
Big Data Analytics

Session 11

Predicting Algae Bloom

1

Problem Description

• Harmful algae in rivers

– A serious ecological problem

• Strong impact on

– river life forms and

– water quality

• Objectives:

– Monitor and perform an early

forecast of algae blooms

• to improve the quality of rivers

• chemical monitoring is cheaper and easily automated than biological analysis

(microscopic examination)

– Provide a better understanding of the factors influencing the algae frequencies

2

Data Collection

• Several water samples were collected in different European

rivers at different times during a period of approximately 1 year.

• For each water sample,

– different chemical properties were measured, as well as

– the frequency of several harmful algae

• Some related characteristics were stored

– the season of the year

– the river size

– the river speed

• Data was collected in the context of the ERUDIT research Network

– available in the UCI machine learning repository

– http://archive.ics.uci.edu/ml/datasets/Coil+1999+Competition+Data
3

Data Description

• Two main datasets:

– Training dataset

• 200 observations

• 11 predictors

– Nominal (3): season, size, speed

– Numerical (8): different chemical parameters measured in the water samples

» Maximum pH value, Minimum value of O2 (Oxygen)

» Mean value of Cl, NO3
-, NH4

+, PO4
3-, PO4, chlorophyll

• 7 responses

– Seven frequency numbers of different harmful algae found in respective sample

– Test dataset

• 140 observations

• 11 predictors

• no responses

Goal: to predict the frequency of the

seven algae for these 140 water samples

4

Load the Data into R

• Download the data (in .txt form) to your working directory (getwd()) from
http://www.dcc.fc.up.pt/~ltorgo/DataMiningWithR/datasets2.html or

https://archive.ics.uci.edu/ml/machine-learning-databases/coil-mld/coil.html

– Analysis.txt: training data; Eval.txt: test data

algae <- read.table('Analysis.txt', header=F, dec='.',

col.names=c('season','size','speed','mxPH','mnO2','Cl','NO3','NH4','oPO4',

'PO4','Chla','a1','a2','a3','a4', 'a5','a6','a7'),

na.strings=c('XXXXXXX'))

#header=F: indicates that the file to be read does not include a first line with variable names

#dec='.': the numbers use '.' to separate decimal places (e.g., 34.2)

#na.strings: unknown values are represented by XXXXXXX

or algae <- read.table('/Users/than/../Analysis.txt', header=F, dec='.', …)

/Users/than/../ is the directory where the training data is stored.

> head(algae)

season size speed mxPH mnO2 Cl NO3 NH4 oPO4 PO4 Chla a1 a2 a3 a4 a5 a6 a7

1 winter small medium 8.00 9.8 60.800 6.238 578.000 105.000 170.000 50.0 0.0 0.0 0.0 0.0 34.2 8.3 0.0

2 spring small medium 8.35 8.0 57.750 1.288 370.000 428.750 558.750 1.3 1.4 7.6 4.8 1.9 6.7 0.0 2.1

3 autumn small medium 8.10 11.4 40.020 5.330 346.667 125.667 187.057 15.6 3.3 53.6 1.9 0.0 0.0 0.0 9.7

4 spring small medium 8.07 4.8 77.364 2.302 98.182 61.182 138.700 1.4 3.1 41.0 18.9 0.0 1.4 0.0 1.4

5 autumn small medium 8.06 9.0 55.350 10.416 233.700 58.222 97.580 10.5 9.2 2.9 7.5 0.0 7.5 4.1 1.0

6 winter small high 8.25 13.1 65.750 9.248 430.000 18.250 56.667 28.4 15.1 14.6 1.4 0.0 22.5 12.6 2.95

or library(DMwR)

http://www.dcc.fc.up.pt/~ltorgo/DataMiningWithR/datasets2.html

Descriptive Data Analysis

Data Visualisation and Summarisation

6

Data Visualisation and Summarisation

• Use summary(algae)

– Notice the difference that nominal and numerical variables are presented

• Nominal: frequency counts

• Numerical: 5 number summary

7

• Use graphs to check the shape of distribution
> hist(algae$mxPH) # the shape suggests that mxPH is nearly normal distributed

Data Visualisation and Summarisation

• Or boxplot
> boxplot(algae$oPO4, ylab='Orthophosphate (oPO4)')

> abline(h=mean(algae$oPO4,na.rm=T),lty=2)

8

Boxplots and Outliers

9

In R, all the suspected outliers and outliers are unfilled circles.

Boxplots and Outliers

10

data is 1,2,3,4,5,6,7,8,x

Q1=3, Q2=5, Q3=7

IQR = 7-3 = 4

1.5*IQR = 6

3*IQR = 12

inner fence = Q3+1.5*IQR = 13

outer fence = Q3+3*IQR =19

7

3

13

19

values1 = c(1:8,10) values2 = c(1:8,13)

values3 = c(1:8,14) values4 = c(1:8,20)

Outliers – A Remark

• Outliers are not necessarily "bad" data-points

• They may well be the most important, most information rich,

part of the dataset

• Under no circumstances should they be automatically removed

from the dataset

• Outliers may deserve special consideration

– they may be the key to the phenomenon under study or the result of

human blunders

11

rug and jitter

12

> values <- c(1,1,1,1,1,1,2)

> boxplot(values)

> rug(values, side=2)

> set.seed(7)

> jitter(values)

[1] 1.1955637 0.9590982 0.8462791 0.8278995 0.8974998 1.1168042 1.9360249

> values = c(1,1,1,1,1,1,2)

> boxplot(values, ylim=c(0.7,2.2))

> set.seed(7)

> rug(jitter(values), side=2)

Data Visualisation and Summarisation

• Or boxplot
> boxplot(algae$oPO4, ylab='Orthophosphate (oPO4)')

> abline(h=mean(algae$oPO4,na.rm=T),lty=2)

> rug(jitter(algae$oPO4),side=2) #side=2 - left, 3-up, 4-right, 1-bottom

13

jitter:

Add a small amount of

noise to a numeric

vector.

rug:

Adds a set of tick marks

along the base of a plot.

Data Visualisation and Summarisation

• Detect outliers with graphics
>plot(algae$NH4,xlab='')

>abline(h=mean(algae$NH4,na.rm=T),lty=1,col="red")

>abline(h=mean(algae$NH4,na.rm=T)+sd(algae$NH4,na.rm=T),lty=2,col="blue")

>abline(h=median(algae$NH4,na.rm=T),lty=3,col="green")

>identify(algae$NH4)

identify is interactive: when a user click

on the plotted dots with the left mouse, the

row number of that observation will be shown.

Click right mouse to finish interaction.

identify might not work in RStudio, though.

Try the original R tool instead.

• Detect outliers without graphics

> algae[algae$NH4 >19000,]

season size speed mxPH mnO2 Cl NO3 NH4 oPO4 PO4 Chla a1 a2 a3 a4 a5 a6 a7

NA <NA> <NA> <NA> NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

153 autumn medium high 7.3 11.8 44.205 45.65 24064 44 34 53.1 2.2 0 0 1.2 5.9 77.6 0

NA.1 <NA> <NA> <NA> NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA14

Data Preprocessing

Dealing with Missing Values

15

Dealing With Unknown Values

• Unknown (missing) values

– are common in real-world problems

– may preclude the use of certain statistical learning approaches

• E.g., randomForest(), mean()

• Solutions

– Remove the cases with unknowns

– Fill in the unknown values by exploring the most frequent value

– Fill in the unknown values by exploring the correlations between variables

– Fill in the unknown values by exploring the similarity between cases

– Use tools that are able to handle these values

16

Removing the Obs. with
Unknown Values

• Before removing them, check/count them first
> library(DMwR)

> data(algae) # load fresh data again before we try different ways of dealing with unknown values

> algae[!complete.cases(algae),] # check whether each obs is complete or not

season size speed mxPH mnO2 Cl NO3 NH4 oPO4 PO4 Chla a1 a2 a3 a4 a5 a6 a7

28 autumn small high 6.80 11.1 9.000 0.630 20 4.000 NA 2.70 30.3 1.9 0.0 0.0 2.1 1.4 2.1

38 spring small high 8.00 NA 1.450 0.810 10 2.500 3.000 0.30 75.8 0.0 0.0 0.0 0.0 0.0 0.0

48 winter small low NA 12.6 9.000 0.230 10 5.000 6.000 1.10 35.5 0.0 0.0 0.0 0.0 0.0 0.0

55 winter small high 6.60 10.8 NA 3.245 10 1.000 6.500 NA 24.3 0.0 0.0 0.0 0.0 0.0 0.0

56 spring small medium 5.60 11.8 NA 2.220 5 1.000 1.000 NA 82.7 0.0 0.0 0.0 0.0 0.0 0.0

57 autumn small medium 5.70 10.8 NA 2.550 10 1.000 4.000 NA 16.8 4.6 3.9 11.5 0.0 0.0 0.0

58 spring small high 6.60 9.5 NA 1.320 20 1.000 6.000 NA 46.8 0.0 0.0 28.8 0.0 0.0 0.0

59 summer small high 6.60 10.8 NA 2.640 10 2.000 11.000 NA 46.9 0.0 0.0 13.4 0.0 0.0 0.0

60 autumn small medium 6.60 11.3 NA 4.170 10 1.000 6.000 NA 47.1 0.0 0.0 0.0 0.0 1.2 0.0

61 spring small medium 6.50 10.4 NA 5.970 10 2.000 14.000 NA 66.9 0.0 0.0 0.0 0.0 0.0 0.0

62 summer small medium 6.40 NA NA NA NA NA 14.000 NA 19.4 0.0 0.0 2.0 0.0 3.9 1.7

63 autumn small high 7.83 11.7 4.083 1.328 18 3.333 6.667 NA 14.4 0.0 0.0 0.0 0.0 0.0 0.0

116 winter medium high 9.70 10.8 0.222 0.406 10 22.444 10.111 NA 41.0 1.5 0.0 0.0 0.0 0.0 0.0

161 spring large low 9.00 5.8 NA 0.900 142 102.000 186.000 68.05 1.7 20.6 1.5 2.2 0.0 0.0 0.0

184 winter large high 8.00 10.9 9.055 0.825 40 21.083 56.091 NA 16.8 19.6 4.0 0.0 0.0 0.0 0.0

199 winter large medium 8.00 7.6 NA NA NA NA NA NA 0.0 12.5 3.7 1.0 0.0 0.0 4.9

>

> nrow(algae[!complete.cases(algae),])

[1] 16

>

> algae <- na.omit(algae)

[1] 184
17

Removing the Obs. with
Unknown Values

• Probably think twice before removing so many observations
> library(DMwR)

> data(algae) # load fresh data again before we try different ways of dealing with unknown values

> algae[!complete.cases(algae),] # check whether each observation is complete or not

season size speed mxPH mnO2 Cl NO3 NH4 oPO4 PO4 Chla a1 a2 a3 a4 a5 a6 a7

28 autumn small high 6.80 11.1 9.000 0.630 20 4.000 NA 2.70 30.3 1.9 0.0 0.0 2.1 1.4 2.1

38 spring small high 8.00 NA 1.450 0.810 10 2.500 3.000 0.30 75.8 0.0 0.0 0.0 0.0 0.0 0.0

48 winter small low NA 12.6 9.000 0.230 10 5.000 6.000 1.10 35.5 0.0 0.0 0.0 0.0 0.0 0.0

55 winter small high 6.60 10.8 NA 3.245 10 1.000 6.500 NA 24.3 0.0 0.0 0.0 0.0 0.0 0.0

56 spring small medium 5.60 11.8 NA 2.220 5 1.000 1.000 NA 82.7 0.0 0.0 0.0 0.0 0.0 0.0

57 autumn small medium 5.70 10.8 NA 2.550 10 1.000 4.000 NA 16.8 4.6 3.9 11.5 0.0 0.0 0.0

58 spring small high 6.60 9.5 NA 1.320 20 1.000 6.000 NA 46.8 0.0 0.0 28.8 0.0 0.0 0.0

59 summer small high 6.60 10.8 NA 2.640 10 2.000 11.000 NA 46.9 0.0 0.0 13.4 0.0 0.0 0.0

60 autumn small medium 6.60 11.3 NA 4.170 10 1.000 6.000 NA 47.1 0.0 0.0 0.0 0.0 1.2 0.0

61 spring small medium 6.50 10.4 NA 5.970 10 2.000 14.000 NA 66.9 0.0 0.0 0.0 0.0 0.0 0.0

62 summer small medium 6.40 NA NA NA NA NA 14.000 NA 19.4 0.0 0.0 2.0 0.0 3.9 1.7

63 autumn small high 7.83 11.7 4.083 1.328 18 3.333 6.667 NA 14.4 0.0 0.0 0.0 0.0 0.0 0.0

116 winter medium high 9.70 10.8 0.222 0.406 10 22.444 10.111 NA 41.0 1.5 0.0 0.0 0.0 0.0 0.0

161 spring large low 9.00 5.8 NA 0.900 142 102.000 186.000 68.05 1.7 20.6 1.5 2.2 0.0 0.0 0.0

184 winter large high 8.00 10.9 9.055 0.825 40 21.083 56.091 NA 16.8 19.6 4.0 0.0 0.0 0.0 0.0

199 winter large medium 8.00 7.6 NA NA NA NA NA NA 0.0 12.5 3.7 1.0 0.0 0.0 4.9

>

> manyNAs(algae) #returns the row numbers that have more than 20% of the columns with an NA. In this case, 18*20% = 3.6 columns.

[1] 62 199

> algae <- algae[-c(62,199),]

> algae <- algae[-manyNAs(algae),] # the last two commands have the same effect 18

Filling with Most Frequent Values

• Several alternatives can be chosen, with different trade-offs between

– the level of approximation, and

– the computational complexity of the method

• First alternative (simplest and fastest)

– Use some statistics of centrality to fill in the unknown values

• mean, median, mode, etc

– choose mean if the distribution is nearly normal

– choose median if not

– For example,
season size speed mxPH mnO2 Cl NO3 NH4 oPO4 PO4 Chla a1 a2 a3 a4 a5 a6 a7

48 winter small low NA 12.6 9.000 0.230 10 5.000 6.000 1.10 35.5 0.0 0.0 0.0 0.0 0.0 0.0

Recall that the mxPH is nearly normal distributed, we could use its mean value to fill in the hole.
>algae[48,'mxPH'] <- mean(algae$mxPH,na.rm=T)

#calculate the mean of the mxPH column while ignoring any NA values in this column

This method is simple, fast,

thus appealing for large dataset.

However, it may introduce a

large bias in the data.

19

Filling by Exploring Correlations

• An alternative to get less biased estimators for unknowns:

– to explore the relationships between variables

> cor(algae[,4:18],use="complete.obs") #disregard obs with NAs

> symnum(cor(algae[,4:18],use="complete.obs")) #Symbolically encode a

given numeric or logical vector or array

[1] 0 ' ' 0.3 '.' 0.6 ',' 0.8 '+' 0.9 '*' 0.95 'B' 1

NH4 and NO3 are positively correlated (0.72)

PO4 and oPO4 are highly correlated (above 0.9)

According to the domain expert, this was expected

because the value of the total PO4 includes the value

of oPO4

We will find the form of the linear correlation

between these variables.

20

How to Find Linear Relationship

• Find linear relationship between PO4 and oPO4

> data(algae)

> algae <- algae[-manyNAs(algae),]

> lm(PO4 ~ oPO4, data=algae)

Call:

lm(formula = PO4 ~ oPO4, data = algae)

Coefficients:

(Intercept) oPO4

42.897 1.293

The linear model we have obtained is PO4 = 42.897 + 1.293×oPO4

• With this formula, we can fill in the unknown values of these unknowns,

provided they are not both unknown.

– Remove the observations with both unknown (sample 62, 199)

– We have a single observation with an unknown value on PO4 (sample 28)

21

Use the Linear Model to Predict

• Use PO4 = 42.897 + 1.293×oPO4 to predict the unknown PO4 at sample 28
> algae[28,'PO4'] <- 42.897 + 1.293 * algae[28,'oPO4']

> algae[28,]

season size speed mxPH mnO2 Cl NO3 NH4 oPO4 PO4 Chla a1 a2 a3 a4 a5 a6 a7

28 autumn small high 6.8 11.1 9 0.63 20 4 48.069 2.7 30.3 1.9 0 0 2.1 1.4 2.1

• This can be generalised to fill all missing PO4 values (if any)
> data(algae)

> algae <- algae[-manyNAs(algae),] # delete both unknowns

> fillPO4 <- function(oP) {

if (is.na(oP))

return(NA) #if oPO4's value not available

else

return(42.897 + 1.293 * oP) #else return the result derived by linear model

}

> algae[is.na(algae$PO4),'PO4'] <-

sapply(algae[is.na(algae$PO4),'oPO4'],fillPO4)

#This function is applied to all samples with unknown value on the variable PO4 22

Filling by Exploring Correlations

• For other observations with unknown values, we can explore the correlations

between the variables and the nominal variables of this problem.

– E.g., mxPH and season

> histogram(~ mxPH | season, data=algae)

The values of mxPH are not

seriously influenced by the season

of the year when the samples were

collected.

23

Filling by Exploring Correlations

• If we try the same using the size of the river

> histogram(~ mxPH | size, data=algae)

What tendency can you observe?

24

Filling by Exploring Similar Cases

• Another alternative is to use the similarities between the rows to

fill in the unknown values

– If two water samples are similar, and one of them has an unknown value

• It's very probable that this value is similar to the value of the other sample

– How to define distance? Which distance can you think of?

• Euclidean distance!

– Approach:

• Find ten most similar cases of any water sample with some unknown value

• Use their values to fill in the unknown

– The median of the values of the ten nearest neighbours

> algae <- knnImputation(algae,k=10,meth='median')

– The weighted average of the values of the neighbours

» The further a neighbour is, the less weight it has (usual weight: 1/d)

> algae <- knnImputation(algae,k=10) #in DMwR package
25

Obtaining Prediction Models

Multiple Linear Regression

Regression Trees

26

Multiple Linear Regression

• The implementation of linear regression in R is not able to use

datasets with unknown values

– Use the knn-preprocessed technique to fill in the unknowns.
> data(algae)

> algae <- algae[-manyNAs(algae),]

> clean.algae <- knnImputation(algae, k = 10)

- Multiple linear regression
> lm.a1 <- lm(a1 ~ .,data=clean.algae[,1:12]) # here consider a1 with other 11 predictors

……

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.942055 24.010879 1.788 0.07537 .

seasonspring 3.726978 4.137741 0.901 0.36892

seasonsummer 0.747597 4.020711 0.186 0.85270

seasonwinter 3.692955 3.865391 0.955 0.34065

sizemedium 3.263728 3.802051 0.858 0.39179

sizesmall 9.682140 4.179971 2.316 0.02166 *

speedlow 3.922084 4.706315 0.833 0.40573

speedmedium 0.246764 3.241874 0.076 0.93941

……

Nominal variables are

encoded by dummy variables

Erh, where are seasonautumn,

sizelarge and speedhigh?

27

Measures Explained

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.942055 24.010879 1.788 0.07537 .

……

mxPH -3.589118 2.703528 -1.328 0.18598

mnO2 1.052636 0.705018 1.493 0.13715

Cl -0.040172 0.033661 -1.193 0.23426

NO3 -1.511235 0.551339 -2.741 0.00674 **

NH4 0.001634 0.001003 1.628 0.10516

oPO4 -0.005435 0.039884 -0.136 0.89177

PO4 -0.052241 0.030755 -1.699 0.09109 .

Chla -0.088022 0.079998 -1.100 0.27265

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

• t test: to see whether each coefficient is statistically significant (hypothesis H0: βi=0)

• Pr(>|t|): a value 0.0001 means that we are 99.99% confident that the coefficient is not null

– Large value → insignificant factor, small value → significant factor (notice those with *'s by R)

28

p value

Measures Explained

• R2 coefficients (multiple and adjusted)

– Degree of fit of the model

• pve: proportion variance explained (the smaller, the lack of fit)

• The adjusted coefficient is more demanding, as it takes into account the

number of parameters in the model

Multiple R-squared: 0.3731, Adjusted R-squared: 0.3215

• F-statistics and p-value

– To test H0: β1 = β2 = … = βm = 0

(the target variable doe not depend on any of the predictors)

• p-value: 0.0001 means that we are 99.99% confident that the null hypothesis

is not true.

– If p value is too high (>0.1), it makes no sense to look at the t-test on individual

coefficients

F-statistic: 7.223 on 15 and 182 DF, p-value: 2.444e-12
29

Simply the Linear Model

• Some predictors have a small significance, we could

eliminate them from the model
> anova(lm.a1) # ANOVA: analysis of variance

Analysis of Variance Table

Response: a1

Df Sum Sq Mean Sq F value Pr(>F)

season 3 85 28.2 0.0905 0.9651944

size 2 11401 5700.7 18.3088 5.69e-08 ***

speed 2 3934 1967.2 6.3179 0.0022244 **

mxPH 1 1329 1328.8 4.2677 0.0402613 *

mnO2 1 2287 2286.8 7.3444 0.0073705 **

Cl 1 4304 4304.3 13.8239 0.0002671 ***

NO3 1 3418 3418.5 10.9789 0.0011118 **

NH4 1 404 403.6 1.2963 0.2563847

oPO4 1 4788 4788.0 15.3774 0.0001246 ***

PO4 1 1406 1405.6 4.5142 0.0349635 *

Chla 1 377 377.0 1.2107 0.2726544

Residuals 182 56668 311.4

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

It will give us the reduction

in the residual sum of

squares when adding each

variable in turn

season contributes the

least to the reduction of the

fitting error of the model

30

Update the Model

• Remove season from the model
> lm2.a1 <- update(lm.a1, . ~ . - season)

> summary(lm2.a1)

Call:

lm(formula = a1 ~ size + speed + mxPH + mnO2 + Cl + NO3 + NH4 +

oPO4 + PO4 + Chla, data = clean.algae[, 1:12])

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 44.9532874 23.2378377 1.934 0.05458 .

……

speedmedium -0.2976867 3.1818585 -0.094 0.92556

mxPH -3.2684281 2.6576592 -1.230 0.22033

mnO2 0.8011759 0.6589644 1.216 0.22561

Cl -0.0381881 0.0333791 -1.144 0.25407

……

Multiple R-squared: 0.3682, Adjusted R-squared: 0.3272

F-statistic: 8.984 on 12 and 185 DF, p-value: 1.762e-13

This fit has improved a bit,

but still not too impressive

31

Previously, adjusted
R-squared:0.3215

Further AVONA Analysis

• Comparison between the two models
> anova(lm.a1,lm2.a1)

Analysis of Variance Table

Model 1: a1 ~ season + size + speed + mxPH + mnO2 + Cl + NO3 + NH4 +

oPO4 + PO4 + Chla

Model 2: a1 ~ size + speed + mxPH + mnO2 + Cl + NO3 + NH4 +

oPO4 + PO4 + Chla

Res.Df RSS Df Sum of Sq F Pr(>F)

1 182 56668

2 185 57116 -3 -447.62 0.4792 0.6971

The second model is better, as it has a smaller sum of squares

However, with Pr(>F)=0.6971, it means that only with around 30% confidence we can

say the two models are different

→ In other words, the difference between the two models are not significant

→ The second model is simpler
32

Automatic Model Simplification

• The step function will show you how to simplify the linear

model step by step
> final.lm=step(lm.a1)

Start: AIC=1152.03 #AIC stands for Akaike Information Criterion

a1 ~ season + size + speed + mxPH + mnO2 + Cl + NO3 + NH4 + oPO4 + PO4 + Chla

#omit several steps in the middle, the last step is:

Step: AIC=1140.38 # step function use AIC to perform model search

a1 ~ size + mxPH + Cl + NO3 + PO4

Df Sum of Sq RSS AIC

<none> 58517 1140.4

- mxPH 1 784.1 59301 1141.0

- Cl 1 835.6 59353 1141.2

- NO3 1 1987.9 60505 1145.0

- size 2 2664.3 61181 1145.2

- PO4 1 8575.8 67093 1165.5
33

AIC offers an estimate of the relative

information lost when a given model is used

to represent the process that generated.

It tells nothing about the absolute quality of a

model, only the quality relative to other

models. Thus, if all the candidate models fit

poorly, AIC will not give any warning of that.

Analyse the Final Model

> summary(final.lm)

Call:

lm(formula = a1 ~ size + mxPH + Cl + NO3 + PO4, data = clean.algae[, 1:12])

Residuals:

Min 1Q Median 3Q Max

-28.874 -12.732 -3.741 8.424 62.926

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 57.28555 20.96132 2.733 0.00687 **

sizemedium 2.80050 3.40190 0.823 0.41141

sizesmall 10.40636 3.82243 2.722 0.00708 **

mxPH -3.97076 2.48204 -1.600 0.11130

Cl -0.05227 0.03165 -1.651 0.10028

NO3 -0.89529 0.35148 -2.547 0.01165 *

PO4 -0.05911 0.01117 -5.291 3.32e-07 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 17.5 on 191 degrees of freedom

Multiple R-squared: 0.3527, Adjusted R-squared: 0.3324

F-statistic: 17.35 on 6 and 191 DF, p-value: 5.554e-16

In multiple regression, the

proportion of variance explained

(PVE) is equal to (adjusted) R2.

The PVE is still not very

interesting (0.3324).

A sign that linearity assumption

of this model is inadequate for

the domain.

34

Obtaining Prediction Models

Multiple Linear Regression

Regression Trees

35

Build a Regression Tree

• It can be done in the same way as building a classification tree

> library(tree)

> data(algae)

> algae<-algae[-manyNAs(algae),]

> rt.a1<-tree(a1~.,algae[,1:12])

> text(rt.a1,pretty=0)

36

Build the Tree using Train Part

• Now we randomly sample a train set and build the regression

tree based on the set
> nrow(algae)

[1] 198

> set.seed(2)

> train.a1 <- sample(1:nrow(algae),nrow(algae)/2)

> rt.a1.train <- tree(a1~.,algae[,1:12],subset=train)

> plot(rt.a1.train)

> text(rt.a1.train,pretty=0)

37

Use CV to Check Whether to Prune

• Cross validation is used to see whether the tree rt.a1.train

needs to be pruned
> cv.rt.train <- cv.tree(rt.a1.train)

> plot(cv.rt.train$size,cv.rt.train$dev,type='b')

The best tree

(the one with

the minimum

MSE) is of the

size 5

38

Prune the Tree

• Prune the tree to be of size 5:
> prune.rt.a1 <- prune.tree(rt.a1.train,best=5)

> plot(prune.rt.a1)

> text(prune.rt.a1,pretty=0)

39

Performance Evaluation –
Regression Tree

• We use the test part to evaluate the performance
> rt.a1.test <- algae[-train,"a1"]

> yhat.rt.a1.prune <- predict(prune.rt.a1,newdata=algae[-train,1:12])

> mean((yhat.rt.a1.prune-rt.a1.test)^2)

[1] 297.0548

> plot(yhat.rt.a1.prune,rt.a1.test)

> abline(0,1)

40

Using Bagging

• Since the bagging/randomForest method requires no missing

values, we start from the dataset clean.algae
> set.seed(20)

> bag.train <- sample(1:nrow(clean.algae),99)

> bag.a1.train <- randomForest(a1~.,clean.algae[1:12],

subset=bag.train,mtry=11,importance=T)

> bag.a1.train

Call:

randomForest(formula = a1 ~ ., data = clean.algae[, 1:12], mtry =11,

importance = T, subset = bag.train)

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 11

Mean of squared residuals: 271.161

% Var explained: 42.9

This PVE is

larger than the

linear model41

Performance Evaluation -
Bagging

• How well does this bagged model perform on the test set?

> yhat.bag <- predict(bag.a1.train,newdata=clean.algae[-bag.train,1:12])

> clean.algae.test <- clean.algae[-bag.train,"a1"]

> mean((yhat.bag-clean.algae.test)^2)

[1] 279.9227

> plot(yhat.bag,clean.algae.test)

> abline(0,1)

This MSE is smaller

than the best tree

This looks better than in the

regression tree →

You may play with the number of

trees in the bagging at home (ntree=i)

42

Which Predictors are Important?

> importance(bag.a1.train)

%IncMSE IncNodePurity

season -0.78908700 1168.1408

size 2.04011486 439.9201

speed 0.95764449 410.7687

mxPH 3.15721118 1878.4553

mnO2 0.07241614 1402.3103

Cl 11.17164253 8361.5771

NO3 4.13772152 1904.3340

NH4 4.34200936 2552.3389

oPO4 12.77819198 9659.2113

PO4 13.97331416 9281.1592

Chla 13.27516985 7345.5980

> varImpPlot(bag.a1.train)

43

Using Random Forest

• Choose a smaller mtry value, usually p/3 when building a

random forest for regression trees

– mtry = 11/3 ≈ 3 or 4

> set.seed(20)

> rf.a1.train.4 <- randomForest(a1~.,clean.algae[,1:12], subset=bag.train,

mtry=4,importance=T)

> yhat.rf <- predict(rf.a1.train.4,newdata=clean.algae[-bag.train,1:12])

> mean((yhat.rf-clean.algae.test)^2)

[1] 273.3071

> set.seed(20)

> rf.a1.train.3 <- randomForest(a1~.,clean.algae[,1:12],subset=bag.train,

mtry=3,importance=T)

> yhat.rf <- predict(rf.a1.train.3,newdata=clean.algae[-bag.train,1:12])

> mean((yhat.rf-clean.algae.test)^2)

[1] 272.3034

The PVE of rf.a1.train.3 is 49.6% (use summary()), still not very fit

Probably try nonlinear models (polynomials, etc), something for you to try at home, too

mtry = 3 is slightly better

You may find the best mtry at home

44

Prediction for New Test Set

45

Prediction for the Algae

• We are given 140 test samples, whose algae levels are unknown.

• We will choose the best models to obtain these predictions.

– To obtain unbiased estimates of MSE for a set of models

• By means of a cross-validation experimental process

• For simplicity, we only predict a1

• For a1, we have already shown that the randomForest model

rf.a1.train.3 is the best model

– Use rf.a1.train.3 to make the prediction

46

Unknowns in the Test Data

• There are unknowns in the test data

• We could use knnImputation() as in the training dataset

– Use other test cases to fill in the unknowns → not ideal

– Use training data to find the neighbours instead

• use knnImputation(), but with an extra argument

> clean.test.algae <- knnImputation(test.algae,k=10,distData=algae[,1:11])

The distData argument allows you to supply an extra set of data (i.e., the

training dataset) where the ten nearest neighbours are to be found for each case
with unknowns in the test.algae dataset.

47

Make the Prediction

• Finally,…
> preds <- rep(0,140)

> preds <- predict(rf.a1.train.3, newdata=clean.test.algae, mtry=3, importance=T)

> preds

1 2 3 4 5 6 7 8 9

7.266943 10.458083 13.387457 13.542400 27.145823 33.591357 35.073133 37.611920 38.065740

10 11 12 13 14 15 16 17 18

36.190503 10.706703 15.288940 40.884010 38.163287 37.630820 26.044157 10.487700 20.337720

19 20 21 22 23 24 25 26 27

40.361043 54.538080 6.965607 4.724927 4.981443 11.896803 6.452217 5.023043 24.228200

28 29 30 31 32 33 34 35 36

43.114077 27.373763 23.633090 26.444843 20.911110 32.294507 38.157100 55.714590 35.624243

37 38 39 40 41 42 43 44 45

35.052197 51.597240 33.467427 39.437900 37.612970 16.618960 10.317370 9.975300 10.411817

46 47 48 49 50 51 52 53 54

3.337300 10.015007 5.438577 17.838527 31.355300 11.017717 3.678907 5.509753 3.913507

55 56 57 58 59 60 61 62 63

4.779007 12.729870 13.189073 11.902373 17.185123 14.290100 6.853557 21.050563 16.727573

64 65 66 67 68 69 70 71 72

8.964617 33.982597 27.070277 18.403937 40.085983 43.577550 4.610323 6.584670 4.338993

......

48

49

