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Supervised Learning

• Tools:

– Regression: linear regression, 

regression trees (+ bagging, random forests)

– Classification: logistic regression, 

classification trees (+ bagging, random forests), 

SVM

• Assessments:

– The quality of the results obtained: 

cross validation, 

validation on an independent test set, etc
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Supervised vs. Unsupervised 
Learning

• Supervised Learning: both X and y are known

• Unsupervised Learning: only X

Supervised  Learning Unsupervised  Learning 3



Unsupervised Learning Examples

• Widely used in a number of fields

– Cancer research

• Goal: Assay gene expression levels in 100 patients with breast cancer

• Solution: Look for subgroups among the breast cancer sample, or among the genes, 

in order to obtain a better understand of the disease

– Online recommender system

• Goal: To show the items in which a customer is particularly likely to be interested

• Solution: Identify groups of shoppers with similar browsing and purchase histories, 

as well as items that are of particular interest to the shoppers within each group

– Search engine

• Goal: Choose what to display to an individual 

• Solution: Choose based on the click histories of other individuals with similar 

search patterns
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Unsupervised Learning

• More challenging: 

– more subjective

– no simple goal for the analysis: e.g, prediction of a response

– hard to assess: 

• no way to check, as the true answer is unknown → unsupervised!

• Approaches to unsupervised learning

– Clustering

• K-means, hierarchical clustering (today)

– Hidden Markov Models

– Feature extraction for dimension reduction

• Principal component analysis (next week)
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Outline

• What is Clustering?

• K-Means Clustering

• Hierarchical Clustering

• Final Thoughts
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Clustering

• Clustering refers to a set of techniques for finding subgroups, 

or clusters, in a dataset

• A good clustering is one when 

– the observations within a group are similar 

– but between groups are very different

• For example, suppose we collect p measurements on each of n

breast cancer patients. There may be different unknown types 

of cancer which we could discover by clustering the data
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Different Clustering Methods

• There are many different types of clustering methods

• We will concentrate on two of the most commonly used 

approaches

– K-Means Clustering

– Hierarchical Clustering
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K-Means Clustering

• To perform K-means clustering, one must first specify the 

desired number of clusters K

• Then the K-means algorithm will assign each observation to 

exactly one of the K clusters
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How does K-Means work?

• We would like to partition that dataset into K clusters

– Each observation belongs to at least one of the K clusters

– The clusters are non-overlapping, i.e. no observation belongs to more than 

one cluster   → Each observation belongs to at most one of the K clusters

➔ Each observation belongs to exactly one of the K clusters

• The objective is to have a minimal “within-cluster-variation”, i.e. the 

elements within a cluster should be as similar as possible

• One way of achieving this is to minimise the sum of all the pairwise 

squared Euclidean distances between the observations in each cluster
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Euclidean Distance

• The Euclidean distance between point s and t

is the length of the line segment connecting them

– One dimensional: d(s, t) = (s − t)2 = | s – t |

• s = 0.2, t = -2.8  ➔ d(s, t) = 3

– Two dimensional: d(s, t) = d((s1, s2), (t1, t2)) = (𝑠1 − 𝑡1)
2+(𝑠2 − 𝑡2)

2

• s = (1, 6.5), t = (4, 2.5) ➔ d(s, t) = (1 − 4)2+(6.5 − 2.5)2 = 5

– Three dimensional: d(s, t) = (𝑠1 − 𝑡1)
2+(𝑠2 − 𝑡2)

2+(𝑠3 − 𝑡3)
2

• s = (0.2, -1.5, 0), t = (-2.8, 2.5, 75) 

➔d(s, t) = (0.2 − (−2.8))2+(−1.5 − 2.5)2+(0 − 75)2 = 10
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3-Dimensional Euclidean Distance
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Euclidean Distance

• The Euclidean distance between point s and t

is the length of the line segment connecting them

– One dimensional: d(s, t) = (s − t)2 = | s – t |

• s = 0.2, t = -2.8  ➔ d(s, t) = 3

– Two dimensional: d(s, t) = d((s1, s2), (t1, t2)) = (𝑠1 − 𝑡1)
2+(𝑠2 − 𝑡2)

2

• s = (1, 6.5), t = (4, 2.5) ➔ d(s, t) = (1 − 4)2+(6.5 − 2.5)2 = 5

– Three dimensional: d(s, t) = (𝑠1 − 𝑡1)
2+(𝑠2 − 𝑡2)

2+(𝑠3 − 𝑡3)
2

• s = (0.2, -1.5, 0), t = (-2.8, 2.5, 75) 

➔d(s, t) = (0.2 − (−2.8))2+(−1.5 − 2.5)2+(0 − 75)2 = 10

- n dimensional: d(s, t) = (𝑠1 − 𝑡1)
2+(𝑠2 − 𝑡2)

2+…+ (𝑠𝑛 − 𝑡𝑛)
2

- Squared Euclidean distance: d2(s, t) = (s1 – t1)
2 + (s2 – t2)

2 + … + (sn – tn)
2

What is d(s,s)?
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Within-Cluster Variation

• Suppose we have 4 points (observations) in a cluster C, o1, o2, o3, o4, 

the sum of the pairwise squared Euclidean distances is

= d2(o1, o2) + d2(o1, o3) + d2(o1, o4) + d2(o2, o3) + d2(o2, o4) + d2(o3, o4)

• The Within-Cluster Variation of cluster C is W(C) =

– #C is the number of observations in the cluster C

– #C = 4 in this example

• Suppose we have K clusters, C1, C2, …, CK, the task is to minimise

the sum of all the within-cluster variations: 

W(C1) + W(C2) + …+ W(CK)

sum(C)

sum(C)

#C  
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K-Means Algorithm

• Initial Step: 

– Randomly assign each observation to one of K clusters

• Iterate until the cluster assignments stop changing: 

– For each of the K clusters, compute the cluster centroid. 

• A cluster centroid is the mean of the observations assigned to the cluster

• For example: In a cluster there are 2 observations with 4 features

– First observation: (2, 4, 6, 8), Second observation: (2.2, 4.4, 6.6, 8.8)

– Cluster centroid: (2.1, 4.2, 6.3, 8.4)

– Assign each observation to the cluster whose centroid is closest

• “closest” is defined using Euclidean distance

16



An Illustration of the K-Means Algorithm 

Random 

Assignment of 

points
Compute cluster centers 

from initial assignments

Assign points to closest 

cluster center

Computer new 

cluster centers

Now there is no 

further change so 

stop

K = 3

17



Local Optimums

• Because the K-means algorithm 

finds a local rather global 

optimum, it can

– get stuck in “local optimums” and 

– not find the best solution

– The results obtained will depend 

on the initial (random) assignment 

of each observation.

• Hence, it is important to 

– run the algorithm multiple times 

– with random starting points 

– to find a good solution

Bad 

Solution

Good 

Solution

18
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K-Means in R

• A simple simulated example in which there truly are two 

clusters in the data: 

– the first 25 observations have a mean shift relative to the next 25 

observations:

set.seed(2)

x <- matrix(rnorm(50*2),ncol=2)

x[1:25,1] <- x[1:25,1]+3

x[1:25,2] <- x[1:25,2]-4

plot(x)
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K-Means in R

• The function kmeans() performs K-means clustering in R

km.out <- kmeans(x,2,nstart=20)

km.out$cluster

[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 

[26] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

plot(x,col=(km.out$cluster+1),

main="K-Means Clustering Results with K=2",

xlab="",ylab="",

pch=20,cex=2)

cex number indicating the amount by which plotting

text and symbols should be scaled relative to the default. 

1=default, 

1.5 is 50% larger, 

0.5 is 50% smaller, etc

20> palette() 

> [1] "black" "red" "green3" "blue"  "cyan"  "magenta" "yellow"  "gray"



K-Means in R

• What if we have guessed K = 3 instead?

– For real data, in general we do not know the true number of clusters. 
> set.seed(4)

> km.out <- kmeans(x,3,nstart=20)

> km.out

K-means clustering with 3 clusters of sizes 10, 23, 17

Cluster means:

[,1]        [,2]

1  2.3001545 -2.69622023

2 -0.3820397 -0.08740753

3 3.7789567 -4.56200798

Clustering vector:

[1] 3 1 3 1 3 3 3 1 3 1 3 1 3 1 3 1 3 3 3 3 3 1 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2

Within cluster sum of squares by cluster:

[1] 19.56137 52.67700 25.74089 

(between_SS / total_SS =  79.3 %)

Available components:

[1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss" "betweenss"   "size"         "iter"         "ifault"      

 The centroids for three clusters

 withinss: W(C1)  W(C2)  W(C3)
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K-Means in R

22

plot(x,col=(km.out$cluster+1), xlab="", ylab="", 

main="K-Mean Clustering Results with K=3", pch=20, cex=2)



K-Means in R

• Some explanations on the available components:

– "cluster": a vector of integers (which cluster a point belongs to) 
• km.out$cluster: 3 1 3 1 3 3 3 1 3 1 3 1 3 1 3 1 3 3 3 3 3 1 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2

– "centers": The centroids of the clusters     

– "totss": The total sum of squares           (km.out$totss = 473.6179) 

– "withinss": Individual within-cluster sum of squares   

• W(C1),  W(C2), …, W(CK) (19.56137 52.67700 25.74089)

– "tot.withinss": The total within-cluster sum of squares 

• W(C1) + W(C2) +…+ W(CK)      (In R: sum(withinss))      (97.97927)

• We aim to minimise this – the objective

– "betweenss": The total between-cluster sum of squares   (375.6386)

• totss = tot.withinss + betweenss (473.6179 = 97.97927 + 375.6386)

– "size": The number of points in each cluster                 (10   23  17)
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K-Means in R

• To run the kmeans() function in R with multiple initial cluster 

assignments, we use the nstart argument.

– n: How many times the initial cluster assignments will be set

– kmeans() will report the best results

set.seed(3)

km.out <- kmeans(x,3,nstart=1)

km.out$tot.withinss

[1] 104.3319

km.out <- kmeans(x,3,nstart=20)

km.out$tot.withinss

[1] 97.97927  Recall: we are to minimise tot.withinss

• Strongly recommend to use a large value of nstart to avoid local optimum. 

• Important to set a random seed before performing K-means clustering

– To replicate the initial cluster assignments as well as the K-means output.
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Outline
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Hierarchical Clustering

• K-Means clustering requires choosing the number of clusters K.

• If we don’t want to do that, an alternative is to use Hierarchical 

Clustering

26



Agglomerative vs Divisive

• Two types of hierarchical clustering algorithms

– Agglomerative (i.e., bottom-up):

• Start with all points in their own group

• Until there is only one cluster, repeatedly: merge the two groups that have 

the smallest dissimilarity

– Divisive (i.e., top-down):

• Start with all points in one cluster

• Until all points are in their own cluster, repeatedly: split the group into two 

resulting in the biggest dissimilarity

• Agglomerative strategies are 

simpler, we’ll focus on them. 

• Divisive methods are still 

important, but we won’t be 

able to cover them in the 

lecture. 27



Hierarchical Agglomerative Clustering 
(HAC) Algorithm 

• The dendogram is produced as follows:

– Start with each point as a separate cluster (n clusters)

– Calculate a measure of dissimilarity between all points/clusters

– Fuse two clusters that are most similar so that there are now n-1 clusters

– Fuse next two most similar clusters so there are now n-2 clusters

– Continue until there is only 1 cluster

28



An Example of HAC Algorithm

Given these 9 observations, an 

agglomerative algorithm might decide on a 

clustering sequence as follows:

Start with 9 clusters

Step 1: {1}{2}{3}{4}{5}{6}{7}{8}{9}

Step 2: {1}{2}{3}{4}{5,7}{6}{8}{9} 

Step 3: {1,6} {2}{3}{4}{5,7}{8}{9}

Step 4: {1,6} {2}{3}{4}{5,7,8}{9}

Step 5: {1,4,6} {2}{3}{5,7,8}{9}

Step 6: {1,3,4,6} {2}{5,7,8}{9}

Step 7: {1,3,4,6} {2,5,7,8}{9}

Step 8: {1,3,4,6} {2,5,7,8,9}

Step 9: {1,2,3,4,5,6,7,8,9}

Terminate when all observations are fused

400 10. Unsupervised Learning
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F I G U R E 10.11. An i l lustration of the first few steps of the hierarchical

cluster ing algori thm, using the data from Figure 10.10, wi th complete linkage

and Euclidean distance. Top Left : Ini tial ly, there are nine distinct clusters,

{ 1} , { 2} , . . . , { 9} . Top Right : The two clusters that are closest together, { 5} and

{ 7} , are fused into a single cluster. Bot tom Left : The two clusters that are clos-

est together, { 6} and { 1} , are fused into a single cluster . Bot tom Right : The

two clusters that are closest together using complete linkage, { 8} and the cluster

{ 5, 7} , are fused into a single cluster.
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Dendrogram

• We can represent the sequence of clustering assignments as a 

dendrogram:

Step 1: {1}{2}{3}{4}{5}{6}{7}{8}{9}

Step 2: {1}{2}{3}{4}{5,7}{6}{8}{9} 

Step 3: {1,6} {2}{3}{4}{5,7}{8}{9}

Step 4: {1,6} {2}{3}{4}{5,7,8}{9}

Step 5: {1,4,6} {2}{3}{5,7,8}{9}

398 10. Unsupervised Learning
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F I G U R E 10.10. An i l lustration of how to proper ly interpret a dendrogram with

nine observations in two-dimensional space. Left : A dendrogram generated using

Euclidean distance and complete linkage. Observations 5 and 7 are qui te simi lar

to each other, as are observations 1 and 6. However, observation 9 is no more

similar to observation 2 than it is to observations 8, 5, and 7, even though obser-

vations 9 and 2 are close together in terms of hor izontal distance. This is because

observations 2, 8, 5, and 7 al l fuse with observation 9 at the same height, approx-

imately 1.8. Right : The raw data used to generate the dendrogram can be used to

confirm that indeed, observation 9 is no more simi lar to observation 2 than it is

to observations 8, 5, and 7.

drogram, as shown in the center and right-hand panels of Figure 10.9. The

dist inct sets of observat ions beneath the cut can be interpreted as clusters.

In the center panel of Figure 10.9, cut t ing the dendrogram at a height of

9 results in two clusters, shown in dist inct colors. In the right-hand panel,

cut t ing the dendrogram at a height of 5 results in three clusters. Further

cuts can be made as one descends the dendrogram in order to obtain any

number of clusters, between 1 (corresponding to no cut) and n (correspond-

ing to a cut at height 0, so that each observat ion is in its own cluster). In

other words, the height of the cut to thedendrogram serves thesameroleas

the K in K -means clustering: it cont rols the number of clusters obtained.

Figure 10.9 therefore highlights a very at t ract ive aspect of hierarchical

clustering: one single dendrogram can be used to obtain any number of

clusters. In pract ice, people often look at the dendrogram and select by eye

a sensible number of clusters, based on the heights of the fusion and the

number of clusters desired. In the case of Figure 10.9, one might choose to

select either two or three clusters. However, often the choice of where to

cut the dendrogram is not so clear.

The term hierarchical refers to the fact that clusters obtained by cut t ing

the dendrogram at a given height are necessarily nested within the clusters

obtained by cut t ing the dendrogram at any greater height . However, on

Step 6: {1,3,4,6} {2}{5,7,8}{9}

Step 7: {1,3,4,6} {2,5,7,8}{9}

Step 8: {1,3,4,6} {2,5,7,8,9}

Step 9: {1,2,3,4,5,6,7,8,9}
30



Choosing Clusters

• To choose clusters we draw lines across the dendrogram

• We can form any number of clusters depending on where we 

draw the break point.

One Cluster Two Clusters Three Clusters 31



Dendrogram Interpretation

• Dendrogram: convenient graphic to display a hierarchical 

sequence of clustering assignments. This is simply a tree where:

– Each node represents a group

– Each leaf node is a single observation

– Root node is the group containing the whole data set

– Each internal node has two children, representing the groups that were 

merged to form it.

- The earlier (lower in the tree) two observations 

fuse, the more similar they are to each other.

- Observations that fuse later are quite different.

- Height of fusing/merging (on vertical axis) 

indicates how dissimilar the two groups are
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How do we define dissimilarity?

• Implementing hierarchical clustering involves one obvious issue

• How do we define the dissimilarity, or linkage, between the 

fused (5,7,8) cluster and (1,6)? 

• There are four options:

– Single Linkage

– Complete Linkage

– Average Linkage

– Centroid Linkage

33



Single Linkage

• In single linkage (i.e., nearest-neighbor linkage), the 

dissimilarity between two clusters is the smallest dissimilarity 

between two observations in opposite clusters.

Single linkage 

score is the 

distance of the 

closest pair

34



Single Linkage Example

• Here n = 60 (n: number of obs.). Cutting the tree at height=0.9 

gives the following clustering assignments marked by colours

• Cut interpretation: for each observation obsi, there is another 

observation obsj in its cluster and their distance is <=0.9
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Complete Linkage

• In complete linkage (i.e., furthest-neighbor linkage), 

dissimilarity between two clusters is the largest dissimilarity 

between two observations in opposite clusters

Complete linkage 

score is the 

distance of the 

furthest pair

36



Complete Linkage Example

• Same data as before. Cutting the tree at height 5 gives the 

clustering assignments marked by colours

• Cut interpretation: for each observation obsi, every observation 

obsj in its cluster satisfies that their distance is <=5
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Average Linkage

• In average linkage, the dissimilarity between two clusters is 

the average dissimilarity over all points in opposite clusters

Average linkage 

score is the 

average distance 

across all pairs

38



Average Linkage Example

• Same data as before. Cutting the tree at height 2.5 gives 

clustering assignments marked by the colours

• Cut Interpretation: there really isn't a good one!
39



Centroid Linkage

• Centroid linkage score is the distance between the cluster 

centroids (cluster average)

• Cut Interpretation: There isn't one.
40



Shortcomings of Single Linkage

• Single linkage can have some practical problems:

– Single linkage suffers from chaining. In order to merge two groups, only 

need one pair of points to be close, irrespective of all others. Therefore 

clusters can be too spread out, and not compact enough.
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Shortcomings of Complete Linkage

• Complete linkage can have some practical problems:

– Complete linkage avoids chaining, but suffers from crowding. Because its 

score is based on the worst-case dissimilarity between pairs, a point can be 

closer to points in other clusters than to points in its own cluster. Clusters 

are compact, but not far enough apart.

42



Shortcomings of Average Linkage

• Average linkage tries to strike a balance. It uses average pairwise 

dissimilarity, so clusters tend to be relatively compact and relatively far 

apart.

• Average linkage isn’t perfect, it has its own problems:

– It is not clear what properties the resulting clusters have when we cut an average 

linkage tree at given height h. Single and complete linkage trees each had simple 

interpretations.

43



Shortcoming of Centroid Linkage

• Centroid linkage may produce a dendrogram with inversions

– mess up the visualisation, hard to interpret

• Inversion

– The height of a parent node is lower than the height of its children

44



Linkage Can be Important

• Single, complete, average linkage are widely used by statisticians.

– The dissimilarity scores between merged clusters only increase as we run 

the algorithm  ➔ produces a dendrogram with no inversions

– Average and complete linkage are generally preferred over single linkage, 

as they tend to yield evenly sized clusters

– Single linkage tends to yield extended clusters to which single leaves are 

fused one by one

• Centroid linkage is often used in biology.

– It is simple, easy to understand and easy to implement

– But it may have inversion
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Linkage Can be Important

• Here we have three clustering results for the same data

• The only difference is the linkage method but the results are 

very different
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Designing a Clever Radio System

• Suppose we have a bunch of songs, and 

dissimilarity scores between each pair. 

• We are building a clever radio system 

– a user is going to give us an initial song, and 

– a measure of how "risky" s/he is going to be, 

i.e., maximal tolerable dissimilarity between 

suggested songs

• The system will recommend songs that a 

user might like

• How could we use hierarchical clustering, 

and with what linkage?
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Exercise 

• Suppose that we have 5 observations, for which we compute a 
similarity (distance) matrix as follows: 

• On the basis of the similarity matrix, sketch the dendrogram
that results from hierarchically clustering these 5 observations 
using complete linkage. 

A B C D E

A 0

B 9 0

C 3 7 0

D 6 5 9 0

E 11 10 2 8 0

Try this yourself 

using the other 2 

linkage measures

Centroid linkage is 

not feasible
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Hierarchical Clustering in R

• The hclust() function implements hierarchical clustering in R.

• Task: To plot the hierarchical clustering dendrogram using 

complete, average and single linkage clustering (data x is from 

the k-means example)

hc.complete <- hclust(dist(x),method="complete")

# The dist() function is used to compute the 49*49 inter-observation Euclidean distance matrix

hc.average <- hclust(dist(x),method="average")

hc.single <- hclust(dist(x),method="single")

par(mfrow=c(1,3))  #show plots in 1 row, 3 columns

plot(hc.complete, main="Complete Linkage",xlab="",ylab="",cex=0.9)

plot(hc.average, main="Average Linkage",xlab="",ylab="",cex=0.9)

plot(hc.single, main="Single Linkage",xlab="",ylab="",cex=0.9)
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dist() Function

50

dist() computes the distances between the rows of a data matrix.

If a matrix A has n rows, then dist(A) is of size (n-1)×(n-1).

Example 1: 

Example 2: 



Hierarchical Clustering in R
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Hierarchical Clustering in R

• To determine the cluster labels for each observation associated 

with a given cut of the dendrogram, we can use the cutree() 

function

cutree(hc.complete,2)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

cutree(hc.average,2)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2

cutree(hc.single,2)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Choice of Dissimilarity Measure

• So far, we have considered using Euclidean distance as the 

dissimilarity measure

• However, an alternative measure that could make sense in 

some cases is the correlation based distance

– It considers two observations to be similar if their features are highly 

correlated, even though the observed values may be apart in terms of 

Euclidean distance. 
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Comparing Dissimilarity Measures

• In this example, we have 3 observations and p = 20 variables

• In terms of Euclidean distance obs. 1 and 3 are similar

• However, obs. 1 and 2 are highly correlated so would be 

considered similar in terms of correlation measure

The choice of dissimilarity measure 

is very important, as it has a strong 

effect on the resulting dendrogram. 

It depends on

• What type of data being clustered

• What scientific question at hand

54



Online Shopping Example

• Suppose we record the number of purchases of each item 

(columns) for each customer (rows)

• Using Euclidean distance, customers who have purchases very 

little will be clustered together

• Using correlation measure, customers who tend to purchase 

the same types of products will be clustered together even if 

the magnitude of their purchase may be quite different

– e.g., Shoppers who have bought items A and B but never C or D
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Correlation-Based Distance in R

• Suppose we have 4 customers and 3 items to choose from. 

Our dataset (matrix)  purchase is of the size 4*3. 

> purchase <- matrix(rnorm(4*3),ncol=3)  #4 observations, 3 features

• We are to use the correlation between customers (rows) as distances.

• Problem 1: cor(purchase) calculates correlations between columns (size 3*3).  

– Use transpose of the matrix, in R the t() function: t(purchase) (size 3*4)

– Then cor(t(purchase)) calculates the correlation between customers (size 4*4).

• Problem 2: correlations between -1 ... +1 and negative distances make no sense

– Use 1-cor(t(purchase)) to bring all the values between 0 and 2 (size 4*4).

• Problem 3: need a distance matrix form that hclust() recognises

– as.dist() converts an arbitrary square symmetric matrix into a triangular matrix

– 1-cor(t(purchase)) is 4*4, and as.dist(1-cor(t(purchase))) is 3*3 and is triangular. 

> dd <- as.dist(1-cor(t(purchase)))  

> par(mfrow=c(1,1))  #It will show on the whole of the screen

> plot(hclust(dd, method="complete"), xlab="", ylab="",

main="Complete Linkage with Correlation-Based Distance")
56



as.dist() and dist()

• dist() will calculate the distance

matrix between rows of the matrix

• as.dist() only will try to coerce an 

object to a distance matrix
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cor(matrix): return a symmetric

correlation matrix between

columns of matrix



Standardising the Variables

• Consider an online shop that sells two items: socks and 

computers

– Left: In terms of quantity, socks have higher weight

– Center: After standardising, socks and computers have equal weight

– Right: In terms of pound sales, computers have higher weight
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Scaling the Variables

• If the variables are measured on different scales, we might 

want to scale the variables to have standard deviation one.

– In this way each variable will in effect be given equal importance in the 

hierarchical/K-means clustering performed. 

– This actually applies to many statistical learning methods as a pre-

processing step.

• Whether or not to scale the variables before computing the 

dissimilarity measure depends on the application at hand.
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Scaling in R

xsc <- scale(x)  # Used to scale the variables before performing HC

par(mfrow=c(1,2))

plot(hclust(dist(xsc), method="complete"),

main="Hierarchical Clustering with Scaled Features")

plot(hc.complete, xlab="", ylab="", cex=0.9,

main="Without Scaled Features Complete Linkage")
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• Final Thoughts
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Practical Issues in Clustering 

• In order to perform clustering, some decisions must be made: 

– Should the features first be standardised? i.e. Have the variables 

centered to have a mean of zero and standard deviation of one?

– What dissimilarity measure should be used?

– In case of hierarchical clustering:

• What type of linkage should be used?

• Where should we cut the dendrogram in order to obtain clusters?

– In case of K-means clustering:

• How many clusters should we look for the data?

➔ These decisions will lead to very different results

• In practice, we try several different choices, and look for the 

one with the most useful or interpretable solution. There is no 

single right answer! 
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Final Thoughts

• Most importantly, one must be careful about how the results of 

a clustering analysis are reported

• These results should not be taken as the absolute truth about a 

dataset

• Rather, they should constitute a starting point for the 

developments of a scientific hypothesis and further study, 

preferably on independent data
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