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So far

• Classifiers

– Logistic regression

– Decision trees

– Ensemble learning: Bagging and Random Forests

– SVM: Support Vector Machines

• Developed in 1990s

• Perform well on a variety of  settings

• Often considered one of the best "out of the box" classifiers
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Outline

• Maximal Margin Classifier

• The Support Vector Classifier

• (A glance at) The Support Vector Machine Classifier
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Linearly Separable Classes

• Imagine a situation where you have a two-class classification 
problem with two predictors X1 and X2.

• Suppose that the two classes are “linearly separable” i.e. one can 
draw a straight line in which all points on one side belong to the 
first class and points on the other side to the second class.

X1 X1

X2 X2

Linearly separable Linearly INseparable
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Linearly Separable Classes

➔ This is the basic idea of a maximal margin classifier.

Recall: 

in linear regression

Least squares line

The one with the 

least residual sum 

of squares 
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Linearly Separable Classes

• Then a natural approach is to find the straight line that gives the 
biggest separation between the classes i.e. the points are as far 
from the line as possible.  

➔ This is the basic idea of a maximal margin classifier.

Recall: 

in linear regression

Least squares line

The one with the 

least residual sum 

of squares 
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Maximal Margin Line

• Margin: the minimal (perpendicular) distance from all the 

observations to the separation line

• Maximal margin line: the line for which the margin is largest

• We can then use maximal margin line to classify a test observation

– The classification of a point depends on which side of the line it falls on. 

7



Support Vectors

• Support vectors: observations 1,2,3 

– They are on the margin

– They are vectors (here 2-dimensional)

– They support the maximal margin line

• If these three points were moved, then the maximal margin line would move

– The maximal margin line depends only on support vectors

1

2 3

On the correct 

side of the 

margin

On the 

margin

Left 4,5,6,7 / 8,9,10 1 / 2,3

6 754

8

9
10

The maximal margin 

classifier depends only on 

support vectors 8

Atlas 

supporting 

the sky



More Than Two Predictors

• This idea works just as well with more than two predictors. 

• For example, with three predictors you want to find the plane 

that produces the largest separation between the (two) classes.

• With more than three dimensions it becomes hard to visualise

a plane but it still exists. 

• In general they are called hyper-planes. 

– Two predictors: a line

– Three predictors: a plane

– More than three predictors: a hyper-plane

→ So we are looking for the maximal margin hyper-planes as maximal 

margin classifiers. 9



Outline

• Maximal Margin Classifier

• The Support Vector Classifier

• The Support Vector Machine Classifier
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Why Maximal Margin 
Classifiers Are Not Ideal?

• Reason One:

– Maximal margin hyperplanes may not exist. ➔ linearly inseparable classes 

In practice it is not usually 

possible to find a hyper-plane that 

perfectly separates two classes.

In other words, for any straight 

line one draws there will always 

be at least some points on the 

wrong side of the line.

11



Why Maximal Margin 
Classifiers Are Not Ideal?

• Reason Two:

– Even if maximal margin hyperplanes exist, they are extremely sensitive 

to a change in a single observation. → easy to overfit

add one more 

observation
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Support Vector Classifiers (SVC)

• SVCs are based on a hyperplane that does not perfectly 

separate the two classes, in the interest of 

– Greater robustness to individual observations, and

– Better classification of most of the training observations.

– At the cost of worse classification of a few training observations.

• Soft margin 

– We allow some observations to be on the incorrect side of the margin, 

or even the incorrect side of the hyperplane. 
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SVC Examples

On the correct side 

of the margin

On the 

margin

On the wrong side of 

the margin

On the wrong side 

of the hyperplane

Left

Right
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SVC Examples

On the correct 

side of the 

margin

On the 

margin

On the wrong 

side of the 

margin

On the wrong 

side of the 

hyperplane

Left 3,4,5,6 / 7,10 2 / 9 1 / 8 none

Right 3,4,5,6 / 7,10 2 / 9 1 / 8 11 / 12

The latter two 

columns are 

not allowed in 

the MMC.

The SVC 

depends only on 

support vectors 
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Cost 

• A Cost allows us to specify the cost of a violation to the margin.
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Cost 

• A Cost allows us to specify the cost of a violation to the margin.

– Cost is a tuning parameter and is generally chosen via cross validation

• The choice of cost is very important

• It determines the extent to which the model underfits or overfits the data.

– When cost is large, then 

• The margin will be narrow 

• There will be few support vectors involved in determining the hyperplane

• Amounts to a classifier that is highly fit to the data

• Low bias and high variance

– When cost is small, then 

• The margin will be wide

• Many support vectors will be involved in determining the hyperplane

• Amounts to fitting the data less hard

• High bias and low variance 17

1) Margin narrow or wide?
2) Fewer 

or more 

support 

vectors?

3) Classifier highly 

fit to the data or not?4) Bias? Variance?



Cost Examples

cost=0.01 cost=0.1

cost=1 cost=10

Which has 

low variance, 

but potentially 

high bias?

18

Which has the 

least cost?



Some Remarks

• In the book, “budget C” is used to explain the concept rather 

than “cost”. Budget and cost are dual. 

– The higher the budget is, the smaller the cost is. 

– The lower the budget is, the bigger the cost is. 

• Which points should influence optimality?

– All points

• Linear regression

• Naïve Bayes

• Linear discriminant analysis

– Only “difficult points” close to decision boundary

• Support vector machines

• Logistic regression (kind of) [See section 9.5 for more details]

➔ These models are robust to the behaviour of observations that are far away 

from the hyperplane. 19



SVM and Logistic Regression

20

• Loss functions

– SVM’s hinge loss function is exactly zero for 

observations that are on the correct side of the 

margin. 

– Logistic regression’s loss function is very 

small for observations that are far from the 

decision boundary. 

• Comparison

– Due to the similarities between their loss 

functions, logistic regression and the support 

vector classifier often give very similar results. 

– When the classes are well separated, SVMs 

tend to behave better than logistic regression.

– In more overlapping regimes, logistic 

regression is often preferred. 



Support Vector Classifier

• To demonstrate the SVC (and SVM), we use 

– e1071 library or

– LiblineaR library (useful for very large linear problems)

• Use svm() function to fit a support vector classifier/machine

– With kernel=“linear” to fit a SVC, otherwise a SVM

– With cost argument: specify the cost of a violation to the margin

• cost is small: wide margins

– many support vectors will be on the margin or will violate the margin

• cost is large: narrow margins

– Few support vectors will be on the margin or will violate the margin
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A Two-Dimensional Example

set.seed(1)

x <- matrix(rnorm(20*2),ncol=2)

x

y <- c(rep(-1,10),rep(1,10))

y

[1] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  

1  1  1  1  1  1  1  1  1  1

x[y==1,] <- x[y==1,]+1

x

> x

[,1]        [,2]

[1,] -0.62645381  0.91897737

[2,]  0.18364332  0.78213630

[3,] -0.83562861  0.07456498

[4,]  1.59528080 -1.98935170

[5,]  0.32950777  0.61982575

[6,] -0.82046838 -0.05612874

[7,]  0.48742905 -0.15579551

[8,]  0.73832471 -1.47075238

[9,]  0.57578135 -0.47815006

[10,] -0.30538839  0.41794156

[11,]  1.51178117 1.35867955

[12,]  0.38984324 -0.10278773

[13,] -0.62124058  0.38767161

[14,] -2.21469989 -0.05380504

[15,]  1.12493092 -1.37705956

[16,] -0.04493361 -0.41499456

[17,] -0.01619026 -0.39428995

[18,]  0.94383621 -0.05931340

[19,]  0.82122120  1.10002537

[20,]  0.59390132  0.76317575

> x

[,1]        [,2]

[1,] -0.6264538  0.91897737

[2,]  0.1836433  0.78213630

[3,] -0.8356286  0.07456498

[4,]  1.5952808 -1.98935170

[5,]  0.3295078  0.61982575

[6,] -0.8204684 -0.05612874

[7,]  0.4874291 -0.15579551

[8,]  0.7383247 -1.47075238

[9,]  0.5757814 -0.47815006

[10,] -0.3053884  0.41794156

[11,]  2.5117812 2.35867955

[12,]  1.3898432  0.89721227

[13,]  0.3787594  1.38767161

[14,] -1.2146999  0.94619496

[15,]  2.1249309 -0.37705956

[16,]  0.9550664  0.58500544

[17,]  0.9838097  0.60571005

[18,]  1.9438362  0.94068660

[19,]  1.8212212  2.10002537

[20,]  1.5939013  1.76317575

rnorm() generates a vector of random normal variables

matrix(rnorm(20*2), ncol=2)  generates a 20*2 matrix of 40 random normal variables

By default, byrow=FALSE. In other words, fill the matrix column-wise. 22



A Two-Dimensional Example

• Check whether the classes are linearly separable

– plot(x,col=(3-y))

Not linearly 

separable!

> palette() 

> [1] "black" "red" "green3" "blue"  "cyan"  "magenta" "yellow"  "gray" 23

y = -1 col = 4 

y = 1  col = 2



A Two-Dimensional Example

• Encode the response as a factor variable by creating a data frame:
dat <- data.frame(x=x,y=as.factor(y))

library(e1071)

svmfit <- svm(y ~ ., data=dat, kernel="linear", cost=10, scale=FALSE)

• plot(svmfit,dat)

– y = -1 blue; y = +1 purple

– linear boundary

– One misclassification

– Support vectors: cross; remaining: circle

– 7 support vectors:

> svmfit$index

[1]  1  2  5  7 14 16 17

as.factor coerces its argument to a factor. 
24



A Two-Dimensional Example

> summary(svmfit)

Call:

svm(formula = y ~ ., data = dat, kernel = "linear", cost = 10, scale = FALSE)

Parameters:

SVM-Type:  C-classification 

SVM-Kernel:  linear 

cost:  10 

gamma:  0.5 

Number of Support Vectors:  7

( 4 3 )

Number of Classes:  2

Levels: 

-1 1
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A Two-Dimensional Example

• Try a smaller cost:
svmfit <- svm(y~.,data=dat,kernel="linear",cost=0.1,scale=FALSE)

plot(svmfit,dat)

svmfit$index

[1]  1  2 3  4  5  7 9 10 12 13 14 15 16 17 18 20

• Smaller cost➔ a larger number of support vectors, a wider margin

cost = 0.1 cost = 10

26



Try Another Function

• tune() in e1071 library

– Perform 10-fold cross-validation

• Compare SVMs with a linear kernel, using a range of values of the cost parameter
set.seed(1)

tune.out<-tune(svm,y~.,data=dat,kernel="linear",ranges=list(cost=c(0.001,0.01,0.1,1,5,10,100)))

summary(tune.out)

Parameter tuning of ‘svm’:

- sampling method: 

10-fold cross validation 

- best parameters: cost  0.1

- best performance: 0.1 

- Detailed performance results:

cost error dispersion

1 1e-03  0.70  0.4216370

2 1e-02  0.70  0.4216370

3 1e-01  0.10  0.2108185

4 1e+00  0.15  0.2415229

5 5e+00  0.15  0.2415229

6 1e+01  0.15  0.2415229

7 1e+02  0.15  0.2415229

bestmod <- tune.out$best.model

summary(bestmod)

Call:

best.tune(method = svm, train.x = y ~ ., data = dat, 

ranges = list(cost = c(0.001, 0.01, 0.1, 1, 5, 10, 100)), 

kernel = "linear”)

Parameters:

SVM-Type:  C-classification 

SVM-Kernel:  linear 

cost:  0.1 

gamma:  0.5 

Number of Support Vectors:  16  ( 8 8 )

Number of Classes:  2 

Another 

example of 

using CV to 

compare and 

select model
27



Predict Class Labels

• First generate a test data set
xtest <- matrix(rnorm(20*2),ncol=2)

ytest <- sample(c(-1,1),20,rep=TRUE)

#rep: Should sampling be with replacement?

ytest

[1]  1 -1 -1  1  1 -1 -1 -1  1  1  1  1 

-1 -1 -1 -1  1 -1 -1  1

xtest

[,1]        [,2]

[1,]  1.51178117  1.35867955

[2,]  0.38984324 -0.10278773

[3,] -0.62124058  0.38767161

[4,] -2.21469989 -0.05380504

[5,]  1.12493092 -1.37705956

[6,] -0.04493361 -0.41499456

[7,] -0.01619026 -0.39428995

[8,]  0.94383621 -0.05931340

[9,]  0.82122120  1.10002537

[10,]  0.59390132  0.76317575

[11,]  0.91897737 -0.16452360

……

[18,] -1.47075238  0.76853292

[19,] -0.47815006 -0.11234621

[20,]  0.41794156  0.88110773

xtest[ytest==1,] <- xtest[ytest==1,]+1

testdat <- data.frame(x=xtest,y=as.factor(ytest))

testdat

x.1        x.2  y

1   2.51178117  2.3586796  1

2   0.38984324 -0.1027877 -1

3  -0.62124058  0.3876716 -1

4  -1.21469989  0.9461950  1

5   2.12493092 -0.3770596  1

6  -0.04493361 -0.4149946 -1

7  -0.01619026 -0.3942900 -1

8   0.94383621 -0.0593134 -1

9   1.82122120  2.1000254  1

10  1.59390132  1.7631757  1

11  1.91897737  0.8354764  1

……

18 -1.47075238  0.7685329 -1

19 -0.47815006 -0.1123462 -1

20 1.41794156  1.8811077  1 28

# The number of 1 and -1 in ytest might be different. 



Predict Class Labels

• Then predict the class labels of these test observations

– First using the best model (with cost=0.1)

ypred <- predict(bestmod,testdat)

table(predict=ypred,truth=testdat$y)   # build the confusion matrix

truth

predict -1  1

-1 11  1

1   0  8

– What if cost=0.01?

svmfit <- svm(y~.,data=dat,kernel="linear",cost=.01,scale=FALSE)

ypred <- predict(svmfit,testdat)

table(predict=ypred,truth=testdat$y)

truth

predict -1  1

-1 11  2

1   0  7

With cost = 0.01, 18 of the test observations are correctly classified.

With cost = 0.1, 19 of the test observations are correctly classified.

You may try cost=1, 5, 10 or other values 29



A Linearly Separable Example

• First generate a linearly separable training set

set.seed(1)

x <- matrix(rnorm(20*2),ncol=2)

y <- c(rep(-1,10),rep(1,10))

x[y==1,] <- x[y==1,]+1.5

plot(x,col=(y+5)/2,pch=19)

30



A Linearly Separable Example

• We fit the SVC and plot the resulting hyperplane, using a very large 

value of cost so that no observations are misclassified

dat <- data.frame(x=x,y=as.factor(y))

svmfit <- svm(y ~ ., data=dat, kernel="linear", cost=1e5)

summary(svmfit)

Call:

svm(formula = y ~ ., data = dat, kernel = "linear", cost = 1e+05)

Parameters:

SVM-Type:  C-classification 

SVM-Kernel:  linear 

cost:  1e+05 

gamma:  0.5 

Number of Support Vectors:  3 ( 1 2 )

Number of Classes:  2 

Levels: 

-1 1

plot(svmfit,dat) 31



A Linearly Separable Example

Only 3 support vectors were 

used.

The margin is very narrow.

However, some circle 

observations are very close to 

the decision boundary.

It seems that this model will 

perform poorly on test data.

Your task: generate a test 

dataset and calculate the test 

error rate.

32



A Linearly Separable Example

• Now try a smaller value of cost:
svmfit <- svm(y~.,data=dat,kernel="linear",cost=1)

summary(svmfit)

Call:

svm(formula = y ~ ., data = dat, kernel = "linear", cost = 1)

Parameters:

SVM-Type:  C-classification 

SVM-Kernel:  linear 

cost:  1 

gamma:  0.5 

Number of Support Vectors:  7 ( 4 3 )

Number of Classes:  2 

Levels: 

-1 1

plot(svmfit,dat)

Misclassify one training observation, but

a much wider margin and 7 support vectors

May perform better than the previous one 33

Your task: To use the 

same test dataset and 

calculate the test error 

rate. Compare the error 

rate with the one on the 

previous slide.



Outline

• Maximal Margin Classifier

• The Support Vector Classifier

• The Support Vector Machine Classifier

34



Non-Linear Classifier

• The support vector classifier is fairly easy to think about. 

However, because it only allows for a linear decision boundary 

it may not be all that powerful.

35



Support Vector Machines

• SVM maps data into a high-dimensional feature space 

including non-linear features, then use a linear classifier there

In the original feature space: 

Polynomial boundary

In the high-dimensional feature space:

Linear boundary

36



SVM Visualisation

37

https://www.youtube.com/watch?v=3liCbRZPrZA



How SVM Works – An Example

– In the original feature space:

• Two features: X1, X2

• Quadratic function:        f (X1,X2) = 2X1
2 - 3X2

2 + X1 + 5X2 – 8

– In the high-dimensional feature space:

• Four features: Z1, Z2, Z3, Z4

• Linear function: f (Z1, Z2, Z3, Z4) = 2Z1 – 3Z2 + Z3 + 5Z4 – 8

– Transformations

• The function f (Z1, Z2, Z3, Z4) = 2Z1 – 3Z2 + Z3 + 5Z4 – 8 is 

– the optimal linear separating hyperplane obtained in the high-dimensional feature space

• The transformations (or a basis) are as follows:

– Z1=X1
2 ,  Z2=X2

2,   Z3=X1,  Z4 =X2

– You don't have to preserve the dimensionality of the original dataset when doing 

transformation

• If we know the basis, then we can easily obtain 

– the optimal non-linear separating hyperplane in the original feature space 

• This is basically how SVM works. 
38



In Reality

• While conceptually the basis approach is how the support vector 

machine works, there is some complicated maths (which I will spare 

you) which means that we don’t actually choose the basis function.

• Instead we choose something called a kernel function which takes the 

place of the basis.

• Common kernel functions include

– Linear

– Polynomial

– Radial Basis Function (Gaussian)

– Sigmoid

• Pick a Kernel that represents your prior knowledge about the problem.

39



Graphs of Polynomial Functions

40



A Simulation Example

• This is the simulation example from Chapter 1.

• Using a polynomial kernel we now allow SVM to produce a non-linear 
decision boundary with a much lower test error rate. 

(The purple lines represent the Bayes decision boundaries)

41

A typical polynomial 

of degree 4



SVM with Radial Kernel 
Visualisation

42
https://www.youtube.com/watch?v=NmhbQ-ag2z0



Radial Basis Kernel

• Using a Radial Basis Kernel you 

get an even lower error rate.

43



Gamma in RBF Kernel

44

• Gamma controls the shape of the “peaks” 

where you raise the points in the higher 

dimensional space

• Small gamma: softer, broader bumps

• Large gamma: pointed bumps

Large gamma

Small gamma

Raise green points to 

separate them from the red.



Gamma in RBF Kernel

• Gamma defines how far the influence of a single training 

example reaches

• It determines which points can determine the decision boundary

– Large gamma: 

• The decision boundary is only dependent on the points that are very close to it.

• Wiggly, jagged boundary (A lot of weight carried by the nearby points)

• Low bias and high variance ➔ overfitting

– Small gamma: 

• The decision boundary is dependent even on the points that are quite far to it.

• Smooth boundary

• High bias and low variance

45



Support Vector Machine

• Change the value of kernel in the svm() function

– Polynomial kernel: kernel=“polynomial”

• Use degree argument to specify a degree for the polynomial kernel

– Radial kernel: kernel=“radial”

• Use gamma argument to specify a value of  γ for the radial basis kernel

• First generate some data with 

a non-linear class boundary
set.seed(1)

x <- matrix(rnorm(200*2),ncol=2)

x[1:100,] <- x[1:100,]+2

x[101:150,] <- x[101:150,]-2

y <- c(rep(1,150),rep(2,50))

dat <- data.frame(x=x, y=as.factor(y))
46



Support Vector Machine Example

train <- sample(200,100) #randomly split into training and testing groups

svmfit <- svm(y~., data=dat[train,], kernel="radial", gamma=1, cost=1)

plot(svmfit, dat[train,]) #gamma is the value of γ for the radial basis kernel

summary(svmfit)

Call:

svm(formula = y ~ ., data = dat[train, ], kernel = "radial", gamma = 1, cost = 1)

Parameters:

SVM-Type:  C-classification 

SVM-Kernel:  radial 

cost:  1 

gamma:  1 

Number of Support Vectors:  37

( 17 20 )

Number of Classes:  2 

Levels: 

1 2

There are a fair number of training errors in this SVM fit.

47



Support Vector Machine Example

• What will happen if we increase the value of cost?

– Reduce the number of training errors

– More irregular boundary → risk of overfitting the data

svmfit <- svm(y ~ ., data=dat[train,], kernel="radial", gamma=1, cost=1e5)

plot(svmfit,dat[train,])

summary(svmfit)

Parameters:

SVM-Type:  C-classification 

SVM-Kernel:  radial 

cost:  1e+05 

gamma:  1 

Number of Support Vectors:  26 ( 12 14 )

Number of Classes:  2 

Levels: 

1 2 48



Support Vector Machine Example

• Gamma = 100, cost = 1

49



Choosing Best Parameter Values

• Choose the best choice of γ and cost for an SVM with a radial kernel
set.seed(1)

tune.out <- tune(svm, y ~ ., data=dat[train,], kernel="radial",  

ranges = list(cost=c(0.1,1,10,100,1000),gamma=c(0.5,1,2,3,4)))

summary(tune.out)

Parameter tuning of ‘svm’:

- sampling method: 10-fold cross validation 

- best parameters:

cost gamma

1     2

- best performance: 0.12 

- Detailed performance results:

cost gamma error dispersion

1  1e-01   0.5  0.27 0.11595018

2  1e+00   0.5  0.13 0.08232726

3  1e+01   0.5  0.15 0.07071068

……

50



Predicting Class Labels

• We can view the test set predictions for this model by applying the 

predict() function to the data

We take the subset of the data frame using –train as an index set. 

table(true=dat[-train,"y"], pred=predict(tune.out$best.model,newdata=dat[-train,]))

pred

true  1  2

1 74 3

2 7 16 10% of test observations are misclassified by this SVM. 

The following code calculates the training error.

table(true=dat[train,"y"], pred=predict(tune.out$best.model,newdata=dat[train,]))

pred

true  1  2

1 69 4

2 5 22 9% of training observations are misclassified by this SVM. 51



Which Kernel to Choose

52https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html



Which Kernel to Use

• While reflecting on what a kernel is "good for" or when it 

should be used, there are no hard and fast rules.

• In the absence of expert knowledge, the Radial Basis Function 

kernel makes a good default kernel (once you have established 

it is a problem requiring a non-linear model).

• Use CV to help you decide, but be careful of overfitting

53



More Classifiers to Compare

54



SVM With More than Two Classes

• One versus one (all-pair) classification

– svm() function in e1071 library uses this approach

– Suppose there are K classes

– Construct 
𝐾(𝐾−1)

2
2-class SVMs (pairwise)

– Apply all those 2-class SVMs to classify the same test observation

– Tally the number of times that the test observation is assigned to each 

of the K classes

– The most frequently assigned class is the final class

55



LAB

• 404+405 

– One teacher Tingting + two TAs (Cosmin, Ylli)

– Will go through each question

• 414+415

– One teacher Nicos + one TA (Delik)

– Moderate teaching

• 403

– One TA (Pavel) answering questions

– Work alone or in a group 

– May have group discussions
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