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Predicting Algae Bloom
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Problem Description

• Harmful algae in rivers

– A serious ecological problem

• Strong impact on 

– river life forms and 

– water quality

• Objectives:

– Monitor and perform an early 

forecast of algae blooms 

• to improve the quality of rivers

• chemical monitoring is cheaper and easily automated than biological analysis 

(microscopic examination)

– Provide a better understanding of the factors influencing the algae frequencies
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Data Collection

• Several water samples were collected in different European 

rivers at different times during a period of approximately 1 year. 

• For each water sample, 

– different chemical properties were measured, as well as 

– the frequency of several harmful algae

• Some related characteristics were stored

– the season of the year

– the river size

– the river speed

• Data was collected in the context of the ERUDIT research Network 

– available in the UCI machine learning repository

– http://archive.ics.uci.edu/ml/datasets/Coil+1999+Competition+Data
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Data Description

• Two main datasets:

– Training dataset 

• 200 observations

• 11 predictors

– Nominal (3): season, size, speed

– Numerical (8): different chemical parameters measured in the water samples

» Maximum pH value, Minimum value of O2 (Oxygen)

» Mean value of  Cl, NO3
-, NH4

+, PO4
3-, PO4, chlorophyll

• 7 responses

– Seven frequency numbers of different harmful algae found in respective sample

– Test dataset

• 140 observations

• 11 predictors

• no responses

Goal: to predict the frequency of the 

seven algae for these 140 water samples
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Load the Data into R

• Download the data (in .txt form) to your working directory (getwd()) from 
http://www.dcc.fc.up.pt/~ltorgo/DataMiningWithR/datasets2.html or 

https://archive.ics.uci.edu/ml/machine-learning-databases/coil-mld/coil.html

– Analysis.txt: training data;  Eval.txt: test data

algae <- read.table('Analysis.txt', header=F, dec='.', 

col.names=c('season','size','speed','mxPH','mnO2','Cl','NO3','NH4','oPO4',

'PO4','Chla','a1','a2','a3','a4', 'a5','a6','a7'), 

na.strings=c('XXXXXXX'))

#header=F: indicates that the file to be read does not include a first line with variable names

#dec='.': the numbers use '.' to separate decimal places (e.g., 34.2)

#na.strings: unknown values are represented by XXXXXXX

or algae <- read.table('/Users/than/../Analysis.txt', header=F, dec='.', … )

/Users/than/../ is the directory where the training data is stored. 

> head(algae) 

season size  speed  mxPH mnO2 Cl    NO3    NH4     oPO4   PO4     Chla a1  a2   a3  a4  a5   a6  a7 

1 winter small medium 8.00 9.8 60.800 6.238 578.000 105.000 170.000 50.0    0.0 0.0 0.0 0.0 34.2 8.3 0.0 

2 spring small medium 8.35 8.0 57.750 1.288 370.000 428.750 558.750 1.3     1.4 7.6 4.8 1.9 6.7 0.0 2.1 

3 autumn small medium 8.10 11.4 40.020 5.330 346.667 125.667 187.057 15.6   3.3 53.6 1.9 0.0 0.0 0.0 9.7 

4 spring small medium 8.07 4.8 77.364 2.302 98.182 61.182 138.700 1.4       3.1 41.0 18.9 0.0 1.4 0.0 1.4 

5 autumn small medium 8.06 9.0 55.350 10.416 233.700 58.222 97.580 10.5     9.2  2.9 7.5 0.0 7.5 4.1 1.0 

6 winter small high   8.25 13.1 65.750 9.248 430.000 18.250 56.667 28.4     15.1 14.6 1.4 0.0 22.5 12.6 2.95

or library(DMwR)

http://www.dcc.fc.up.pt/~ltorgo/DataMiningWithR/datasets2.html


Descriptive Data Analysis

Data Visualisation and Summarisation
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Data Visualisation and Summarisation

• Use summary(algae)

– Notice the difference that nominal and numerical variables are presented

• Nominal: frequency counts

• Numerical: 5 number summary
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• Use graphs to check the shape of distribution
> hist(algae$mxPH) # the shape suggests that mxPH is nearly normal distributed



Data Visualisation and Summarisation

• Or boxplot
> boxplot(algae$oPO4, ylab='Orthophosphate (oPO4)') 

> abline(h=mean(algae$oPO4,na.rm=T),lty=2)
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Boxplots and Outliers
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In R, all the suspected outliers and outliers are unfilled circles.  



Boxplots and Outliers
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data is 1,2,3,4,5,6,7,8,x

Q1=3,   Q2=5,  Q3=7

IQR = 7-3 = 4

1.5*IQR = 6

3*IQR = 12

inner fence = Q3+1.5*IQR = 13

outer fence = Q3+3*IQR =19
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13

19

values1 = c(1:8,10) values2 = c(1:8,13)

values3 = c(1:8,14) values4 = c(1:8,20)



Outliers – A Remark

• Outliers are not necessarily "bad" data-points

• They may well be the most important, most information rich, 

part of the dataset

• Under no circumstances should they be automatically removed 

from the dataset

• Outliers may deserve special consideration 

– they may be the key to the phenomenon under study or the result of 

human blunders
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rug and jitter
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> values <- c(1,1,1,1,1,1,2)

> boxplot(values)

> rug(values, side=2)

> set.seed(7)

> jitter(values)

[1] 1.1955637 0.9590982   0.8462791   0.8278995   0.8974998   1.1168042   1.9360249

> values = c(1,1,1,1,1,1,2)

> boxplot(values, ylim=c(0.7,2.2))

> set.seed(7)

> rug(jitter(values), side=2)



Data Visualisation and Summarisation

• Or boxplot
> boxplot(algae$oPO4, ylab='Orthophosphate (oPO4)') 

> abline(h=mean(algae$oPO4,na.rm=T),lty=2)

> rug(jitter(algae$oPO4),side=2) #side=2 - left,  3-up,  4-right, 1-bottom
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jitter: 

Add a small amount of 

noise to a numeric 

vector.

rug: 

Adds a set of tick marks

along the base of a plot.



Data Visualisation and Summarisation

• Detect outliers with graphics
>plot(algae$NH4,xlab='')

>abline(h=mean(algae$NH4,na.rm=T),lty=1,col="red")

>abline(h=mean(algae$NH4,na.rm=T)+sd(algae$NH4,na.rm=T),lty=2,col="blue")

>abline(h=median(algae$NH4,na.rm=T),lty=3,col="green")

>identify(algae$NH4)

# identify is interactive: when a user click 

on the plotted dots with the left mouse, the 

row number of that observation will be shown.

Click right mouse to finish interaction.

identify might not work in RStudio, though.

Try the original R tool instead. 

• Detect outliers without graphics

> algae[algae$NH4 >19000,] 

season size speed mxPH mnO2 Cl NO3    NH4 oPO4 PO4 Chla a1  a2 a3 a4  a5  a6   a7 

NA   <NA>   <NA> <NA>  NA   NA   NA NA     NA NA   NA  NA   NA  NA NA NA  NA  NA   NA 

153  autumn medium high 7.3 11.8 44.205 45.65  24064 44   34  53.1 2.2 0  0  1.2 5.9 77.6 0 

NA.1 <NA>   <NA> <NA>  NA   NA   NA NA     NA NA   NA  NA   NA  NA NA NA  NA  NA   NA14



Data Preprocessing

Dealing with Missing Values
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Dealing With Unknown Values

• Unknown (missing) values

– are common in real-world problems

– may preclude the use of certain statistical learning approaches

• E.g., randomForest(), mean()

• Solutions

– Remove the cases with unknowns

– Fill in the unknown values by exploring the most frequent value

– Fill in the unknown values by exploring the correlations between variables

– Fill in the unknown values by exploring the similarity between cases

– Use tools that are able to handle these values
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Removing the Obs. with 
Unknown Values

• Before removing them, check/count them first
> library(DMwR)

> data(algae)       # load fresh data again before we try different ways of dealing with unknown values

> algae[!complete.cases(algae),] # check whether each obs is complete or not

season   size  speed mxPH mnO2    Cl   NO3 NH4    oPO4     PO4  Chla a1   a2  a3   a4  a5  a6  a7

28  autumn  small   high 6.80 11.1 9.000 0.630  20   4.000      NA 2.70 30.3  1.9 0.0  0.0 2.1 1.4 2.1

38  spring  small   high 8.00   NA 1.450 0.810  10   2.500   3.000  0.30 75.8  0.0 0.0  0.0 0.0 0.0 0.0

48  winter  small    low   NA 12.6 9.000 0.230  10   5.000   6.000  1.10 35.5  0.0 0.0  0.0 0.0 0.0 0.0

55  winter  small   high 6.60 10.8    NA 3.245  10   1.000   6.500    NA 24.3  0.0 0.0  0.0 0.0 0.0 0.0

56  spring  small medium 5.60 11.8    NA 2.220   5   1.000   1.000    NA 82.7  0.0 0.0  0.0 0.0 0.0 0.0

57  autumn  small medium 5.70 10.8    NA 2.550  10   1.000   4.000    NA 16.8  4.6 3.9 11.5 0.0 0.0 0.0

58  spring  small   high 6.60  9.5    NA 1.320  20   1.000   6.000    NA 46.8  0.0 0.0 28.8 0.0 0.0 0.0

59  summer  small   high 6.60 10.8    NA 2.640  10   2.000  11.000    NA 46.9  0.0 0.0 13.4 0.0 0.0 0.0

60  autumn  small medium 6.60 11.3    NA 4.170  10   1.000   6.000    NA 47.1  0.0 0.0  0.0 0.0 1.2 0.0

61  spring  small medium 6.50 10.4    NA 5.970  10   2.000  14.000    NA 66.9  0.0 0.0  0.0 0.0 0.0 0.0

62  summer  small medium 6.40   NA    NA NA NA NA 14.000    NA 19.4  0.0 0.0  2.0 0.0 3.9 1.7

63  autumn  small   high 7.83 11.7 4.083 1.328  18   3.333   6.667    NA 14.4  0.0 0.0  0.0 0.0 0.0 0.0

116 winter medium   high 9.70 10.8 0.222 0.406  10  22.444  10.111    NA 41.0  1.5 0.0  0.0 0.0 0.0 0.0

161 spring  large    low 9.00  5.8    NA 0.900 142 102.000 186.000 68.05  1.7 20.6 1.5  2.2 0.0 0.0 0.0

184 winter  large   high 8.00 10.9 9.055 0.825  40  21.083  56.091    NA 16.8 19.6 4.0  0.0 0.0 0.0 0.0

199 winter  large medium 8.00  7.6    NA    NA NA NA NA NA 0.0 12.5 3.7  1.0 0.0 0.0 4.9

> 

> nrow(algae[!complete.cases(algae),])

[1] 16

>

> algae <- na.omit(algae)

[1] 184
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Removing the Obs. with 
Unknown Values

• Probably think twice before removing so many observations
> library(DMwR)

> data(algae)       # load fresh data again before we try different ways of dealing with unknown values

> algae[!complete.cases(algae),] # check whether each observation is complete or not

season   size  speed mxPH mnO2    Cl   NO3 NH4    oPO4     PO4  Chla a1   a2  a3   a4  a5  a6  a7

28  autumn  small   high 6.80 11.1 9.000 0.630  20   4.000      NA 2.70 30.3  1.9 0.0  0.0 2.1 1.4 2.1

38  spring  small   high 8.00   NA 1.450 0.810  10   2.500   3.000  0.30 75.8  0.0 0.0  0.0 0.0 0.0 0.0

48  winter  small    low   NA 12.6 9.000 0.230  10   5.000   6.000  1.10 35.5  0.0 0.0  0.0 0.0 0.0 0.0

55  winter  small   high 6.60 10.8    NA 3.245  10   1.000   6.500    NA 24.3  0.0 0.0  0.0 0.0 0.0 0.0

56  spring  small medium 5.60 11.8    NA 2.220   5   1.000   1.000    NA 82.7  0.0 0.0  0.0 0.0 0.0 0.0

57  autumn  small medium 5.70 10.8    NA 2.550  10   1.000   4.000    NA 16.8  4.6 3.9 11.5 0.0 0.0 0.0

58  spring  small   high 6.60  9.5    NA 1.320  20   1.000   6.000    NA 46.8  0.0 0.0 28.8 0.0 0.0 0.0

59  summer  small   high 6.60 10.8    NA 2.640  10   2.000  11.000    NA 46.9  0.0 0.0 13.4 0.0 0.0 0.0

60  autumn  small medium 6.60 11.3    NA 4.170  10   1.000   6.000    NA 47.1  0.0 0.0  0.0 0.0 1.2 0.0

61  spring  small medium 6.50 10.4    NA 5.970  10   2.000  14.000    NA 66.9  0.0 0.0  0.0 0.0 0.0 0.0

62 summer  small medium 6.40   NA    NA NA NA NA 14.000    NA 19.4  0.0 0.0  2.0 0.0 3.9 1.7

63  autumn  small   high 7.83 11.7 4.083 1.328  18   3.333   6.667    NA 14.4  0.0 0.0  0.0 0.0 0.0 0.0

116 winter medium   high 9.70 10.8 0.222 0.406  10  22.444  10.111    NA 41.0  1.5 0.0  0.0 0.0 0.0 0.0

161 spring  large    low 9.00  5.8    NA 0.900 142 102.000 186.000 68.05  1.7 20.6 1.5  2.2 0.0 0.0 0.0

184 winter  large   high 8.00 10.9 9.055 0.825  40  21.083  56.091    NA 16.8 19.6 4.0  0.0 0.0 0.0 0.0

199 winter  large medium 8.00  7.6    NA    NA NA NA NA NA 0.0 12.5 3.7  1.0 0.0 0.0 4.9

> 

> manyNAs(algae) #returns the row numbers that have more than 20% of the columns with an NA. In this case, 18*20% = 3.6 columns.

[1] 62 199

> algae <- algae[-c(62,199),]   

> algae <- algae[-manyNAs(algae),]   # the last two commands have the same effect 18



Filling with Most Frequent Values

• Several alternatives can be chosen, with different trade-offs between

– the level of approximation, and 

– the computational complexity of the method

• First alternative (simplest and fastest)

– Use some statistics of centrality to fill in the unknown values

• mean, median, mode, etc

– choose mean if the distribution is nearly normal

– choose median if not

– For example, 
season   size  speed mxPH mnO2    Cl   NO3 NH4    oPO4     PO4  Chla a1   a2  a3   a4  a5  a6  a7

48  winter  small    low  NA 12.6 9.000 0.230  10   5.000   6.000  1.10 35.5  0.0 0.0  0.0 0.0 0.0 0.0

Recall that the mxPH is nearly normal distributed, we could use its mean value to fill in the hole.
>algae[48,'mxPH'] <- mean(algae$mxPH,na.rm=T)

#calculate the mean of the mxPH column while ignoring any NA values in this column

This method is simple, fast, 

thus appealing for large dataset.

However, it may introduce a 

large bias in the data. 
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Filling by Exploring Correlations

• An alternative to get less biased estimators for unknowns:

– to explore the relationships between variables

> cor(algae[,4:18],use="complete.obs")         #disregard obs with NAs

> symnum(cor(algae[,4:18],use="complete.obs")) #Symbolically encode a 

given numeric or logical vector or array

[1]   0 ' ' 0.3 '.' 0.6 ',' 0.8 '+' 0.9 '*' 0.95 'B' 1

NH4 and NO3 are positively correlated (0.72)

PO4 and oPO4 are highly correlated (above 0.9)

According to the domain expert, this was expected 

because the value of the total PO4 includes the value 

of oPO4

We will find the form of the linear correlation 

between these variables.
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How to Find Linear Relationship

• Find linear relationship between PO4 and oPO4

> data(algae)

> algae <- algae[-manyNAs(algae),]  

> lm(PO4 ~ oPO4, data=algae)

Call:

lm(formula = PO4 ~ oPO4, data = algae)

Coefficients:

(Intercept)         oPO4  

42.897        1.293

The linear model we have obtained is PO4 = 42.897 + 1.293×oPO4

• With this formula, we can fill in the unknown values of these unknowns, 

provided they are not both unknown.

– Remove the observations with both unknown (sample 62, 199)

– We have a single observation with an unknown value on PO4 (sample 28)
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Use the Linear Model to Predict

• Use PO4 = 42.897 + 1.293×oPO4 to predict the unknown PO4 at sample 28
> algae[28,'PO4'] <- 42.897 + 1.293 * algae[28,'oPO4']

> algae[28,]

season  size speed mxPH mnO2 Cl NO3 NH4 oPO4    PO4 Chla a1  a2 a3 a4  a5  a6  a7

28 autumn small  high  6.8 11.1  9 0.63  20    4 48.069 2.7 30.3 1.9  0  0 2.1 1.4 2.1

• This can be generalised to fill all missing PO4 values (if any)
> data(algae)

> algae <- algae[-manyNAs(algae),]  # delete both unknowns

> fillPO4 <- function(oP) {       

if (is.na(oP)) 

return(NA)  #if oPO4's value not available

else 

return(42.897 + 1.293 * oP) #else return the result derived by linear model

}

> algae[is.na(algae$PO4),'PO4'] <-

sapply(algae[is.na(algae$PO4),'oPO4'],fillPO4)

#This function is applied to all samples with unknown value on the variable PO4 22



Filling by Exploring Correlations

• For other observations with unknown values, we can explore the correlations 

between the variables and the nominal variables of this problem.

– E.g., mxPH and season

> histogram(~ mxPH | season, data=algae)

The values of mxPH are not 

seriously influenced by the season 

of the year when the samples were 

collected.
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Filling by Exploring Correlations

• If we try the same using the size of the river

> histogram(~ mxPH | size, data=algae)

What tendency can you observe?
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Filling by Exploring Similar Cases

• Another alternative is to use the similarities between the rows to 

fill in the unknown values

– If two water samples are similar, and one of them has an unknown value

• It's very probable that this value is similar to the value of the other sample

– How to define distance? Which distance can you think of?

• Euclidean distance!

– Approach:

• Find ten most similar cases of any water sample with some unknown value

• Use their values to fill in the unknown

– The median of the values of the ten nearest neighbours

> algae <- knnImputation(algae,k=10,meth='median') 

– The weighted average of the values of the neighbours

» The further a neighbour is, the less weight it has (usual weight: 1/d)

> algae <- knnImputation(algae,k=10) #in DMwR package
25



Obtaining Prediction Models

Multiple Linear Regression

Regression Trees
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Multiple Linear Regression

• The implementation of linear regression in R is not able to use 

datasets with unknown values

– Use the knn-preprocessed technique to fill in the unknowns. 
> data(algae)

> algae <- algae[-manyNAs(algae), ]

> clean.algae <- knnImputation(algae, k = 10)

- Multiple linear regression
> lm.a1 <- lm(a1 ~ .,data=clean.algae[,1:12]) # here consider a1 with other 11 predictors

……

Coefficients:

Estimate Std. Error t value Pr(>|t|)   

(Intercept)  42.942055  24.010879   1.788  0.07537 . 

seasonspring 3.726978   4.137741   0.901  0.36892   

seasonsummer 0.747597   4.020711   0.186  0.85270   

seasonwinter 3.692955   3.865391   0.955  0.34065   

sizemedium 3.263728   3.802051   0.858  0.39179   

sizesmall 9.682140   4.179971   2.316  0.02166 * 

speedlow 3.922084   4.706315   0.833  0.40573   

speedmedium 0.246764   3.241874   0.076  0.93941 

……

Nominal variables are 

encoded by dummy variables

Erh, where are seasonautumn, 

sizelarge and speedhigh?
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Measures Explained

Coefficients:

Estimate Std. Error t value Pr(>|t|)   

(Intercept)  42.942055  24.010879   1.788  0.07537 . 

……

mxPH -3.589118   2.703528  -1.328  0.18598   

mnO2          1.052636   0.705018   1.493  0.13715   

Cl -0.040172   0.033661  -1.193  0.23426   

NO3          -1.511235   0.551339  -2.741  0.00674 **

NH4           0.001634   0.001003   1.628  0.10516   

oPO4         -0.005435   0.039884  -0.136  0.89177   

PO4          -0.052241   0.030755  -1.699  0.09109 . 

Chla -0.088022   0.079998  -1.100  0.27265 

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

• t test: to see whether each coefficient is statistically significant (hypothesis H0: βi=0)

• Pr(>|t|): a value 0.0001 means that we are 99.99% confident that the coefficient is not null

– Large value → insignificant factor, small value → significant factor (notice those with *'s by R)

28
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Measures Explained

• R2 coefficients (multiple and adjusted)

– Degree of fit of the model

• pve: proportion variance explained (the smaller, the lack of fit)

• The adjusted coefficient is more demanding, as it takes into account the 

number of parameters in the model

Multiple R-squared:  0.3731, Adjusted R-squared:  0.3215 

• F-statistics and p-value

– To test H0: β1 = β2 = … = βm = 0 

(the target variable doe not depend on any of the predictors)

• p-value: 0.0001 means that we are 99.99% confident that the null hypothesis 

is not true. 

– If p value is too high (>0.1), it makes no sense to look at the t-test on individual 

coefficients

F-statistic: 7.223 on 15 and 182 DF,  p-value: 2.444e-12
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Simply the Linear Model

• Some predictors have a small significance, we could 

eliminate them from the model
> anova(lm.a1)  # ANOVA: analysis of variance

Analysis of Variance Table

Response: a1

Df Sum Sq Mean Sq F value    Pr(>F)    

season      3     85 28.2  0.0905 0.9651944    

size        2  11401 5700.7 18.3088  5.69e-08 ***

speed       2   3934 1967.2  6.3179 0.0022244 ** 

mxPH 1   1329 1328.8  4.2677 0.0402613 *  

mnO2        1   2287 2286.8  7.3444 0.0073705 ** 

Cl 1   4304 4304.3 13.8239 0.0002671 ***

NO3         1   3418 3418.5 10.9789 0.0011118 ** 

NH4         1    404 403.6  1.2963 0.2563847    

oPO4        1  4788  4788.0 15.3774 0.0001246 ***

PO4         1   1406 1405.6  4.5142 0.0349635 *  

Chla 1    377 377.0  1.2107 0.2726544    

Residuals 182  56668   311.4                      

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

It will give us the reduction 

in the residual sum of 

squares when adding each 

variable in turn

season contributes the 

least to the reduction of the 

fitting error of the model

30



Update the Model

• Remove season from the model
> lm2.a1 <- update(lm.a1, . ~ . - season)

> summary(lm2.a1)

Call:

lm(formula = a1 ~ size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + 

oPO4 + PO4 + Chla, data = clean.algae[, 1:12])

Coefficients:

Estimate Std. Error t value Pr(>|t|)   

(Intercept) 44.9532874 23.2378377   1.934  0.05458 . 

……

speedmedium -0.2976867  3.1818585  -0.094  0.92556   

mxPH -3.2684281  2.6576592  -1.230  0.22033   

mnO2         0.8011759  0.6589644   1.216  0.22561   

Cl -0.0381881  0.0333791  -1.144  0.25407   

……

Multiple R-squared:  0.3682, Adjusted R-squared:  0.3272 

F-statistic: 8.984 on 12 and 185 DF,  p-value: 1.762e-13

This fit has improved a bit, 

but still not too impressive

31
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Further AVONA Analysis

• Comparison between the two models
> anova(lm.a1,lm2.a1)

Analysis of Variance Table

Model 1: a1 ~ season + size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + 

oPO4 + PO4 + Chla

Model 2: a1 ~          size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + 

oPO4 + PO4 + Chla

Res.Df RSS   Df Sum of Sq F Pr(>F)

1  182    56668                           

2 185    57116  -3   -447.62 0.4792 0.6971

The second model is better, as it has a smaller sum of squares

However, with Pr(>F)=0.6971, it means that only with around 30% confidence we can 

say the two models are different

→ In other words, the difference between the two models are not significant

→ The second model is simpler
32



Automatic Model Simplification

• The step function will show you how to simplify the linear 

model step by step
> final.lm=step(lm.a1)

Start:  AIC=1152.03 #AIC stands for Akaike Information Criterion 

a1 ~ season + size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 + PO4 + Chla

#omit several steps in the middle, the last step is:

Step:  AIC=1140.38 # step function use AIC to perform model search

a1 ~ size + mxPH + Cl + NO3 + PO4

Df Sum of Sq RSS    AIC

<none>              58517 1140.4

- mxPH 1     784.1 59301 1141.0

- Cl 1     835.6 59353 1141.2

- NO3   1    1987.9 60505 1145.0

- size  2    2664.3 61181 1145.2

- PO4   1    8575.8 67093 1165.5
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AIC offers an estimate of the relative

information lost when a given model is used 

to represent the process that generated.

It tells nothing about the absolute quality of a 

model, only the quality relative to other 

models. Thus, if all the candidate models fit 

poorly, AIC will not give any warning of that.



Analyse the Final Model

> summary(final.lm)

Call:

lm(formula = a1 ~ size + mxPH + Cl + NO3 + PO4, data = clean.algae[, 1:12])

Residuals:

Min      1Q  Median      3Q     Max 

-28.874 -12.732  -3.741   8.424  62.926 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 57.28555   20.96132   2.733  0.00687 ** 

sizemedium 2.80050    3.40190   0.823  0.41141    

sizesmall 10.40636    3.82243   2.722  0.00708 ** 

mxPH -3.97076    2.48204  -1.600  0.11130    

Cl -0.05227    0.03165  -1.651  0.10028    

NO3         -0.89529    0.35148  -2.547  0.01165 *  

PO4         -0.05911    0.01117  -5.291 3.32e-07 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 17.5 on 191 degrees of freedom

Multiple R-squared:  0.3527, Adjusted R-squared:  0.3324 

F-statistic: 17.35 on 6 and 191 DF,  p-value: 5.554e-16

In multiple regression, the 

proportion of variance explained 

(PVE) is equal to (adjusted) R2.

The PVE is still not very 

interesting (0.3324).

A sign that linearity assumption 

of this model is inadequate for 

the domain.
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Obtaining Prediction Models

Multiple Linear Regression

Regression Trees
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Build a Regression Tree

• It can be done in the same way as building a classification tree

> library(tree)

> data(algae)

> algae<-algae[-manyNAs(algae),]

> rt.a1<-tree(a1~.,algae[,1:12])

> text(rt.a1,pretty=0)
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Build the Tree using Train Part

• Now we randomly sample a train set and build the regression 

tree based on the set
> nrow(algae)

[1] 198

> set.seed(2)

> train.a1 <- sample(1:nrow(algae),nrow(algae)/2)

> rt.a1.train <- tree(a1~.,algae[,1:12],subset=train)

> plot(rt.a1.train)

> text(rt.a1.train,pretty=0)
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Use CV to Check Whether to Prune

• Cross validation is used to see whether the tree rt.a1.train

needs to be pruned
> cv.rt.train <- cv.tree(rt.a1.train)

> plot(cv.rt.train$size,cv.rt.train$dev,type='b')

The best tree 

(the one with 

the minimum 

MSE) is of the 

size 5
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Prune the Tree

• Prune the tree to be of size 5:
> prune.rt.a1 <- prune.tree(rt.a1.train,best=5)

> plot(prune.rt.a1)

> text(prune.rt.a1,pretty=0)
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Performance Evaluation –
Regression Tree

• We use the test part to evaluate the performance
> rt.a1.test <- algae[-train,"a1"]

> yhat.rt.a1.prune <- predict(prune.rt.a1,newdata=algae[-train,1:12])

> mean((yhat.rt.a1.prune-rt.a1.test)^2)

[1] 297.0548

> plot(yhat.rt.a1.prune,rt.a1.test)

> abline(0,1)
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Using Bagging

• Since the bagging/randomForest method requires no missing 

values, we start from the dataset clean.algae
> set.seed(20)

> bag.train <- sample(1:nrow(clean.algae),99)

> bag.a1.train <- randomForest(a1~.,clean.algae[1:12],

subset=bag.train,mtry=11,importance=T)

> bag.a1.train

Call:

randomForest(formula = a1 ~ ., data = clean.algae[, 1:12], mtry =11,      

importance = T, subset = bag.train) 

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 11

Mean of squared residuals: 271.161

% Var explained: 42.9

This PVE is 

larger than the 

linear model41



Performance Evaluation -
Bagging

• How well does this bagged model perform on the test set?

> yhat.bag <- predict(bag.a1.train,newdata=clean.algae[-bag.train,1:12])

> clean.algae.test <- clean.algae[-bag.train,"a1"]

> mean((yhat.bag-clean.algae.test)^2)

[1] 279.9227 

> plot(yhat.bag,clean.algae.test)

> abline(0,1)  

This MSE is smaller 

than the best tree

This looks better than in the 

regression tree →

You may play with the number of 

trees in the bagging at home (ntree=i)
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Which Predictors are Important?

> importance(bag.a1.train)

%IncMSE IncNodePurity

season -0.78908700     1168.1408

size    2.04011486      439.9201

speed   0.95764449      410.7687

mxPH 3.15721118     1878.4553

mnO2    0.07241614     1402.3103

Cl 11.17164253     8361.5771

NO3     4.13772152     1904.3340

NH4     4.34200936     2552.3389

oPO4   12.77819198     9659.2113

PO4    13.97331416     9281.1592

Chla 13.27516985     7345.5980

> varImpPlot(bag.a1.train)
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Using Random Forest 

• Choose a smaller mtry value, usually p/3 when building a 

random forest for regression trees

– mtry = 11/3 ≈ 3 or 4

> set.seed(20)

> rf.a1.train.4 <- randomForest(a1~.,clean.algae[,1:12], subset=bag.train, 

mtry=4,importance=T)

> yhat.rf <- predict(rf.a1.train.4,newdata=clean.algae[-bag.train,1:12])

> mean((yhat.rf-clean.algae.test)^2)

[1] 273.3071

> set.seed(20)

> rf.a1.train.3 <- randomForest(a1~.,clean.algae[,1:12],subset=bag.train, 

mtry=3,importance=T)

> yhat.rf <- predict(rf.a1.train.3,newdata=clean.algae[-bag.train,1:12])

> mean((yhat.rf-clean.algae.test)^2)

[1] 272.3034

The PVE of rf.a1.train.3 is 49.6% (use summary()), still not very fit

Probably try nonlinear models (polynomials, etc), something for you to try at home, too

mtry = 3 is slightly better

You may find the best mtry at home
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Prediction for New Test Set
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Prediction for the Algae

• We are given 140 test samples, whose algae levels are unknown. 

• We will choose the best models to obtain these predictions.

– To obtain unbiased estimates of MSE for a set of models

• By means of a cross-validation experimental process

• For simplicity, we only predict a1

• For a1, we have already shown that the randomForest model 

rf.a1.train.3 is the best model

– Use rf.a1.train.3 to make the prediction
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Unknowns in the Test Data

• There are unknowns in the test data

• We could use knnImputation() as in the training dataset

– Use other test cases to fill in the unknowns → not ideal

– Use training data to find the neighbours instead

• use knnImputation(), but with an extra argument

> clean.test.algae <- knnImputation(test.algae,k=10,distData=algae[,1:11])

# The distData argument allows you to supply an extra set of data (i.e., the 

training dataset) where the ten nearest neighbours are to be found for each case 
with unknowns in the test.algae dataset.
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Make the Prediction

• Finally,…
> preds <- rep(0,140)

> preds <- predict(rf.a1.train.3, newdata=clean.test.algae, mtry=3, importance=T)

> preds

1         2         3         4         5         6         7         8         9 

7.266943 10.458083 13.387457 13.542400 27.145823 33.591357 35.073133 37.611920 38.065740 

10        11        12        13        14        15        16        17        18 

36.190503 10.706703 15.288940 40.884010 38.163287 37.630820 26.044157 10.487700 20.337720 

19        20        21        22        23        24        25        26        27 

40.361043 54.538080  6.965607  4.724927  4.981443 11.896803  6.452217  5.023043 24.228200 

28        29        30        31        32        33        34        35        36 

43.114077 27.373763 23.633090 26.444843 20.911110 32.294507 38.157100 55.714590 35.624243 

37        38        39        40        41        42        43        44        45 

35.052197 51.597240 33.467427 39.437900 37.612970 16.618960 10.317370  9.975300 10.411817 

46        47        48        49        50        51        52        53        54 

3.337300 10.015007  5.438577 17.838527 31.355300 11.017717  3.678907  5.509753  3.913507 

55        56        57        58        59        60        61        62        63 

4.779007 12.729870 13.189073 11.902373 17.185123 14.290100  6.853557 21.050563 16.727573 

64        65        66        67        68        69        70        71        72 

8.964617 33.982597 27.070277 18.403937 40.085983 43.577550  4.610323  6.584670  4.338993 

......
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