the

margin

Left 4,5,6,7 / 8,9,10 1 / 2,3

6 754

8

9
10

The maximal margin

classifier depends only on

support vectors 8

Atlas

supporting

the sky

More Than Two Predictors

• This idea works just as well with more than two predictors.

• For example, with three predictors you want to find the plane

that produces the largest separation between the (two) classes.

• With more than three dimensions it becomes hard to visualise

a plane but it still exists.

• In general they are called hyper-planes.

– Two predictors: a line

– Three predictors: a plane

– More than three predictors: a hyper-plane

→ So we are looking for the maximal margin hyper-planes as maximal

margin classifiers. 9

Outline

• Maximal Margin Classifier

• The Support Vector Classifier

• The Support Vector Machine Classifier

10

Why Maximal Margin
Classifiers Are Not Ideal?

• Reason One:

– Maximal margin hyperplanes may not exist. ➔ linearly inseparable classes

In practice it is not usually

possible to find a hyper-plane that

perfectly separates two classes.

In other words, for any straight

line one draws there will always

be at least some points on the

wrong side of the line.

11

Why Maximal Margin
Classifiers Are Not Ideal?

• Reason Two:

– Even if maximal margin hyperplanes exist, they are extremely sensitive

to a change in a single observation. → easy to overfit

add one more

observation

12

Support Vector Classifiers (SVC)

• SVCs are based on a hyperplane that does not perfectly

separate the two classes, in the interest of

– Greater robustness to individual observations, and

– Better classification of most of the training observations.

– At the cost of worse classification of a few training observations.

• Soft margin

– We allow some observations to be on the incorrect side of the margin,

or even the incorrect side of the hyperplane.
13

SVC Examples

On the correct side

of the margin

On the

margin

On the wrong side of

the margin

On the wrong side

of the hyperplane

Left

Right

14

SVC Examples

On the correct

side of the

margin

On the

margin

On the wrong

side of the

margin

On the wrong

side of the

hyperplane

Left 3,4,5,6 / 7,10 2 / 9 1 / 8 none

Right 3,4,5,6 / 7,10 2 / 9 1 / 8 11 / 12

The latter two

columns are

not allowed in

the MMC.

The SVC

depends only on

support vectors

15

Cost

• A Cost allows us to specify the cost of a violation to the margin.

16

Cost

• A Cost allows us to specify the cost of a violation to the margin.

– Cost is a tuning parameter and is generally chosen via cross validation

• The choice of cost is very important

• It determines the extent to which the model underfits or overfits the data.

– When cost is large, then

• The margin will be narrow

• There will be few support vectors involved in determining the hyperplane

• Amounts to a classifier that is highly fit to the data

• Low bias and high variance

– When cost is small, then

• The margin will be wide

• Many support vectors will be involved in determining the hyperplane

• Amounts to fitting the data less hard

• High bias and low variance 17

1) Margin narrow or wide?
2) Fewer

or more

support

vectors?

3) Classifier highly

fit to the data or not?4) Bias? Variance?

Cost Examples

cost=0.01 cost=0.1

cost=1 cost=10

Which has

low variance,

but potentially

high bias?

18

Which has the

least cost?

Some Remarks

• In the book, “budget C” is used to explain the concept rather

than “cost”. Budget and cost are dual.

– The higher the budget is, the smaller the cost is.

– The lower the budget is, the bigger the cost is.

• Which points should influence optimality?

– All points

• Linear regression

• Naïve Bayes

• Linear discriminant analysis

– Only “difficult points” close to decision boundary

• Support vector machines

• Logistic regression (kind of) [See section 9.5 for more details]

➔ These models are robust to the behaviour of observations that are far away

from the hyperplane. 19

SVM and Logistic Regression

20

• Loss functions

– SVM’s hinge loss function is exactly zero for

observations that are on the correct side of the

margin.

– Logistic regression’s loss function is very

small for observations that are far from the

decision boundary.

• Comparison

– Due to the similarities between their loss

functions, logistic regression and the support

vector classifier often give very similar results.

– When the classes are well separated, SVMs

tend to behave better than logistic regression.

– In more overlapping regimes, logistic

regression is often preferred.

Support Vector Classifier

• To demonstrate the SVC (and SVM), we use

– e1071 library or

– LiblineaR library (useful for very large linear problems)

• Use svm() function to fit a support vector classifier/machine

– With kernel=“linear” to fit a SVC, otherwise a SVM

– With cost argument: specify the cost of a violation to the margin

• cost is small: wide margins

– many support vectors will be on the margin or will violate the margin

• cost is large: narrow margins

– Few support vectors will be on the margin or will violate the margin

21

A Two-Dimensional Example

set.seed(1)

x <- matrix(rnorm(20*2),ncol=2)

x

y <- c(rep(-1,10),rep(1,10))

y

[1] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

1 1 1 1 1 1 1 1 1 1

x[y==1,] <- x[y==1,]+1

x

> x

[,1] [,2]

[1,] -0.62645381 0.91897737

[2,] 0.18364332 0.78213630

[3,] -0.83562861 0.07456498

[4,] 1.59528080 -1.98935170

[5,] 0.32950777 0.61982575

[6,] -0.82046838 -0.05612874

[7,] 0.48742905 -0.15579551

[8,] 0.73832471 -1.47075238

[9,] 0.57578135 -0.47815006

[10,] -0.30538839 0.41794156

[11,] 1.51178117 1.35867955

[12,] 0.38984324 -0.10278773

[13,] -0.62124058 0.38767161

[14,] -2.21469989 -0.05380504

[15,] 1.12493092 -1.37705956

[16,] -0.04493361 -0.41499456

[17,] -0.01619026 -0.39428995

[18,] 0.94383621 -0.05931340

[19,] 0.82122120 1.10002537

[20,] 0.59390132 0.76317575

> x

[,1] [,2]

[1,] -0.6264538 0.91897737

[2,] 0.1836433 0.78213630

[3,] -0.8356286 0.07456498

[4,] 1.5952808 -1.98935170

[5,] 0.3295078 0.61982575

[6,] -0.8204684 -0.05612874

[7,] 0.4874291 -0.15579551

[8,] 0.7383247 -1.47075238

[9,] 0.5757814 -0.47815006

[10,] -0.3053884 0.41794156

[11,] 2.5117812 2.35867955

[12,] 1.3898432 0.89721227

[13,] 0.3787594 1.38767161

[14,] -1.2146999 0.94619496

[15,] 2.1249309 -0.37705956

[16,] 0.9550664 0.58500544

[17,] 0.9838097 0.60571005

[18,] 1.9438362 0.94068660

[19,] 1.8212212 2.10002537

[20,] 1.5939013 1.76317575

rnorm() generates a vector of random normal variables

matrix(rnorm(20*2), ncol=2) generates a 20*2 matrix of 40 random normal variables

By default, byrow=FALSE. In other words, fill the matrix column-wise. 22

A Two-Dimensional Example

• Check whether the classes are linearly separable

– plot(x,col=(3-y))

Not linearly

separable!

> palette()

> [1] "black" "red" "green3" "blue" "cyan" "magenta" "yellow" "gray" 23

y = -1 col = 4

y = 1 col = 2

A Two-Dimensional Example

• Encode the response as a factor variable by creating a data frame:
dat <- data.frame(x=x,y=as.factor(y))

library(e1071)

svmfit <- svm(y ~ ., data=dat, kernel="linear", cost=10, scale=FALSE)

• plot(svmfit,dat)

– y = -1 blue; y = +1 purple

– linear boundary

– One misclassification

– Support vectors: cross; remaining: circle

– 7 support vectors:

> svmfit$index

[1] 1 2 5 7 14 16 17

as.factor coerces its argument to a factor.
24

A Two-Dimensional Example

> summary(svmfit)

Call:

svm(formula = y ~ ., data = dat, kernel = "linear", cost = 10, scale = FALSE)

Parameters:

SVM-Type: C-classification

SVM-Kernel: linear

cost: 10

gamma: 0.5

Number of Support Vectors: 7

(4 3)

Number of Classes: 2

Levels:

-1 1

25

A Two-Dimensional Example

• Try a smaller cost:
svmfit <- svm(y~.,data=dat,kernel="linear",cost=0.1,scale=FALSE)

plot(svmfit,dat)

svmfit$index

[1] 1 2 3 4 5 7 9 10 12 13 14 15 16 17 18 20

• Smaller cost➔ a larger number of support vectors, a wider margin

cost = 0.1 cost = 10

26

Try Another Function

• tune() in e1071 library

– Perform 10-fold cross-validation

• Compare SVMs with a linear kernel, using a range of values of the cost parameter
set.seed(1)

tune.out<-tune(svm,y~.,data=dat,kernel="linear",ranges=list(cost=c(0.001,0.01,0.1,1,5,10,100)))

summary(tune.out)

Parameter tuning of ‘svm’:

- sampling method:

10-fold cross validation

- best parameters: cost 0.1

- best performance: 0.1

- Detailed performance results:

cost error dispersion

1 1e-03 0.70 0.4216370

2 1e-02 0.70 0.4216370

3 1e-01 0.10 0.2108185

4 1e+00 0.15 0.2415229

5 5e+00 0.15 0.2415229

6 1e+01 0.15 0.2415229

7 1e+02 0.15 0.2415229

bestmod <- tune.out$best.model

summary(bestmod)

Call:

best.tune(method = svm, train.x = y ~ ., data = dat,

ranges = list(cost = c(0.001, 0.01, 0.1, 1, 5, 10, 100)),

kernel = "linear”)

Parameters:

SVM-Type: C-classification

SVM-Kernel: linear

cost: 0.1

gamma: 0.5

Number of Support Vectors: 16 (8 8)

Number of Classes: 2

Another

example of

using CV to

compare and

select model
27

Predict Class Labels

• First generate a test data set
xtest <- matrix(rnorm(20*2),ncol=2)

ytest <- sample(c(-1,1),20,rep=TRUE)

#rep: Should sampling be with replacement?

ytest

[1] 1 -1 -1 1 1 -1 -1 -1 1 1 1 1

-1 -1 -1 -1 1 -1 -1 1

xtest

[,1] [,2]

[1,] 1.51178117 1.35867955

[2,] 0.38984324 -0.10278773

[3,] -0.62124058 0.38767161

[4,] -2.21469989 -0.05380504

[5,] 1.12493092 -1.37705956

[6,] -0.04493361 -0.41499456

[7,] -0.01619026 -0.39428995

[8,] 0.94383621 -0.05931340

[9,] 0.82122120 1.10002537

[10,] 0.59390132 0.76317575

[11,] 0.91897737 -0.16452360

……

[18,] -1.47075238 0.76853292

[19,] -0.47815006 -0.11234621

[20,] 0.41794156 0.88110773

xtest[ytest==1,] <- xtest[ytest==1,]+1

testdat <- data.frame(x=xtest,y=as.factor(ytest))

testdat

x.1 x.2 y

1 2.51178117 2.3586796 1

2 0.38984324 -0.1027877 -1

3 -0.62124058 0.3876716 -1

4 -1.21469989 0.9461950 1

5 2.12493092 -0.3770596 1

6 -0.04493361 -0.4149946 -1

7 -0.01619026 -0.3942900 -1

8 0.94383621 -0.0593134 -1

9 1.82122120 2.1000254 1

10 1.59390132 1.7631757 1

11 1.91897737 0.8354764 1

……

18 -1.47075238 0.7685329 -1

19 -0.47815006 -0.1123462 -1

20 1.41794156 1.8811077 1 28

The number of 1 and -1 in ytest might be different.

Predict Class Labels

• Then predict the class labels of these test observations

– First using the best model (with cost=0.1)

ypred <- predict(bestmod,testdat)

table(predict=ypred,truth=testdat$y) # build the confusion matrix

truth

predict -1 1

-1 11 1

1 0 8

– What if cost=0.01?

svmfit <- svm(y~.,data=dat,kernel="linear",cost=.01,scale=FALSE)

ypred <- predict(svmfit,testdat)

table(predict=ypred,truth=testdat$y)

truth

predict -1 1

-1 11 2

1 0 7

With cost = 0.01, 18 of the test observations are correctly classified.

With cost = 0.1, 19 of the test observations are correctly classified.

You may try cost=1, 5, 10 or other values 29

A Linearly Separable Example

• First generate a linearly separable training set

set.seed(1)

x <- matrix(rnorm(20*2),ncol=2)

y <- c(rep(-1,10),rep(1,10))

x[y==1,] <- x[y==1,]+1.5

plot(x,col=(y+5)/2,pch=19)

30

A Linearly Separable Example

• We fit the SVC and plot the resulting hyperplane, using a very large

value of cost so that no observations are misclassified

dat <- data.frame(x=x,y=as.factor(y))

svmfit <- svm(y ~ ., data=dat, kernel="linear", cost=1e5)

summary(svmfit)

Call:

svm(formula = y ~ ., data = dat, kernel = "linear", cost = 1e+05)

Parameters:

SVM-Type: C-classification

SVM-Kernel: linear

cost: 1e+05

gamma: 0.5

Number of Support Vectors: 3 (1 2)

Number of Classes: 2

Levels:

-1 1

plot(svmfit,dat) 31

A Linearly Separable Example

Only 3 support vectors were

used.

The margin is very narrow.

However, some circle

observations are very close to

the decision boundary.

It seems that this model will

perform poorly on test data.

Your task: generate a test

dataset and calculate the test

error rate.

32

A Linearly Separable Example

• Now try a smaller value of cost:
svmfit <- svm(y~.,data=dat,kernel="linear",cost=1)

summary(svmfit)

Call:

svm(formula = y ~ ., data = dat, kernel = "linear", cost = 1)

Parameters:

SVM-Type: C-classification

SVM-Kernel: linear

cost: 1

gamma: 0.5

Number of Support Vectors: 7 (4 3)

Number of Classes: 2

Levels:

-1 1

plot(svmfit,dat)

Misclassify one training observation, but

a much wider margin and 7 support vectors

May perform better than the previous one 33

Your task: To use the

same test dataset and

calculate the test error

rate. Compare the error

rate with the one on the

previous slide.

Outline

• Maximal Margin Classifier

• The Support Vector Classifier

• The Support Vector Machine Classifier

34

Non-Linear Classifier

• The support vector classifier is fairly easy to think about.

However, because it only allows for a linear decision boundary

it may not be all that powerful.

35

Support Vector Machines

• SVM maps data into a high-dimensional feature space

including non-linear features, then use a linear classifier there

In the original feature space:

Polynomial boundary

In the high-dimensional feature space:

Linear boundary

36

SVM Visualisation

37

https://www.youtube.com/watch?v=3liCbRZPrZA

How SVM Works – An Example

– In the original feature space:

• Two features: X1, X2

• Quadratic function: f (X1,X2) = 2X1
2 - 3X2

2 + X1 + 5X2 – 8

– In the high-dimensional feature space:

• Four features: Z1, Z2, Z3, Z4

• Linear function: f (Z1, Z2, Z3, Z4) = 2Z1 – 3Z2 + Z3 + 5Z4 – 8

– Transformations

• The function f (Z1, Z2, Z3, Z4) = 2Z1 – 3Z2 + Z3 + 5Z4 – 8 is

– the optimal linear separating hyperplane obtained in the high-dimensional feature space

• The transformations (or a basis) are as follows:

– Z1=X1
2 , Z2=X2

2, Z3=X1, Z4 =X2

– You don't have to preserve the dimensionality of the original dataset when doing

transformation

• If we know the basis, then we can easily obtain

– the optimal non-linear separating hyperplane in the original feature space

• This is basically how SVM works.
38

In Reality

• While conceptually the basis approach is how the support vector

machine works, there is some complicated maths (which I will spare

you) which means that we don’t actually choose the basis function.

• Instead we choose something called a kernel function which takes the

place of the basis.

• Common kernel functions include

– Linear

– Polynomial

– Radial Basis Function (Gaussian)

– Sigmoid

• Pick a Kernel that represents your prior knowledge about the problem.

39

Graphs of Polynomial Functions

40

A Simulation Example

• This is the simulation example from Chapter 1.

• Using a polynomial kernel we now allow SVM to produce a non-linear
decision boundary with a much lower test error rate.

(The purple lines represent the Bayes decision boundaries)

41

A typical polynomial

of degree 4

SVM with Radial Kernel
Visualisation

42
https://www.youtube.com/watch?v=NmhbQ-ag2z0

Radial Basis Kernel

• Using a Radial Basis Kernel you

get an even lower error rate.

43

Gamma in RBF Kernel

44

• Gamma controls the shape of the “peaks”

where you raise the points in the higher

dimensional space

• Small gamma: softer, broader bumps

• Large gamma: pointed bumps

Large gamma

Small gamma

Raise green points to

separate them from the red.

Gamma in RBF Kernel

• Gamma defines how far the influence of a single training

example reaches

• It determines which points can determine the decision boundary

– Large gamma:

• The decision boundary is only dependent on the points that are very close to it.

• Wiggly, jagged boundary (A lot of weight carried by the nearby points)

• Low bias and high variance ➔ overfitting

– Small gamma:

• The decision boundary is dependent even on the points that are quite far to it.

• Smooth boundary

• High bias and low variance

45

Support Vector Machine

• Change the value of kernel in the svm() function

– Polynomial kernel: kernel=“polynomial”

• Use degree argument to specify a degree for the polynomial kernel

– Radial kernel: kernel=“radial”

• Use gamma argument to specify a value of γ for the radial basis kernel

• First generate some data with

a non-linear class boundary
set.seed(1)

x <- matrix(rnorm(200*2),ncol=2)

x[1:100,] <- x[1:100,]+2

x[101:150,] <- x[101:150,]-2

y <- c(rep(1,150),rep(2,50))

dat <- data.frame(x=x, y=as.factor(y))
46

Support Vector Machine Example

train <- sample(200,100) #randomly split into training and testing groups

svmfit <- svm(y~., data=dat[train,], kernel="radial", gamma=1, cost=1)

plot(svmfit, dat[train,]) #gamma is the value of γ for the radial basis kernel

summary(svmfit)

Call:

svm(formula = y ~ ., data = dat[train,], kernel = "radial", gamma = 1, cost = 1)

Parameters:

SVM-Type: C-classification

SVM-Kernel: radial

cost: 1

gamma: 1

Number of Support Vectors: 37

(17 20)

Number of Classes: 2

Levels:

1 2

There are a fair number of training errors in this SVM fit.

47

Support Vector Machine Example

• What will happen if we increase the value of cost?

– Reduce the number of training errors

– More irregular boundary → risk of overfitting the data

svmfit <- svm(y ~ ., data=dat[train,], kernel="radial", gamma=1, cost=1e5)

plot(svmfit,dat[train,])

summary(svmfit)

Parameters:

SVM-Type: C-classification

SVM-Kernel: radial

cost: 1e+05

gamma: 1

Number of Support Vectors: 26 (12 14)

Number of Classes: 2

Levels:

1 2 48

Support Vector Machine Example

• Gamma = 100, cost = 1

49

Choosing Best Parameter Values

• Choose the best choice of γ and cost for an SVM with a radial kernel
set.seed(1)

tune.out <- tune(svm, y ~ ., data=dat[train,], kernel="radial",

ranges = list(cost=c(0.1,1,10,100,1000),gamma=c(0.5,1,2,3,4)))

summary(tune.out)

Parameter tuning of ‘svm’:

- sampling method: 10-fold cross validation

- best parameters:

cost gamma

1 2

- best performance: 0.12

- Detailed performance results:

cost gamma error dispersion

1 1e-01 0.5 0.27 0.11595018

2 1e+00 0.5 0.13 0.08232726

3 1e+01 0.5 0.15 0.07071068

……

50

Predicting Class Labels

• We can view the test set predictions for this model by applying the

predict() function to the data

We take the subset of the data frame using –train as an index set.

table(true=dat[-train,"y"], pred=predict(tune.out$best.model,newdata=dat[-train,]))

pred

true 1 2

1 74 3

2 7 16 10% of test observations are misclassified by this SVM.

The following code calculates the training error.

table(true=dat[train,"y"], pred=predict(tune.out$best.model,newdata=dat[train,]))

pred

true 1 2

1 69 4

2 5 22 9% of training observations are misclassified by this SVM. 51

Which Kernel to Choose

52https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Which Kernel to Use

• While reflecting on what a kernel is "good for" or when it

should be used, there are no hard and fast rules.

• In the absence of expert knowledge, the Radial Basis Function

kernel makes a good default kernel (once you have established

it is a problem requiring a non-linear model).

• Use CV to help you decide, but be careful of overfitting

53

More Classifiers to Compare

54

SVM With More than Two Classes

• One versus one (all-pair) classification

– svm() function in e1071 library uses this approach

– Suppose there are K classes

– Construct
𝐾(𝐾−1)

2
2-class SVMs (pairwise)

– Apply all those 2-class SVMs to classify the same test observation

– Tally the number of times that the test observation is assigned to each

of the K classes

– The most frequently assigned class is the final class

55

LAB

• 404+405

– One teacher Tingting + two TAs (Cosmin, Ylli)

– Will go through each question

• 414+415

– One teacher Nicos + one TA (Delik)

– Moderate teaching

• 403

– One TA (Pavel) answering questions

– Work alone or in a group

– May have group discussions

56

