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Unsupervised Learning

• Mainly used to support the selection of appropriate statistical 

learning tools and techniques

– Clustering

• K Means Clustering

• Hierarchical Clustering

– Principal Component Analysis
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Data Presentation

• Example: 7  Blood and urine 

measurements (wet chemistry)  

from 9 people (4 alcoholics, 5   

non-alcoholics).

• How to present the data visually?

H-WBC H-RBC H-Hgb H-Hct H-MCV H-MCH H-MCHCH-MCHC

A1 8.0000 4.8200 14.1000 41.0000 85.0000 29.0000 34.0000 

A2 7.3000 5.0200 14.7000 43.0000 86.0000 29.0000 34.0000 

A3 4.3000 4.4800 14.1000 41.0000 91.0000 32.0000 35.0000 

A4 7.5000 4.4700 14.9000 45.0000 101.0000 33.0000 33.0000 

A5 7.3000 5.5200 15.4000 46.0000 84.0000 28.0000 33.0000 

A6 6.9000 4.8600 16.0000 47.0000 97.0000 33.0000 34.0000 

A7 7.8000 4.6800 14.7000 43.0000 92.0000 31.0000 34.0000 

A8 8.6000 4.8200 15.8000 42.0000 88.0000 33.0000 37.0000 

A9 5.1000 4.7100 14.0000 43.0000 92.0000 30.0000 32.0000 

• We could plot the two-dimensional scatterplots of the data, each of 

which contains the 9 observations’ results on two of the measurements.

• How many scatterplots are there?

• What problems do you see here?

1. If the number of features is high  not possible to look at them all.

2. Most likely none of them are informative  each containing a small 

fraction of information in the data set. 
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PCA

• Principal components analysis (PCA) is a technique that can be 

used to simplify a dataset

– The principal components are computed

– Use those components to understand the data

• PCA is an unsupervised approach

– Involves only a set of features X1, X2, …, Xp , and no associated response Y

• PCA can be used for

– Reducing dimensionality (the number of features)

• to produce derived variables for use in supervised learning

– A tool for data visualisation
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PCA Toy Example

• Consider the following six 3D points

• If each component is stored in a byte, we need 3×6 = 18 bytes
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PCA Toy Example

• Looking closer, we can see that all the points are related 

geometrically: they are all the same point, scaled by a factor:

• They can be stored using only 9 bytes (50% savings!)

– Store one point (3 bytes) + the multiplying constants (6 bytes)
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Geometrical Interpretation

• View each point in 3D space

• But in this example, all the points happen to belong to a line

– A 1D subspace of the original 3D space

– The dimension has been reduced from 3 to 1

1

2

3
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Geometrical Interpretation

• Consider a new coordinate system where one of the axes is 

along the direction of the line:

• In this coordinate system, every point has only one non-zero 

coordinate: we only need to store 

– the direction of the line (a 3 byte image) and 

– the non-zero coordinate for each of the points (6 bytes)
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Principal Component Analysis (PCA)

• Given a set of points, how do we know if they can be compressed 

like in the previous example?

– The answer is to look into the covariance between the points

– The tool for doing this is called PCA

– PCA aims to fit straight lines to the data points. We call these straight lines 

"principal components". 

– There are as many principal components as there are variables. 

– The first principal component is the best straight line you can fit to the data. 

– The second principal component is the best straight line you can fit to the errors 

from the first principal component. 

– The third principal component is the best straight line you can fit to the errors from 

the first and second principal components, etc.
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Some Intuitive Explanations

• Projection of a 

Calder Mobile

• Projection of a 

book
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Some Intuitive Explanations

• Cider shop
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Some Intuitive Explanations

• Heart attack risk factors - height or weight or ?
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Some Background Mathematics

• Standard Deviation, Variance and Covariance

• Vectors and Matrices

• Covariance Matrix

• Eigenvectors and Eigenvalues
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Variance and Standard Deviation

• First recall: variance of one variable

Variance = Σ (x-Avg)^2 / N =36/4 =9

• Standard deviation is the square root of variance
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Covariance

• Variance of one variable

• Covariance of two variables

Covariance = Σ (Xi- Xavg)(Yi-Yavg) / N = (2+6-2+10)/4 = 4

covariance 

coefficient 15



Vectors and Matrices

Matrix size: (m × n) × (n × k) = m × k, 

e.g. (below), (2 × 2) × (2 × 1) = 2 × 1
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Vector Direction and Magnitude

• A vector quantity has both magnitude (length) and direction.

• and              have the same direction, but different 

magnitude (or lengths).  
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Covariance Matrix

• Recall that covariance is always measured between 2 dimensions 

(variables). If we have a dataset with more than 2 dimensions, there is more 

than one covariance measurement that can be calculated. 

• For example, for a 3-dimensional dataset (x,y,z), we could calculate 

cov(x,y), cov(x,z) and cov(y,z). 

• We use a covariance matrix like this:

– Note that cov(a,b) = cov(b,a), for any a and b. 

– So the matrix C is symmetrical about main diagonal. 
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Vector Direction and Magnitude

• A vector quantity has both magnitude (length) and direction.

• and            have the same direction, but different lengths.  

length is 

length is ? 
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Eigenvectors and Eigenvalues

• Given a matrix A, and a vector x, when A is used to transform x, 

the result is y = Ax, e.g., 

• Now an interesting question 

– Are there any vectors x which does not change its direction under this 

transformation? However allow the vector magnitude to vary by scalar λ.

– Such a question is of the form Ax = λx.

– Such special x are called eigenvectors and λ are called eigenvalues

y = Ax =

y = Ax = = λx
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Eigenvectors

• All the eigenvectors of a symmetric matrix are perpendicular, i.e., at right 

angles to each other, no matter how many dimensions there are.

– In maths terminologies, another word for perpendicular is orthogonal.

• Eigenvectors determine the directions.

• The length of a vector does not affect whether it’s an eigenvector or not. 

• Since the length of an eigenvector does not affect its direction, we can scale 

(or standardise) eigenvectors so that they have the same length of 1. 

, and the length of                       is 1.
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Eigenvalues

• Eigenvalues are closely related to eigenvectors

– They always come in pairs

– Recall Ax = λx

– 4 is the eigenvalue associated with the eigenvector 

• If we scale the eigenvector, the eigenvalue stays the same

Az = λz

2x = z
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Eigenvectors and Eigenvalues

• Eigenvectors can only be found for square matrices.

– Matrix Ap×p ✔

– Matrix Ap×q (p ≠ q)✖

• For a matrix Ap×p , there are at most p pairs of 

(eigenvector, eigenvalue).
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How PCA Works

• Given a dataset DS with n observations and p features, we can 

build a covariance matrix Cp×p

– Recall: There are at most p eigenvectors

• Compute a set of pairs of (eigenvector, eigenvalue)

– (e1, 0.382), (e2, 2.618), (e3, 1.439), …, (ep, 0.00096)

• Sort them by the eigenvalues in a descending order

– (e2, 2.618), (e3, 1.439), (e1, 0.382), …

• The first eigenvector is the first principal component (PC), the 

second eigenvector is the second PC, and so on. 

– The first PC: e2

– The second PC: e3

– The third PC: e1

– …

Intuitively, the larger the 

eigenvalue is, the more 

important the direction is 24



PCA Example – Step 1

x y

2.5 2.4

0.5 0.7

2.2 2.9

1.9 2.2

3.1 3.0

2.3 2.7

2 1.6

1 1.1

1.5 1.6

1.1 0.9

__

x - x
__

y - y

0.69 0.49

-1.31 -1.21

0.39 0.99

0.09 0.29

1.29 1.09

0.49 0.79

0.19 -0.31

-0.81 -0.81

-0.31 -0.31

-0.71 -1.01

Original 

data
Data with the 

means subtracted

Mean: 

(1.81, 1.91)

This becomes 

the new origin 

of the data from 

now on 

> x <- c(2.5, 0.5, 2.2, 1.9, 3.1, 2.3, 2, 1, 1.5, 1.1)

> mean(x)

[1] 1.81

> x - 1.81

[1]  0.69 -1.31  0.39  0.09  1.29  0.49  0.19 …

Before PCA is 

performed, the 

variables should 

be centered to 

have mean 0.
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PCA Example – Step 2

• Calculate the covariance matrix

• Since the non-diagonal elements (cov(x,y)) in this covariance 

matrix are positive, we should expect that both the x and y 

variable increase together.
x <- c(2.5, 0.5, 2.2, 1.9, 3.1, 2.3, 2, 1, 1.5, 1.1)

y <- c(2.4, 0.7, 2.9, 2.2, 3.0, 2.7, 1.6, 1.1, 1.6, 0.9)

M <- cbind(x,y)

cov(M)

> cov(x,y)

[1] 0.6154444

> cov(x,x)

[1] 0.6165556

> cov(y,y)

[1] 0.7165556
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PCA Example – Step 3

• Calculate the eigenvectors and eigenvalues of the covariance 

matrix

> CoMatrix <- cov(M)

> CoMatrix #covariance matrix

[,1]      [,2]

[1,] 0.6165556 0.6154444

[2,] 0.6154444 0.7165556

> eigen(CoMatrix) 

$values #The eigenvalues

[1] 1.2840277 0.0490834

$vectors     #The eigenvectors

[,1]       [,2]

[1,] 0.6778734 -0.7351787

[2,] 0.7351787  0.6778734

.

.
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PCA Example – Step 4

• Select the Principal 

Components (PC)

– Comparing the eigenvalues: 
1.2840277 > 0.0490834

– Then the first PC is
[,1] 

[1,] 0.6778734

[2,] 0.7351787

– And the second PC is
[,2] 

[1,] -0.7351787

[2,] 0.6778734
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> eigen(CoMatrix) 

$values #The eigenvalues

[1] 1.2840277 0.0490834

$vectors     #The eigenvectors

[,1]       [,2]

[1,] 0.6778734 -0.7351787

[2,] 0.7351787 0.6778734



Messy? Leave This Hassle to R

• Compute the Principal Components in R, hassle-free 

– No need to construct a covariance matrix

– No need to explicitly compute eigenvalues or eigenvectors

– No need to compare and sort the eigenvalues/eigenvectors

> DF.xy <- data.frame(

x=c(2.5, 0.5, 2.2, 1.9, 3.1, 2.3, 

2, 1, 1.5, 1.1), 

y=c(2.4, 0.7, 2.9, 2.2, 3.0, 2.7, 

1.6, 1.1, 1.6, 0.9))

> pr.xy <- prcomp(DF.xy, scale=FALSE)

> pr.xy$rotation

PC1 PC2

x -0.6778734  0.7351787

y -0.7351787 -0.6778734

> pr.xy$center # the centre of the new coordinates 

x y 1.81 1.91  # is the mean value

> pr.xy$scale # no scale  

[1] FALSE 

> pr.xy$sdev # the standard deviation  

[1] 1.1331495 0.2215477 

> pr.xy$sdev^2 # the squared sdev is variance

[1] 1.2840277 0.0490834 #  eigenvalues!!

> biplot(pr.xy, scale = FALSE)
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Biplot

• Biplot (left): display both the principal component scores and the 

principal component loadings (directions) - red is the original x and y axis

x

y

30



Biplots

x

y

• Rotate the biplot 
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Example: Marks 

• John, Mike and Kate get the following percentages for exams in Maths, 

Science, English and Music as follows:

• We can’t visualise the dataset above, so we use PCA to reduce its dimensions 

by retaining maximal amount of information about the variables

– For example, we could look at the types of subjects each student is more suited to.
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Example: Marks 

> DF <- data.frame(

Maths=c(80, 90, 95), 

Science=c(85, 85, 80),

English=c(60, 70, 40),

Music=c(55, 45, 50))

> pr.marks <- prcomp(DF, scale=FALSE)

> pr.marks$rotation #omit PC3

PC1         PC2       

Maths 0.27795606  0.76772853 

Science -0.17428077 -0.08162874 

English -0.94200929  0.19632732  

Music    0.07060547 -0.60447104 

> biplot(pr.marks, scale=FALSE)

John

 Mike

Kate

Kate is not good at English or Science

Mike is good at English, but rubbish at Music

John is not good at Maths, but good at Music

… 33



Example: Marks 

• The output from R means we can now plot each person’s score across all 

subjects in a 2D graph as follows:

• Which simplifies to

• You can now plot the scores in a 2D graph to get a sense of the type of 

subjects each student is perhaps more suited to. 

– However, the biplot function implicitly scales the variables and 

observations (type ?biplot.princomp for more details)

PC1         PC2       

Maths    0.27795606  0.76772853 

Science -0.17428077 -0.08162874 

English -0.94200929  0.19632732 

Music    0.07060547 -0.60447104 
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Example: Marks

35

John

 Mike

Kate

(18.13, 2.12)

(-12.74, 6.78)

(-5.39, -8.90)



Why Scaling?

• Variables may have different units, and different 

variance:
> apply(DF,2,var) #The apply function allows us to apply a 

Maths  Science    English     Music #function var to each row (1) 

58.333333 8.333333 233.333333 25.000000   #or column (2) of the dataset

• If performing PCA on the unscaled data, then the first 

PC will place almost all its weighting on English

(most variance) but little on Science (least variance)

• We usually scale the variables to have standard 

deviation one before we perform PCA.

• In certain settings, we choose not to scale the 

variables, i.e., variables corresponding to expression 

levels of p genes.

Without scaling

With scaling
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Scaling the Variables

• Without scaling

> pr.marks<- prcomp(DF, scale = FALSE)

> biplot(pr.marks, scale=FALSE)

• With scaling

> pr.marks.s <- prcomp(DF, scale = TRUE)

> biplot(pr.marks.s, scale=0)
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The Proportion of Variance Explained

• How much of the information in a given 

dataset is lost by projecting the 

observations onto the first few PCs?

– The Proportion of Variance Explained (PVE) 

by each component

– Each PC's variance / Total variance

> pr.marks.var <- pr.marks.s$sdev^2 

> pve <- pr.marks.var/sum(pr.marks.var)

> pve

[1] 6.250000e-01 3.750000e-01 7.183785e-31 

> plot(pve,xlab="Principal Component", 

ylab="Proportion of Variance Explained", 

type="b",ylim=c(0,1))  a scree plot

– Cumulate each PVE 

> plot(cumsum(pve),xlab="Principal Component", 

ylab="Cumulative Proportion of Variance 

Explained", type="b",ylim=c(0,1)) 

scree plot

not a scree plot
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Deciding How Many PCs to Use

• Goal: Use smallest number of PCs to get a good understanding of the data

– How many PCs are needed? No single answer 

• Eyeballing scree plot

– Looking for a point at which the proportion of variance explained by each 

subsequent principal component drops off.  an elbow

– When the drop ceases and the curve makes an elbow toward a less steep decline.

– This type of visual analysis is ad hoc
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Elbow in Scree Plot Example
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Elbow in Scree Plot Example
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Multiple elbows



Elbow in Scree Plot Example
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Deciding How Many PCs to Use

• In practice, we look at first few PCs to find interesting patterns.

– If no interesting patterns are found

 further PCs are unlikely to be interesting

– If first few PCs are interesting

•Continue to look at subsequent PCs 

•Until no further interesting patterns are found

• This is a subjective approach, generally used as a tool for exploratory 

data analysis.
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