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Preface

Qu’est-ce que l’analyse des données ? (English: What is data analysis?)

As it is usually understood in France, and within the context of this book,
the expression analyse des données reflects a set of statistical methods whose
main features are to be multidimensional and descriptive.

The term multidimensional itself covers two aspects. First, it implies
that observations (or, in other words, individuals) are described by several
variables. In this introduction we restrict ourselves to the most common
data, those in which a group of individuals is described by one set of variables.
But, beyond the fact that we have many values from many variables for each
observation, it is the desire to study them simultaneously that is characteristic
of a multidimensional approach. Thus, we will use those methods each time
the notion of profile is relevant when considering an individual, for example,
the response profile of consumers, the biometric profile of plants, the financial
profile of businesses, and so forth.

From a dual point of view, the interest of considering values of individuals
for a set of variables in a global manner lies in the fact that these variables are
linked. Let us note that studying links between all the variables taken two-by-
two does not constitute a multidimensional approach in the strict sense. This
approach involves the simultaneous consideration of all the links between vari-
ables taken two-by-two. That is what is done, for example, when highlighting
a synthetic variable: such a variable represents several others, which implies
that it is linked to each of them, which is only possible if they are themselves
linked two-by-two. The concept of synthetic variable is intrinsically multi-
dimensional and is a powerful tool for the description of an individuals ⇥
variables table. In both respects, it is a key concept within the context of this
book.

One last comment about the term analyse des données since it can have
at least two meanings — the one defined previously and another broader one
that could be translated by “statistical investigation”. This second meaning
is from a user’s standpoint; it is defined by an objective (to analyse data)
and says nothing about the statistical methods to be used. This is what the
English term data analysis covers. The term data analysis, in the sense of a set
of descriptive multidimensional methods, is more of a French statistical point
of view. It was introduced in France in the 1960s by Jean-Paul Benzécri and
the adoption of this term is probably related to the fact that these multivariate
methods are at the heart of many “data analyses”.

xi



xii Exploratory Multivariate Analysis by Example Using R

To Whom Is This Book Addressed?

This book has been designed for scientists whose aim is not to become statis-
ticians but who feel the need to analyse data themselves. It is therefore
addressed to practitioners who are confronted with the analysis of data. From
this perspective it is application-oriented; formalism and mathematics writing
have been reduced as much as possible while examples and intuition have been
emphasised. Specifically, an undergraduate level is quite su�cient to capture
all the concepts introduced.

On the software side, an introduction to the R language is su�cient, at
least at first. This software is free and available on the Internet at the following
address: http://www.r-project.org/.

Content and Spirit of the Book

This book focuses on four essential and basic methods of multivariate ex-
ploratory data analysis, those with the largest potential in terms of applica-
tions: principal component analysis (PCA) when variables are quantitative,
correspondence analysis (CA) and multiple correspondence analysis (MCA)
when variables are categorical and hierarchical cluster analysis. The geo-
metric point of view used to present all these methods constitutes a unique
framework in the sense that it provides a unified vision when exploring mul-
tivariate data tables. Within this framework, we will present the principles,
the indicators, and the ways of representing and visualising objects (rows and
columns of a data table) that are common to all those exploratory methods.
From this standpoint, adding supplementary information by simply projecting
vectors is commonplace. Thus, we will show how it is possible to use categor-
ical variables within a PCA context where variables that are to be analysed
are quantitative, to handle more than two categorical variables within a CA
context where originally there are two variables, and to add quantitative vari-
ables within an MCA context where variables are categorical. More than
the theoretical aspects and the specific indicators induced by our geometrical
viewpoint, we will illustrate the methods and the way they can be exploited
using examples from various fields, hence the name of the book.

Throughout the text, each result correlates with its R command. All these
commands are accessible from FactoMineR, an R package developed by the
authors. The reader will be able to conduct all the analyses of the book as
all the datasets (as well as all the lines of code) are available at the following
Web site address: http://factominer.free.fr/book. We hope that with
this book, the reader will be fully equipped (theory, examples, software) to
confront multivariate real-life data.

The authors would like to thank Rebecca Clayton for her help in the transla-
tion.

http://www.r-project.org/
Gabriel Carrillo López
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1

Principal Component Analysis (PCA)

1.1 Data — Notation — Examples

Principal component analysis (PCA) applies to data tables where rows are
considered as individuals and columns as quantitative variables. Let x

ik

be
the value taken by individual i for variable k, where i varies from 1 to I and
k from 1 to K.

Let x̄
k

denote the mean of variable k calculated over all individual instances
of I:

x̄
k

=
1
I

IX

i=1

x
ik

,

and s
k

the standard deviation of the sample of variable k (uncorrected):

s
k

=

vuut1
I

IX

i=1

(x
ik

� x̄
k

)2 .

Data subjected to a PCA can be very diverse in nature; some examples
are listed in Table 1.1.

This first chapter will be illustrated using the “orange juice” dataset chosen
for its simplicity since it comprises only six statistical individuals or observa-
tions. The six orange juices were evaluated by a panel of experts according
to seven sensory variables (odour intensity, odour typicality, pulp content, in-
tensity of taste, acidity, bitterness, sweetness). The panel’s evaluations are
summarised in Table 1.2.

1.2 Objectives

The data table can be considered either as a set of rows (individuals) or as a
set of columns (variables), thus raising a number of questions relating to these
di↵erent types of objects.
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TABLE 1.1
Some Examples of Datasets
Field Individuals Variables xik

Ecology Rivers Concentration of pollutants Concentration of pollu-

tant k in river i
Economics Years Economic indicators Indicator value k for year

i
Genetics Patients Genes Expression of gene k for

patient i
Marketing Brands Measures of satisfaction Value of measure k for

brand i
Pedology Soils Granulometric composition Content of component k

in soil i
Biology Animals Measurements Measure k for animal i
Sociology Social classes Time by activity Time spent on activity k

by individuals from so-

cial class i

TABLE 1.2
The Orange Juice Data

Odour Odour Pulp Intensity Acidity Bitter- Sweet-
intensity typicality of taste ness ness

Pampryl amb. 2.82 2.53 1.66 3.46 3.15 2.97 2.60
Tropicana amb. 2.76 2.82 1.91 3.23 2.55 2.08 3.32
Fruvita fr. 2.83 2.88 4.00 3.45 2.42 1.76 3.38
Joker amb. 2.76 2.59 1.66 3.37 3.05 2.56 2.80
Tropicana fr. 3.20 3.02 3.69 3.12 2.33 1.97 3.34
Pampryl fr. 3.07 2.73 3.34 3.54 3.31 2.63 2.90

1.2.1 Studying Individuals

Figure 1.1 illustrates the types of questions posed during the study of individ-
uals. This diagram represents three di↵erent situations where 40 individuals
are described in terms of two variables: j and k. In graph A, we can clearly
identify two distinct classes of individuals. Graph B illustrates a dimension of
variability which opposes extreme individuals, much like graph A, but which
also contains less extreme individuals. The cloud of individuals is therefore
long and thin. Graph C depicts a more uniform cloud (i.e., with no specific
structure).

Interpreting the data depicted in these examples is relatively straightfor-
ward as they are two-dimensional. However, when individuals are described
by a large number of variables, we require a tool to explore the space in which
these individuals evolve. Studying individuals means identifying the similari-
ties between individuals from the point of view of all the variables. In other
words, to provide a typology of the individuals: which are the most similar
individuals (and the most dissimilar)? Are there groups of individuals which
are homogeneous in terms of their similarities? In addition, we should look
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FIGURE 1.1
Representation of 40 individuals described by two variables: j and k.

for common dimensions of variability which oppose extreme and intermediate
individuals.

In the example, two orange juices are considered similar if they were eval-
uated in the same way according to all the sensory descriptors. In such cases,
the two orange juices have the same main dimensions of variability and are
thus said to have the same sensory “profile”. More generally, we want to know
whether or not there are groups of orange juices with similar profiles, that is,
sensory dimensions which might oppose extreme juices with more intermediate
juices.

1.2.2 Studying Variables

Following the approach taken to study the individuals, might it also be possi-
ble to interpret the data from the variables? PCA focuses on the linear rela-
tionships between variables. More complex links also exist, such as quadratic
relationships, logarithmics, exponential functions, and so forth, but they are
not studied in PCA. This may seem restrictive, but in practice many relation-
ships can be considered linear, at least for an initial approximation.

Let us consider the example of the four variables (j, k, l, and m) in Fig-
ure 1.2. The clouds of points constructed by working from pairs of variables
show that variables j and k (graph A) as well as variables l and m (graph F)
are strongly correlated (positively for j and k and negatively for l and m).
However, the other graphs do not show any signs of relationships between
variables. The study of these variables also suggests that the four variables
are split into two groups of two variables, (j, k) and (l,m) and that, within
one group, the variables are strongly correlated, whereas between groups, the
variables are uncorrelated. In exactly the same way as for constructing groups
of individuals, creating groups of variables may be useful with a view to syn-
thesis. As for the individuals, we identify a continuum with groups of both
very unusual variables and intermediate variables, which are to some extent
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linked to both groups. In the example, each group can be represented by one
single variable as the variables within each group are very strongly correlated.
We refer to these variables as synthetic variables.
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FIGURE 1.2
Representation of the relationships between four variables: j, k, l, and m,
taken two-by-two.

When confronted with a very small number of variables, it is possible to
draw conclusions from the clouds of points, or from the correlation matrix
which groups together all of the linear correlation coe�cients r(j, k) between
the pairs of variables. However, when working with a great number of vari-
ables, the correlation matrix groups together a large quantity of correlation
coe�cients (190 coe�cients for K = 20 variables). It is therefore essential to
have a tool capable of summarising the main relationships between the vari-
ables in a visual manner. The aim of PCA is to draw conclusions from the
linear relationships between variables by detecting the principal dimensions
of variability. As you will see, these conclusions will be supplemented by the
definition of the synthetic variables o↵ered by PCA. It will therefore be eas-
ier to describe the data using a few synthetic variables rather than all of the
original variables.

In the example of the orange juice data, the correlation matrix (see Ta-
ble 1.3) brings together the 21 correlation coe�cients. It is possible to group
the strongly correlated variables into sets, but even for this reduced number
of variables, grouping them this way is tedious.
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TABLE 1.3
Orange Juice Data: Correlation Matrix

Odour Odour Pulp Intensity Acidity Bitter- Sweet-
intensity typicality of taste ness ness

Odour intensity 1.00 0.58 0.66 �0.27 �0.15 �0.15 0.23
Odour typicality 0.58 1.00 0.77 �0.62 �0.84 �0.88 0.92
Pulp content 0.66 0.77 1.00 �0.02 �0.47 �0.64 0.63
Intensity of taste �0.27 �0.62 �0.02 1.00 0.73 0.51 �0.57
Acidity �0.15 �0.84 �0.47 0.73 1.00 0.91 �0.90
Bitterness �0.15 �0.88 �0.64 0.51 0.91 1.00 �0.98
Sweetness 0.23 0.92 0.63 �0.57 �0.90 �0.98 1.00

1.2.3 Relationships between the Two Studies

The study of individuals and the study of variables are interdependent as
they are carried out on the same data table: studying them jointly can only
reinforce their respective interpretations.

If the study of individuals led to a distinction between groups of individ-
uals, it is then possible to list the individuals belonging to only one group.
However, for high numbers of individuals, it seems more pertinent to char-
acterise them directly by the variables at hand: for example, by specifying
that some orange juices are acidic and bitter whereas others have a high-pulp
content.

Similarly, when there are groups of variables, it may not be easy to inter-
pret the relationships between many variables and we can make use of specific
individuals, that is, individuals who are extreme from the point of view of
these relationships. In this case, it must be possible to identify the individu-
als. For example, the link between acidity-bitterness can be illustrated by the
opposition between two extreme orange juices: Fresh Pampryl (orange juice
from Spain) versus Fresh Tropicana (orange juice from Florida).

1.3 Studying Individuals

1.3.1 The Cloud of Individuals

An individual is a row of the data table, that is, a set of K numerical values.
The individuals thus evolve within a space RK called “the individual’s space”.
If we endow this space with the usual Euclidean distance, the distance between
two individuals i and l is expressed as:

d(i, l) =

vuut
KX

k=1

(x
ik

� x
lk

)2.
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If two individuals have similar values within the table of all K variables, they
are also close in the space RK . Thus, the study of the data table can be
conducted geometrically by studying the distances between individuals. We
are therefore interested in all of the individuals in RK , that is, the cloud
of individuals (denoted N

I

). Analysing the distances between individuals is
therefore tantamount to studying the shape of the cloud of points. Figure 1.3
illustrates a cloud of point is within a space RK for K = 3.

FIGURE 1.3
Flight of a flock of starlings illustrating a scatterplot in RK .

The shape of cloud N
I

remains the same even when translated. The data
are also centred, which corresponds to considering x

ik

� x̄
k

rather than x
ik

.
Geometrically, this is tantamount to coinciding the centre of mass of the cloud
G

I

(with coordinates x̄
k

for k = 1, ...,K) with the origin of reference (see
Figure 1.4). Centring presents technical advantages and is always conducted
in PCA.

The operation of reduction (also referred to as standardising), which con-
sists of considering (x

ik

� x̄
k

)/s
k

rather than x
ik

, modifies the shape of the
cloud by harmonising its variability in all the directions of the original vectors
(i.e., the K variables). Geometrically, it means choosing standard deviation
s

k

as a unit of measurement in direction k. This operation is essential if the
variables are not expressed in the same units. Even when the units of mea-
surement do not di↵er, this operation is generally preferable as it attaches
the same importance to each variable. Therefore, we will assume this to be
the case from here on in. Standardised PCA occurs when the variables are
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O

FIGURE 1.4
Scatterplot of the individuals in RK .

centred and reduced, and unstandardised PCA when the variables are only
centred. When not otherwise specified, it may be assumed that we are using
standardised PCA.

Comment: Weighting Individuals
So far we have assumed that all individuals have the same weight. This applies
to almost all applications and is always assumed to be the case. Neverthe-
less, generalisation with unspecified weights poses no conceptual or practical
problems (double weight is equivalent to two identical individuals) and most
software packages, including FactoMineR envisage this possibility (FactoMineR

is a package dedicated to Factor Analysis and Data Mining with R, see Sec-
tion A.2.3 in the Appendix). For example, it may be useful to assign a di↵erent
weight to each individual after having rectified a sample. In all cases, it is
convenient to consider that the sum of the weights is equal to 1. If supposed
to be of the same weight, each individual will be assigned a weight of 1/I.

1.3.2 Fitting the Cloud of Individuals

1.3.2.1 Best Plane Representation of NI

The aim of PCA is to represent the cloud of points in a space with reduced
dimensions in an “optimal” manner, that is to say, by distorting the distances
between individuals as little as possible. Figure 1.5 gives two representations
of three di↵erent fruits. The viewpoints chosen for the images of the fruits on
the top line make them di�cult to identify. On the second row, the fruits can
be more easily recognised. What is it which di↵erentiates the views of each
fruit between the first and the second lines? In the pictures on the second line,
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the distances are less distorted and the representations take up more space
on the image. The image is a projection of a three-dimensional object in a
two-dimensional space.

FIGURE 1.5
Two-dimensional representations of fruits: from left to right an avocado, a
melon and a banana, each row corresponds to a di↵erent representation.

For a representation to be successful, it must select an appropriate view-
point. More generally, PCA means searching for the best representational
space (of reduced dimension) thus enabling optimal visualisation of the shape
of a cloud with K dimensions. We often use a plane representation alone,
which can prove inadequate when dealing with particularly complex data.

To obtain this representation, the cloud N
I

is projected on a plane of RK

denoted P , chosen in such a manner as to minimise distortion of the cloud
of points. Plane P is selected so that the distances between the projected
points might be as close as possible to the distances between the initial points.
Since, in projection, distances can only decrease, we try to make the projected
distances as high as possible. By denoting H

i

the projection of the individual
i on plane P , the problem consists of finding P , with:

IX

i=1

OH2
i

maximum.

The convention for notation uses mechanical terms: O is the centre of gravity,
OH

i

is a vector and the criterion is the inertia of the projection of N
I

. The
criterion which consists of increasing the variance of the projected points to a
maximum is perfectly appropriate.

Remark
If the individuals are weighted with di↵erent weights p

i

, the maximised crite-
rion is

P
I

i=1 p
i

OH2
i

.

In some rare cases, it might be interesting to search for the best axial
representation of cloud N

I

alone. This best axis is obtained in the same way:
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find the component u1 when
P

I

i=1 OH2
i

are maximum (where H
i

is the pro-
jection of i on u1). It can be shown that plane P contains component u1 (the
“best” plane contains the “best”component): in this case, these representa-
tions are said to be nested. An illustration of this property is presented in
Figure 1.6. Planets, which are in a three-dimensional space, are traditionally
represented on a component. This component determines their positions as
well as possible in terms of their distances from one other (in terms of inertia
of the projected cloud). We can also represent planets on a plane according
to the same principle: to maximise the inertia of the projected scatterplot
(on the plane). This best plane representation also contains the best axial
representation.
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FIGURE 1.6
The best axial representation is nested in the best plane representation of the
solar system (18 February 2008).

We define plane P by two nonlinear vectors chosen as follows: vector u1

which defines the best axis (and which is included in P ), and vector u2 of
the plane P orthogonal to u1. Vector u2 corresponds to the vector which
expresses the greatest variability of N

I

once that which is expressed by u1 is
removed. In other words, the variability expressed by u2 is the best coupling
and is independent of that expressed by u1.

1.3.2.2 Sequence of Axes for Representing NI

More generally, let us look for nested subspaces of dimensions s = 1 to S
so that each subspace is of maximum inertia for the given dimension s. The
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subspace of dimension s is obtained by maximising
P

I

i=1 (OH
i

)2 (where H
i

is the projection of i in the subspace of dimension s). As the subspaces
are nested, it is possible to choose vector u

s

as the vector of the orthogonal
subspace for all of the vectors u

t

(with 1  t < s) which define the smaller
subspaces.

The first plane (defined by u1, u2), i.e., the plane of best representation, is
often su�cient for visualising cloud N

I

. When S is greater than or equal to 3,
we may need to visualise cloud N

I

in the subspace of dimension S by using a
number of plane representations: the representation on (u1, u2) but also that
on (u3, u4) which is the most complementary to that on (u1, u2). However, in
certain situations, we might choose to associate (u2, u3) for example, in order
to highlight a particular phenomenon which appears on these two components.

1.3.2.3 How Are the Components Obtained?

Components in PCA are obtained through diagonalisation of the correlation
matrix which extracts the associated eigenvectors and eigenvalues. The eigen-
vectors correspond to vectors u

s

which are each associated with the eigenvalues
of rank s (denoted �

s

), as the eigenvalues are ranked in descending order. The
eigenvalue �

s

is interpreted as the inertia of cloud N
I

projected on the compo-
nent of rank s or, in other words, the “explained variance” for the component
of rank s.

If all of the eigenvectors are calculated (S = K), the PCA recreates a basis
for the space RK . In this sense, PCA can be seen as a change of basis in which
the first vectors of the new basis play an important role.

Remark
When variables are centred but not standardised, the matrix to be diago-
nalised is the variance–covariance matrix.

1.3.2.4 Example

The distance between two orange juices is calculated using their seven sensory
descriptors. We decided to standardise the data to attribute each descriptor
equal influence. Figure 1.7 is obtained from the first two components of the
PCA and corresponds to the best plane for representing the cloud of individu-
als in terms of projected inertia. The inertia projected on the plane is the sum
of two eigenvalues, that is, 86.82% (= 67.77% + 19.05%) of the total inertia
of the cloud of points.

The first principal component, that is, the principal axis of variability
between the orange juices, separates the two orange juices Tropicana fr. and
Pampryl amb. According to data Table 1.2, we can see that these orange
juices are the most extreme in terms of the descriptors odour typicality and
bitterness: Tropicana fr. is the most typical and the least bitter while Pampryl
amb. is the least typical and the most bitter. The second component, that
is, the property that separates the orange juices most significantly once the
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FIGURE 1.7
Orange juice data: plane representation of the scatterplot of individuals.

main principal component of variability has been removed, identifies Tropicana
amb., which is the least intense in terms of odour, and Pampryl fr., which is
among the most intense (see Table 1.2).

Reading this data is tedious when there are a high number of individuals
and variables. For practical purposes, we will facilitate the characterisation
of the principal components by using the variables more directly.

1.3.3 Representation of the Variables as an Aid for
Interpreting the Cloud of Individuals

Let F
s

denote the coordinate of the I individuals on component s and F
s

(i)
its value for individual i. Vector F

s

is also called the principal component of
rank s. F

s

is of dimension I and thus can be considered as a variable. To
interpret the relative positions of the individuals on the component of rank s,
it may be interesting to calculate the correlation coe�cient between vector F

s

and the initial variables. Thus, when the correlation coe�cient between F
s

and a variable k is positive (or indeed negative), an individual with a positive
coordinate on component F

s

will generally have a high (or low, respectively)
value (relative to the average) for variable k.

In the example, F1 is strongly positively correlated with the variables
odour typicality and sweetness and strongly negatively correlated with the
variables bitter and acidic (see Table 1.4). Thus Tropicana fr., which has the
highest coordinate on component 1, has high values for odour typicality and
sweetness and low values for the variables acidic and bitter. Similarly, we
can examine the correlations between F2 and the variables. It may be noted
that the correlations are generally lower (in absolute value) than those with
the first principal component. We will see that this is directly linked to the
percentage of inertia associated with F2 which is, by construction, lower than
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that associated with F1. The second component can be characterised by the
variables odour intensity and pulp content (see Table 1.4).

TABLE 1.4
Orange Juice Data: Correlation between
Variables and First Two Components

F1 F2

Odour intensity 0.46 0.75
Odour typicality 0.99 0.13
Pulp content 0.72 0.62
Intensity of taste �0.65 0.43
Acidity �0.91 0.35
Bitterness �0.93 0.19
Sweetness 0.95 �0.16

To make these results easier to interpret, particularly in cases with a high
number of variables, it is possible to represent each variable on a graph, using
its correlation coe�cients with F1 and F2 as coordinates (see Figure 1.8).
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FIGURE 1.8
Orange juice data: visualisation of the correlation coe�cients between vari-
ables and the principal components F1 and F2.

We can now interpret the joint representation of the cloud of individuals
with this representation of the variables.

Remark
A variable is always represented within a circle of radius 1 (circle represented
in Figure 1.8): indeed, it must be noted that F1 and F2 are orthogonal (in
the sense that their correlation coe�cient is equal to 0) and that a variable
cannot be strongly related to two orthogonal components simultaneously. In
the following section we shall examine why the variable will always be found
within the circle of radius 1.
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1.4 Studying Variables

1.4.1 The Cloud of Variables

Let us now consider the data table as a set of columns. A variable is one of the
columns in the table, that is, a set of I numerical values, which is represented
by a point of the vector space with I dimensions, denoted RI (and known as
the “variables’ space”). The vector connects the origin of RI to the point. All
of these vectors constitute the cloud of variables and this ensemble is denoted
N

K

(see Figure 1.9).

O

1

FIGURE 1.9
The scatterplot of the variables N

K

in RI . In the case of a standardised PCA,
the variables k are located within a hypersphere of radius 1.

The scalar product between two variables k and l is expressed as:

IX

i=1

x
ik

⇥ x
il

= kkk ⇥ klk ⇥ cos(✓
kl

).

with kkk and klk the norm for variable k and l, and ✓
kl

the angle produced by
the vectors representing variables k and l. Since the variables used here are
centred, the norm for one variable is equal to its standard deviation multiplied
by the square root of I, and the scalar product is expressed as follows:

IX

i=1

(x
ik

� x̄
k

)⇥ (x
il

� x̄
l

) = I ⇥ s
k

⇥ s
l

⇥ cos(✓
kl

).
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On the right-hand side of the equation, we can identify covariance between
variables k and l.

Similarly, by dividing each term in the equation by the standard deviations
s

k

and s
l

of variables k and l, we obtain the following relationship:

r(k, l) = cos(✓
kl

).

This property is essential in PCA as it provides a geometric interpretation of
the correlation. Therefore, in the same way as the representation of cloud N

I

can be used to visualise the variability between individuals, a representation of
the cloud N

K

can be used to visualise all of the correlations (through the angles
between variables) or, in other words, the correlation matrix. To facilitate
visualisation of the angles between variables, the variables are represented by
vectors rather than points.

Generally speaking, the variables being centred and reduced (scaled to
unit variance) have a length with a value of 1 (hence the term “standardised
variable”). The vector extremities are therefore on the sphere of radius 1 (also
called “hypersphere” to highlight the fact that, in general, I > 3), as shown
in Figure 1.9.

Comment about the Centring
In RK , when the variables are centred, the origin of the axes is translated
onto the mean point. This property is not true for N

K

.

1.4.2 Fitting the Cloud of Variables

As is the case for the individuals, the cloud of variables N
K

is situated in a
space RI with a great number of dimensions and it is impossible to visualise the
cloud in the overall space. The cloud of variables must therefore be adjusted
using the same strategy as for the cloud of individuals. We maximise an
equivalent criterion

P
K

k=1 (OH
k

)2 with H
k

, the projection of variable k on
the subspace with reduced dimensions. Here too, the subspaces are nested
and we can identify a series of orthogonal axes S which define the subspaces
for dimensions s = 1 to S. Vector v

s

therefore belongs to a given subspace
and is orthogonal to the vectors v

t

which make up the smaller subspaces. It
can therefore be shown that the vector v

s

maximises
P

K

k=1(OHs

k

)2 where Hs

k

is the projection of variable k on v
s

.

Remark
In the individual space RK , centring the variables causes the origin of the
axes to shift to a mean point: the maximised criterion is therefore interpreted
as a variance; the projected points must be as dispersed as possible. In RI ,
centring has a di↵erent e↵ect, as the origin is not the same as the mean point.
The projected points should be as far as possible from the origin (although not
necessarily dispersed), even if that means being grouped together or merged.
This indicates that the position of the cloud N

K

with respect to the origin is
important.
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Vectors v
s

(s = 1, ..., S) belong to the space RI and consequently can be
considered new variables. The correlation coe�cient r(k, v

s

) between variables
k and v

s

is equal to the cosine of the angle ✓s

k

between Ok and v
s

when variable
k is centred and scaled, and thus standardised. The plane representation
constructed by (v1, v2) is therefore pleasing as the coordinates of a variable k
correspond to the cosine of the angle ✓1

k

and that of angle ✓2
k

, and thus the
correlation coe�cients between variables k and v1, and between variables k
and v2. In a plane representation such as this, we can therefore immediately
visualise whether or not a variable k is related to a dimension of variability
(see Figure 1.10).

By their very construction, variables v
s

maximise criterion
P

K

k=1 (OHs

k

)2.
Since the projection of a variable k is equal to the cosine of angle ✓s

k

, the
criterion maximises:

KX

k=1

cos2 ✓s

k

=
KX

k=1

r2(k, v
s

).

The above expression illustrates that v
s

is the new variable which is the most
strongly correlated with all of the initial variables K (with the orthogonality
constraint of v

t

already found). As a result, v
s

can be said to be a synthetic
variable. Here, we are experiencing the second aspect of the study of variables
(see Section 1.2.2).

A

B

C

D
HA
HB

HC
HD

HA

HB

HC

HD

FIGURE 1.10
Projection of the scatterplot of the variables on the main plane of variabil-
ity. On the left: visualisation in space RI ; on the right: visualisation of the
projections in the principal plane.

Remark
When a variable is not standardised, its length is equal to its standard deviation.
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In an unstandardised PCA, the criterion can be expressed as follows:

KX

k=1

(OHs

k

)2 =
KX

k=1

s2
k

r2 (k, v
s

) .

This highlights the fact that, in the case of an unstandardised PCA, each
variable k is assigned a weight equal to its variance s2

k

.

It can be shown that the axes of representation N
K

are in fact eigenvec-
tors of the scalar products matrix between individuals. This property is, in
practice, only used when the number of variables exceeds the number of in-
dividuals. We will see in the following that these eigenvectors are deducted
from those of the correlation matrix.

The best plane representation of the cloud of variables corresponds exactly
to the graph representing the variables obtained as an aid to interpreting the
representation of individuals (see Figure 1.8). This remarkable property is not
specific to the example but applies when carrying out any standardised PCA.
This point will be developed further in the following section.

1.5 Relationships between the Two Representations NI

and NK

So far we have looked for representations of N
I

and N
K

according to the same
principle and from one single data table. It therefore seems natural for these
two analyses (N

I

in RK and N
K

in RI) to be related.
The relationships between the two clouds N

I

and N
K

are brought to-
gether under the general term of “relations of duality”. This term refers to
the dual approach of one single data table, by considering either the lines or
the columns. This approach is also defined by “transition relations” (calcu-
lating the coordinates in one space from those in the other). Where F

s

(i) is
the coordinate of individual i and G

s

(k) the coordinate of variable k of the
component of rank s, we obtain the following equations:

F
s

(i) =
1p
�

s

KX

k=1

x
ik

G
s

(k),

G
s

(k) =
1p
�

s

IX

i=1

(1/I) x
ik

F
s

(i).

This result is essential for interpreting the data, and makes PCA a rich
and reliable experimental tool. This may be expressed as follows: individuals
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are on the same side as their corresponding variables with high values, and
opposite their corresponding variables with low values. It must be noted that
x

ik

are centred and carry both positive and negative values. This is one of the
reasons why individuals can be so far from the variable for which they carry
low values. F

s

is referred to as the principal component of rank s; �
s

is the
variance of F

s

and its square root the length of F
s

in RI ; v
s

is known as the
standardised principal component.

The total inertias of both clouds are equal (and equal to K for standardised
PCA) and furthermore, when decomposed component by component, they
are identical. This property is remarkable: if S dimensions are enough to
perfectly represent N

I

, the same is true for N
K

. In this case, two dimensions
are su�cient. If not, why generate a third synthetic variable which would not
di↵erentiate the individuals at all?

1.6 Interpreting the Data

1.6.1 Numerical Indicators

1.6.1.1 Percentage of Inertia Associated with a Component

The first indicators that we shall examine are the ratios between the projected
inertias and the total inertia. For component s:

P
I

i=1
1
I

(OHs

i

)2
P

I

i=1
1
I

(Oi)2
=

P
K

k=1 (OHs

k

)2
P

K

k=1 Ok2
=

�
sP

K

s=1 �
s

.

In the most usual case, when the PCA is standardised,
P

K

s=1 �
s

= K.
When multiplied by 100, this indicator gives the percentage of inertia (of N

I

in RK or of N
K

in RI) expressed by the component of rank s. This can be
interpreted in two ways:

1. As a measure of the quality of data representation; in the example,
we say that the first component expresses 67.77% of data variability
(see Table 1.5). In a standardised PCA (where I > K), we often
compare �

s

with 1, the value below which the component of rank
s, representing less data than a stand alone variable, is not worthy
of interest.

2. As a measure of the relative importance of the components; in the
example, we say that the first component expresses three times more
variability than the second; it a↵ects three times more variables but
this formulation is truly precise only when each variable is perfectly
correlated with a component.
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Because of the orthogonality of the axes (both in RK and in RI), these iner-
tia percentages can be added together for several components; in the example,
86.82% of the data are represented by the first two components (67.77% +
19.05% = 86.82%).

TABLE 1.5
Orange Juice Data: Decomposition of Variability
per Component

Eigenvalue Percentage of Cumulative
variance of variance percentage

Comp 1 4.74 67.77 67.77
Comp 2 1.33 19.05 86.81
Comp 3 0.82 11.71 98.53
Comp 4 0.08 1.20 99.73
Comp 5 0.02 0.27 100.00

Let us return to Figure 1.5: the pictures of the fruits on the first line cor-
respond approximately to a projection of the fruits on the plane constructed
by components 2 and 3 of PCA, whereas the images on the second line cor-
respond to a projection on plane 1-2. This is why the fruits are easier to
recognise on the second line: the more variability (i.e., the more information)
collected on plane 1-2 when compared to plane 2-3, the easier it is to grasp the
overall shape of the cloud. Furthermore, the banana is more easy to recognise
in plane 1-2 (the second line), as it retrieves greater inertia on plane 1-2. In
concrete terms, as the banana is a longer fruit than a melon, this leads to
more marked di↵erences in inertia between the components. As the melon is
almost spherical, the percentages of inertia associated with each of the three
components are around 33% and therefore the inertia retrieved by plane 1-2
is nearly 66% (as is that retrieved by plane 2-3).

1.6.1.2 Quality of Representation of an Individual or Variable

The quality of representation of an individual i on the component s can be
measured by the distance between the point within the space and the projec-
tion on the component. In reality, it is preferable to calculate the percentage
of inertia of the individual i projected on the component s. Therefore, when
✓s

i

is the angle between Oi and u
s

, we obtain:

qlt
s

(i) =
Projected inertia of i on u

s

Total inertia of i
= cos2 ✓s

i

.

Using Pythagoras’ theorem, this indicator is combined for multiple compo-
nents and is most often calculated for a plane.

The quality of representation of a variable k on the component of rank s
is expressed as:

qlt
s

(k) =
Projected inertia of k on v

s

Total inertia of k
= cos2 ✓s

k

.
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This last quantity is equal to r2(k, v
s

), which is why the quality of represen-
tation of a variable is only very rarely provided by software. The representa-
tional quality of a variable in a given plane is obtained directly on the graph
by visually evaluating its distance from the circle of radius 1.

1.6.1.3 Detecting Outliers

Analysing the shape of the cloud N
I

also means detecting unusual or remark-
able individuals. An individual is considered remarkable if it has extreme
values for multiple variables. In the cloud N

I

, an individual such as this is far
from the cloud’s centre of gravity, and its remarkable nature can be evaluated
from its distance from the centre of the cloud in the overall space RK .

In the example, none of the orange juices are particularly extreme (see
Table 1.6). The two most extreme individuals are Tropicana ambient and
Pampryl fresh.

TABLE 1.6
Orange Juice Data: Distances from the Individuals to the Centre of the
Cloud

Pampryl amb. Tropicana amb. Fruvita fr. Joker amb. Tropicana fr. Pampryl fr.
3.03 1.98 2.59 2.09 3.51 2.34

1.6.1.4 Contribution of an Individual or Variable to the
Construction of a Component

Outliers have an influence on analysis, and it is interesting to know to what
extent their influence a↵ects the construction of the components. Further-
more, some individuals can influence the construction of certain components
without being remarkable themselves. Detecting those individuals that con-
tribute to the construction of a principal component helps to evaluate the
component’s stability. It is also interesting to evaluate the contribution of
variables in constructing a component (especially in nonstandardised PCA).

To do so, we decompose the inertia of a component individual by individual
(or variable by variable). The inertia explained by the individual i on the
component s is:

(1/I) (OHs

i

)2

�
s

⇥ 100.

Distances intervene in the components by their squares, which augments the
roles of those individuals at a greater distance from the origin. Outlying
individuals are the most extreme on the component, and their contributions
are especially useful when the individuals’ weights are di↵erent.

Remark
These contributions are combined for a multiple individuals.

When an individual contributes significantly (i.e., much more than the
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others) to the construction of a principal component (for example Tropicana
ambient and Pampryl fresh; for the second component, see Table 1.7), it is
not uncommon for the results of a new PCA constructed without this indi-
vidual to change substantially: the principal components can change and new
oppositions between individuals may appear.

TABLE 1.7
Orange Juice Data: Contribution of
Individuals to the Construction of the
Components

Dim.1 Dim.2
Pampryl amb. 31.29 0.08
Tropicana amb. 2.76 36.77
Fruvita fr. 13.18 0.02
Joker amb. 12.63 8.69
Tropicana fr. 35.66 4.33
Pampryl fr. 4.48 50.10

Similarly, the contribution of variable k to the construction of component
s is calculated. An example of this is presented in Table 1.8.

TABLE 1.8
Orange Juice Data: Contribution of Variables to the
Construction of the Components

Dim.1 Dim.2
Odour intensity 4.45 42.69
Odour typicality 20.47 1.35
Pulp content 10.98 28.52
Taste intensity 8.90 13.80
Acidity 17.56 9.10
Biterness 18.42 2.65
Sweetness 19.22 1.89

1.6.2 Supplementary Elements

We here define the concept of active and supplementary (or illustrative) el-
ements. By definition, active elements contribute to the construction of the
principal components, contrary to supplementary elements. Thus, the inertia
of the cloud of individuals is calculated on the basis of active individuals, and
similarly, the inertia of the cloud of variables is calculated on the basis of
active variables. The supplementary elements make it possible to illustrate
the principal components, which is why they are referred to as “illustrative
elements”. Contrary to the active elements, which must be homogeneous, we
can make use of as many illustrative elements as possible.
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1.6.2.1 Representing Supplementary Quantitative Variables

By definition, a supplementary quantitative variable plays no role in calcu-
lating the distances between individuals. They are represented in the same
way as active variables; to assist in interpreting the cloud of individuals (Sec-
tion 1.3.3). The coordinate of the supplementary variable k0 on the component
s corresponds to the correlation coe�cient between k0 and the principal com-
ponent s (i.e., the variable whose values are the coordinates of the individuals
projected on the component of rank s). k0 can therefore be represented on
the same graph as the active variables.

More formally, the transition formulae can be used to calculate the coor-
dinate of the supplementary variable k0 on the component of rank s:

G
s

(k0) =
1p
�

s

X

i2{active}
x

ik

0F
s

(i) = r(k, F
s

),

where {active} refers to the set of active individuals. This coordinate is cal-
culated from the active individuals alone.

In the example, in addition to the sensory descriptors, there are also physic-
ochemical variables at our disposal (see Table 1.9). However, our stance re-
mains unchanged; namely, to describe the orange juices based on their sensory
profiles. This problem can be enriched using the supplementary variables since
we can now link sensory dimensions to the physicochemical variables.

TABLE 1.9
Orange Juice Data: Supplementary Variables

Glucose Fructose Saccharose Sweetening pH Citric Vitamin C
power acid

Pampryl amb. 25.32 27.36 36.45 89.95 3.59 0.84 43.44
Tropicana amb. 17.33 20.00 44.15 82.55 3.89 0.67 32.70
Fruvita fr. 23.65 25.65 52.12 102.22 3.85 0.69 37.00
Joker amb. 32.42 34.54 22.92 90.71 3.60 0.95 36.60
Tropicana fr. 22.70 25.32 45.80 94.87 3.82 0.71 39.50
Pampryl fr. 27.16 29.48 38.94 96.51 3.68 0.74 27.00

The correlations circle (Figure 1.11) represents both the active and sup-
plementary variables. The main component of variability opposes the orange
juices perceived as acidic/bitter, slightly sweet and somewhat typical with the
orange juices perceived as sweet, typical, not very acidic and slightly bitter.
The analysis of this sensory perception is reinforced by the variables pH and
saccharose. Indeed, these two variables are positively correlated with the first
component and lie on the side of the orange juices perceived as sweet and
slightly acidic (a high pH index indicates low acidity). One also finds the re-
action known as “saccharose inversion” (or hydrolysis): the saccharose breaks
down into glucose and fructose in an acidic environment (the acidic orange
juices thus contain more fructose and glucose, and less saccharose than the
average).
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FIGURE 1.11
Orange juice data: representation of the active and supplementary variables.

Remark
When using PCA to explore data prior to a multiple regression, it is advisable
to choose the explanatory variables for the regression model as active variables
for PCA, and to project the variable to be explained (the dependent variable)
as a supplementary variable. This gives some idea of the relationships between
explanatory variables and thus of the need to select explanatory variables.
This also gives us an idea of the quality of the regression: if the dependent
variable is appropriately projected, it will be a well-fitted model.

1.6.2.2 Representing Supplementary Categorical Variables

In PCA, the active variables are quantitative by nature but it is possible to
use information resulting from categorical variables on a purely illustrative
basis (= supplementary), that is, not used to calculate the distances between
individuals.

The categorical variables cannot be represented in the same way as the
supplementary quantitative variables since it is impossible to calculate the
correlation between a categorical variable and F

s

. Information about cate-
gorical variables lies within their categories. It is quite natural to represent
a categorical variable at the barycentre of all the individuals possessing that
variable. Thus, following projection on the plane defined by the principal
components, these categories remain at the barycentre of the individuals in
their plane representation. A categorical variable can thus be regarded as the
mean individual obtained from the set of individuals who have it. This is
therefore the way in which it will be represented on the graph of individuals.

The information resulting from a supplementary categorical variable can
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also be represented using a colour code: all of the individuals with the same
categorical variable are coloured in the same way. This facilitates visualisation
of dispersion around the barycentres associated with specific categories.

In the example, we can introduce the variable way of preserving which has
two categories ambient and fresh as well as the variable origin of the fruit juice
which has also two categories Florida and Other (see Table 1.10). It seems
that sensory perception of the products di↵er according to their packaging
(despite the fact that they were all tasted at the same temperature). The
second bisectrix separates the products purchased in the chilled section of the
supermarket from the others (see Figure 1.12).

TABLE 1.10
Orange Juice Data: Supplementary
Categorical Variables

Way of Origin
preserving

Pampryl amb. Ambient Other
Tropicana amb. Ambient Florida
Fruvita fr. Fresh Florida
Joker amb. Ambient Other
Tropicana fr. Fresh Florida
Pampryl fr. Fresh Other
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FIGURE 1.12
Orange juice data: plane representation of the scatterplot of individuals with
a supplementary categorical variable.

1.6.2.3 Representing Supplementary Individuals

Just as for the variables, we can use the transition formula to calculate the
coordinate of a supplementary individual i0 on the component of rank s:
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F
s

(i0) =
1p
�

s

KX

k=1

x
i

0
k

G
s

(k).

Note that centring and standardising (if any) are conducted with respect to
the averages and the standard deviations calculated from the active individuals
only. Moreover, the coordinate of i0 is calculated from the active variables
alone. Therefore, it is not necessary to have the values of the supplementary
individuals for the supplementary variables.

Comment
A supplementary categorical variable can be regarded as a supplementary
individual which, for each active variable, would take the average calculated
from all of the individuals with this categorical variable.

1.6.3 Automatic Description of the Components

The components provided by principal component method can be described
automatically by all of the variables, whether quantitative or categorical, sup-
plementary or active.

For a quantitative variable, the principle is the same whether the variable
is active or supplementary. First, the correlation coe�cient between the coor-
dinates of the individuals on the component s and each variable is calculated.
We then sort the variables in descending order from the highest coe�cient to
the weakest and retain the variables with the highest correlation coe�cients
(absolute values).

Comment
Let us recall that principal components are linear combinations of the active
variables, as are synthetic variables. Testing the significance of the correlation
coe�cient between a component and a variable is thus a biased procedure by
its very construction. However it is useful to sort and select the active vari-
ables in this manner to describe the components. On the other hand, for
the supplementary variables, the test described corresponds to that tradition-
ally used to test the significance of the correlation coe�cient between two
variables.

For a categorical variable, we conduct a one-way analysis of variance where
we seek to explain the coordinates of the individuals (on the component of
rank s) by the categorical variable; we use the sum to zero contrasts

P
i

↵
i

= 0.
Then, for each categorical variable, a Student t-test is conducted to compare
the average of the individuals who possess that category with the general
average (we test ↵

i

= 0 considering that the variances of the coordinates are
equal for each category). The correlation coe�cients are sorted according to
the p-values in descending order for the positive coe�cients and in ascending
order for the negative coe�cients.
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These tips for interpreting such data are particularly useful for understand-
ing those dimensions with a high number of variables.

The data used is made up of few variables. We shall nonetheless give the
outputs of the automatic description procedure for the first component as
an example. The variables which best characterise component 1 are odour
typicality, sweetness, bitterness and acidity (see Table 1.11).

TABLE 1.11
Orange Juice Data: Description of the First Dimension
by the Quantitative Variables

Correlation P-value
Odour typicality 0.9854 0.0003
Sweetness 0.9549 0.0030
pH 0.8797 0.0208
Aciditiy �0.9127 0.0111
Bitterness �0.9348 0.0062

The first component is also characterised by the categorical variable Origin
as the correlation is significantly di↵erent from 0 (p-value = 0.00941; see the
result in the object quali Table 1.12); the coordinates of the orange juices
from Florida are significantly higher than average on the first component,
whereas the coordinates of the other orange juices are lower than average (see
the results in the object category Table 1.12).

TABLE 1.12
Orange Juice Data: Description of the First
Dimension by the Categorical Variables and
the Categories of These Categorical Variables
$Dim.1$quali

R2 P-value
Origin 0.8458 0.0094

$Dim.1$category
Estimate P-value

Florida 2.0031 0.0094
Other �2.0031 0.0094

1.7 Implementation with FactoMineR

In this section, we will explain how to carry out a PCA with FactoMineR

and how to find the results obtained with the orange juice data. First, load
FactoMineR and then import the data, specifying that the names of the indi-
viduals should appear in the first column (row.names=1):

> library(FactoMineR)
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> orange <- read.table("http://factominer.free.fr/book/orange.csv",
header=TRUE,sep=";",dec=".",row.names=1)

> summary(orange)

The PCA is obtained by specifying that, here, variables 8 to 15 are quanti-
tative supplementary whereas variables 16 and 17 are categorical supplemen-
tary:

> res.pca <- PCA(orange,quanti.sup=8:15,quali.sup=16:17)

This command executes the PCA and produces the graph of variables
(with the active and supplementary variables, see Figure 1.11) and the graph
of individuals (with the individuals and categories of the supplementary cate-
gorical variables, see Figure 1.12). To produce a graph with individuals only
(see Figure 1.7), we use the function plot.PCA:

> plot(res.pca,invisible="quali")

Tables 1.4, 1.5, 1.6, 1.7 and 1.8 are obtained using the following lines of
code:

> round(res.pca$var$coord[,1:2],2)
> round(res.pca$eig,2)
> round(res.pca$ind$dist,2)
> round(res.pca$ind$contrib[,1:2],2)
> round(res.pca$var$contrib[,1:2],2)

The command dimdesc provides the automatic dimension description from
the quantitative (see Table 1.11) and categorical variables (see Table 1.12).
The function lapply is only used to round (with the function round) all of the
terms in a list (here within another list):

> lapply(dimdesc(res.pca),lapply,round,2)

1.8 Additional Results

1.8.1 Testing the Significance of the Components

It may be interesting to compare the percentage of inertia associated with a
component (or a plane) to the ones obtained with random data tables of the
same dimensions. Those data tables are obtained by simulations according to a
multinormal distribution with an identity variance–covariance matrix in order
to get the distribution of the percentages of inertia under the independence
hypothesis. The quantiles of order 0.95 of these percentages are brought
together in the Appendix in Tables A.1, A.2, A.3, and A.4 and an example is
provided in Section 1.9.3.1.

http://factominer.free.fr/book/orange.csv
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1.8.2 Variables: Loadings versus Correlations

Our approach, in which we examine the correlations between the variables
and the principal components, is widely used. However, other points of view
complement this approach, as for example when looking at loadings. Load-
ings are interpreted as the coe�cients of the linear combination of the initial
variables from which the principal components are constructed. From a nu-
merical point of view, the loadings are equal to the coordinates of the variables
divided by the square root of the eigenvalue associated with the component.
The loadings are the default outputs of the functions princomp and prcomp.

From this algebraic point of view, supplementary variables cannot be in-
troduced since they do not intervene in the construction of the components
and consequently do not intervene in the linear combination.

Additional details. PCA corresponds to a change of basis which makes
it possible to change from the initial variables to their linear combinations
when the inertia of the projected scatterplot is maximum. Thus, the loadings
matrix corresponds to the transition matrix from the old to the new basis.
This matrix corresponds to the eigenvectors of the variance–covariance matrix.
This can be expressed as:

F
s

(i) =
KX

k=1

L
s

(k)(x
ik

� x̄
k

)s
k

where L
s

(k) denotes the coe�cient of the linear combination (loading) of
variable k on the component of rank s.

1.8.3 Simultaneous Representation: Biplots

A biplot is a graph in which two sets of objects of di↵erent forms are rep-
resented. When there is a low number of both individuals and variables, it
may be interesting to simultaneously represent the cloud of individuals and
the cloud of variables in a biplot. However, this superimposed representation
is factitious since the two clouds do not occur within the same space (one
belongs to RK and the other to RI). We therefore focus exclusively on the
interpretation of the directions of the variables in terms of the individuals:
an individual is on the side of the variables for which it takes high values.
However, distances between individuals are distorted due to a dilation of each
component by the inverse of the square root of the eigenvalue with which
it is associated. This distortion is all the more important as inertias of the
components of representation are very di↵erent. Moreover, it is not possi-
ble to represent additional quantitative variables. To obtain a simultaneous
representation of the clouds, the function biplot should be used.
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1.8.4 Missing Values

When analysing data, it is relatively common for values to be missing from
the data tables. The simplest way to manage these missing values is to replace
each one with the average of the variable for which this value is missing. This
procedure gives satisfactory results if not too much data is missing.

Aside from this rather crude technique, there are other more sophisticated
methods which draw on the structure of the table, and which tend to yield
rather more satisfactory results. We shall briefly outline two possible solutions.

Let us consider two strongly correlated variables x and y whilst taking into
account all of the variables for both. In the absence of value y for individual
i, it is natural to estimate this value from value x for the same individual (for
example, using a simple regression). Let us now consider two individuals i and
l for which all of the available values are extremely similar. In the absence of
value l for variable k, it is natural to estimate this value from the value of i for
the same variable k. By integrating these solutions in order to obtain all of
the data, we can construct (iterative) estimation algorithms for missing data.
When these lines of code are written, these algorithms become the object of
“active searches”: their implementation in R is available for instance in the
package missMDA. Their description goes beyond the framework of this book
and will therefore be explored no further here.

1.8.5 Large Datasets

Data tables in certain fields, such as genomics, contain a great deal more
variables than individuals (it is common to have tens of rows and thousands
of columns). In this case, we recommend to diagonalise the scalar products
matrix instead of the correlation matrix as the FactoMineR package does.

When there are both a great number of individuals and a great number of
variables, we can call upon iterative algorithms where the number of dimen-
sions to extract is an explicit input of the function.

1.8.6 Varimax Rotation

The practice of rotation of axes is a technique which stems from common and
specific factor analysis (another model-based data analysis method), and is
sometimes used in PCA.

It is possible to rotate the representation of the cloud of variables obtained
by PCA so that the latter is easier to interpret. Many procedures are available;
the most well known being founded on the varimax criterion (the procedure is
often referred to as the varimax procedure by misuse of language). Varimax
rotation is the rotation which maximises the sum of the squares of the loadings.
To carry out the varimax procedure in R, the varimax function is used. To
successfully perform this procedure, the number of selected axes must be
predefined (to represent the cloud of variables).
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This procedure has the advantage of providing components which are
strongly correlated with certain variables and uncorrelated with others. The
disadvantage is that it does not provide nested solutions: the first two com-
ponents of the two-dimensional solution do not correspond to the first two
components of the three-dimensional solution. Besides, the solutions do not
maximise the projected inertia of the scatterplot and thus are not optimal in
that sense.

1.9 Example: The Decathlon Dataset

1.9.1 Data Description — Issues

This dataset contains the results of decathlon events during two athletic meet-
ings which took place one month apart in 2004: the Olympic Games in Athens
which took place on 23 and 24 August, and the Decastar 2004 which took place
on 25 and 26 September.

For both competitions, the following information is available for each ath-
lete: performance for each of the 10 events, total number of points (for each
event, an athlete earns points based on performance; here the sum of points
scored) and final ranking (see Table 1.13). The events took place in the fol-
lowing order: 100 metres, long jump, shot put, high jump, 400 metres (first
day) and 110 metre hurdles, discus, pole vault, javelin, 1500 metres (second
day).

In this table, rows correspond to an athlete’s performance profile at the
time of an event and each column to a variable describing the athletes’ per-
formances during a meeting. There are 12 quantitative variables (the results
for the 10 events, the ranking of the athlete and the total number of points
earned) and one categorical variable (the competition in which the athlete
took part).

The dataset is available in the package FactoMineR:

> library(FactoMineR)
> data(decathlon)

We want to obtain a typology of the performance profiles based on the
performances for each of the 10 events, such that two performance profiles
might be as close as they are similar.

In addition, we want to obtain a review of the relationships between the
results for the di↵erent events by studying the correlation coe�cients between
the variables taken pairwise.

These two results (the first related to the individuals, and the second to
the variables) will be compared to describe the typology of the individuals
based on the variables and vice versa.

We will also be able to relate the typology of the individuals with two
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TABLE 1.13
Athletes’ Performance in the 10 Decathlon Events (Names in Capital
Letters Are Results of the Decastar Meeting)
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Sebrle 10.85 7.84 16.36 2.12 48.36 14.05 48.72 5.00 70.52 280.01 1 8893 OG
Clay 10.44 7.96 15.23 2.06 49.19 14.13 50.11 4.90 69.71 282 2 8820 OG
Karpov 10.5 7.81 15.93 2.09 46.81 13.97 51.65 4.60 55.54 278.11 3 8725 OG
Macey 10.89 7.47 15.73 2.15 48.97 14.56 48.34 4.40 58.46 265.42 4 8414 OG
Warners 10.62 7.74 14.48 1.97 47.97 14.01 43.73 4.90 55.39 278.05 5 8343 OG
Zsivoczky 10.91 7.14 15.31 2.12 49.4 14.95 45.62 4.70 63.45 269.54 6 8287 OG
Hernu 10.97 7.19 14.65 2.03 48.73 14.25 44.72 4.80 57.76 264.35 7 8237 OG
Nool 10.8 7.53 14.26 1.88 48.81 14.8 42.05 5.40 61.33 276.33 8 8235 OG
Bernard 10.69 7.48 14.8 2.12 49.13 14.17 44.75 4.40 55.27 276.31 9 8225 OG
Schwarzl 10.98 7.49 14.01 1.94 49.76 14.25 42.43 5.10 56.32 273.56 10 8102 OG
Pogorelov 10.95 7.31 15.1 2.06 50.79 14.21 44.6 5.00 53.45 287.63 11 8084 OG
Schoenbeck 10.9 7.3 14.77 1.88 50.3 14.34 44.41 5.00 60.89 278.82 12 8077 OG
Barras 11.14 6.99 14.91 1.94 49.41 14.37 44.83 4.60 64.55 267.09 13 8067 OG
Smith 10.85 6.81 15.24 1.91 49.27 14.01 49.02 4.20 61.52 272.74 14 8023 OG
Averyanov 10.55 7.34 14.44 1.94 49.72 14.39 39.88 4.80 54.51 271.02 15 8021 OG
Ojaniemi 10.68 7.5 14.97 1.94 49.12 15.01 40.35 4.60 59.26 275.71 16 8006 OG
Smirnov 10.89 7.07 13.88 1.94 49.11 14.77 42.47 4.70 60.88 263.31 17 7993 OG
Qi 11.06 7.34 13.55 1.97 49.65 14.78 45.13 4.50 60.79 272.63 18 7934 OG
Drews 10.87 7.38 13.07 1.88 48.51 14.01 40.11 5.00 51.53 274.21 19 7926 OG
Parkhomenko 11.14 6.61 15.69 2.03 51.04 14.88 41.9 4.80 65.82 277.94 20 7918 OG
Terek 10.92 6.94 15.15 1.94 49.56 15.12 45.62 5.30 50.62 290.36 21 7893 OG
Gomez 11.08 7.26 14.57 1.85 48.61 14.41 40.95 4.40 60.71 269.7 22 7865 OG
Turi 11.08 6.91 13.62 2.03 51.67 14.26 39.83 4.80 59.34 290.01 23 7708 OG
Lorenzo 11.1 7.03 13.22 1.85 49.34 15.38 40.22 4.50 58.36 263.08 24 7592 OG
Karlivans 11.33 7.26 13.3 1.97 50.54 14.98 43.34 4.50 52.92 278.67 25 7583 OG
Korkizoglou 10.86 7.07 14.81 1.94 51.16 14.96 46.07 4.70 53.05 317 26 7573 OG
Uldal 11.23 6.99 13.53 1.85 50.95 15.09 43.01 4.50 60.00 281.7 27 7495 OG
Casarsa 11.36 6.68 14.92 1.94 53.2 15.39 48.66 4.40 58.62 296.12 28 7404 OG
Sebrle 11.04 7.58 14.83 2.07 49.81 14.69 43.75 5.02 63.19 291.7 1 8217 Dec
Clay 10.76 7.4 14.26 1.86 49.37 14.05 50.72 4.92 60.15 301.5 2 8122 Dec
Karpov 11.02 7.3 14.77 2.04 48.37 14.09 48.95 4.92 50.31 300.2 3 8099 Dec
Bernard 11.02 7.23 14.25 1.92 48.93 14.99 40.87 5.32 62.77 280.1 4 8067 Dec
Yurkov 11.34 7.09 15.19 2.1 50.42 15.31 46.26 4.72 63.44 276.4 5 8036 Dec
Warners 11.11 7.6 14.31 1.98 48.68 14.23 41.1 4.92 51.77 278.1 6 8030 Dec
Zsivoczky 11.13 7.3 13.48 2.01 48.62 14.17 45.67 4.42 55.37 268 7 8004 Dec
McMullen 10.83 7.31 13.76 2.13 49.91 14.38 44.41 4.42 56.37 285.1 8 7995 Dec
Martineau 11.64 6.81 14.57 1.95 50.14 14.93 47.6 4.92 52.33 262.1 9 7802 Dec
Hernu 11.37 7.56 14.41 1.86 51.1 15.06 44.99 4.82 57.19 285.1 10 7733 Dec
Barras 11.33 6.97 14.09 1.95 49.48 14.48 42.1 4.72 55.4 282 11 7708 Dec
Nool 11.33 7.27 12.68 1.98 49.2 15.29 37.92 4.62 57.44 266.6 12 7651 Dec
Bourguignon 11.36 6.8 13.46 1.86 51.16 15.67 40.49 5.02 54.68 291.7 13 7313 Dec
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quantitative variables which were not used to construct the distances between
individuals as well as a categorical variable competition.

1.9.2 Analysis Parameters

1.9.2.1 Choice of Active Elements

To obtain a typology of the athletes based on their performances for the 10
decathlon events, such as “two athletes are close as they have similar perfor-
mance profiles”, the distances between two athletes are defined on the basis
of their performances in the 10 events. Thus, only the performance variables
are considered active; the other variables (number of points, rank, and com-
petition) are supplementary.

Here, the athletes are all considered active individuals.

1.9.2.2 Should the Variables Be Standardised?

As the 10 performance variables were measured in di↵erent units, it is neces-
sary to standardise them for comparison. The role of each variable in calculat-
ing the distances between individuals is then balanced from the point of view
of their respective standard deviations. Without standardisation, the variable
1500 metres, with a standard deviation of 11.53, would have 100 times more
influence than the variable high jump with a standard deviation of 0.09.

1.9.3 Implementation of the Analysis

To perform this analysis, we use the PCA function of the FactoMineR package.
Its main input parameters are: the dataset, whether or not the variables
are standardised, the position of the quantitative supplementary variables
in the dataset, and the position of the categorical variables in the dataset
(supplementary by definition). By default, all of the variables are standardised
(scale.unit=TRUE, a parameter that does not need to be defined), and none
of the variables are supplementary (quanti.sup=NULL and quali.sup=NULL
in other words, all the variables are both quantitative and active).

In the example, we specify that variables 11 and 12 (number of points and
rank) are quantitative supplementary, and that variable 13 (competition) is
categorical supplementary:

> res.pca <- PCA(decathlon,quanti.sup=11:12,quali.sup=13)

The PCA function provides the graph of individuals and the graph of
variables as well as the following outputs contained in the object res.pca:

> res.pca
**Results for the Principal Component Analysis (PCA))**

Analysis of 41 individuals, described by 13 variables
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*The results are available in the following objects:

name description
1 "$eig" "eigenvalues"
2 "$var" "results for the variables"
3 "$var$coord" "coordinates of the variables"
4 "$var$cor" "correlations variables - dimensions"
5 "$var$cos2" "cos2 for the variables"
6 "$var$contrib" "contributions of the variables"
7 "$ind" "results for the individuals"
8 "$ind$coord" "coord. for the individuals"
9 "$ind$cos2" "cos2 for the individuals"
10 "$ind$contrib" "contributions of the individuals"
11 "$quanti.sup" "results for the supplementary quantitative variables"
12 "$quanti.sup$coord" "coord. of the supplementary quantitative variables"
13 "$quanti.sup$cor" "correlations suppl. quanti. variables - dimensions"
14 "$quali.sup" "results for the supplementary categorical variables"
15 "$quali.sup$coord" "coord. of the supplementary categories"
16 "$quali.sup$vtest" "v-test of the supplementary categories"
17 "$call" "summary statistics"
18 "$call$centre" "mean for the variables"
19 "$call$ecart.type" "standard error for the variables"
20 "$call$row.w" "weights for the individuals"
21 "$call$col.w" "weights for the variables"

1.9.3.1 Choosing the Number of Dimensions to Examine

Studying the inertia of the principal components allows us, on the one hand,
to see whether the variables are structured (presence of correlations between
variables) and, in addition, to determine the number of components to be
interpreted.

The results in res.pca$eig correspond to the eigenvalue (i.e., the inertia
or the variance explained) associated with each of the components; the per-
centage of inertia associated with each component and the cumulative sum of
these percentages. An example of such an output is provided below using the
round function:

> round(res.pca$eig,2)
eigenvalue percentage cumulative percentage

variance of variance
comp 1 3.27 32.72 32.72
comp 2 1.74 17.37 50.09
comp 3 1.40 14.05 64.14
comp 4 1.06 10.57 74.71
comp 5 0.68 6.85 81.56
comp 6 0.60 5.99 87.55
comp 7 0.45 4.51 92.06
comp 8 0.40 3.97 96.03
comp 9 0.21 2.15 98.18
comp 10 0.18 1.82 100.00

These values can be plotted on a bar chart (see Figure 1.13):

> barplot(res.pca$eig[,1],main="Eigenvalues",
+ names.arg=paste("dim",1:nrow(res.pca$eig)))
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FIGURE 1.13
Decathlon data: eigenvalues associated with each dimension provided by the
PCA.

The first two main factors of variability summarise 50% of the total inertia,
in other words 50% of the total variability of the cloud of individuals (or
variables) is represented by the plane. The importance of this percentage may
not be evaluated without taking into account the number of active individuals
and active variables. It may be interesting to compare this percentage with
the 0.95-quantile of the distribution of the percentages obtained by simulating
data tables of equivalent size on the basis of a normal distribution. According
to Table A.3 in the Appendix, this quantile obtained for 40 individuals and
10 variables is worth 38%: even if the percentage of 50% seems relatively low,
it expresses a significant structure in the data.

However, the variability of performances cannot be summarised by the
first two dimensions alone. It may also be interesting to interpret components
3 and 4 for which inertia is greater than 1 (this value is used as a reference
because it represents, in the case of standardised variables, the contribution
of a single variable).

1.9.3.2 Studying the Cloud of Individuals

The cloud of individuals representation (Figure 1.14) is a default output of the
PCA function. The supplementary categorical variables are also represented
on the graph of individuals through their categories.

Bourguignon and Karpov have very di↵erent performance profiles since
they are opposed according to the main axis of variability. Casarsa seems to
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FIGURE 1.14
Decathlon data: graph of individuals (in capitals the results for the Decastar
meeting).

be an unusual athlete in that his results are extreme for both the first and
second principal components.

The coordinates of these individuals can be found in res.pca$ind. Below
is a sample output provided by the PCA function.

We obtain a data table with the coordinates, the cosine squared (which
gives an idea of the quality of the projection of the individuals on a com-
ponent), and the contributions for each individual (to know how much an
individual contributes to the construction of a component).

Sample output:

> round(cbind(res.pca$ind$coord[,1:4],res.pca$ind$cos2[,1:4],
+ res.pca$ind$contrib[,1:4]),2)

Dim.1 Dim.2 Dim.3 Dim.4 Dim.1 Dim.2 Dim.3 Dim.4 Dim.1 Dim.2 Dim.3 Dim.4
Sebrle 4.04 1.37 -0.29 1.94 0.70 0.08 0.00 0.16 12.16 2.62 0.15 8.70
Clay 3.92 0.84 0.23 1.49 0.71 0.03 0.00 0.10 11.45 0.98 0.09 5.15
Karpov 4.62 0.04 -0.04 -1.31 0.85 0.00 0.00 0.07 15.91 0.00 0.00 3.98
Macey 2.23 1.04 -1.86 -0.74 0.42 0.09 0.29 0.05 3.72 1.52 6.03 1.27
Warners 2.17 -1.80 0.85 -0.28 0.53 0.37 0.08 0.01 3.51 4.57 1.26 0.19
Zsivocz 0.93 1.17 -1.48 0.81 0.13 0.21 0.33 0.10 0.64 1.92 3.79 1.51
Hernu 0.89 -0.62 -0.90 -0.13 0.24 0.11 0.24 0.01 0.59 0.54 1.40 0.04
Nool 0.30 -1.55 1.36 2.20 0.01 0.25 0.19 0.50 0.07 3.35 3.19 11.17
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The results of the supplementary variables res.pca$quali.sup can also
be found in a table containing the coordinates, cosine squared, and v-tests for
each category (which indicates whether a category characterises a component
or not: here we find the v-test presented in Section 3.7.2.2).

> round(cbind(res.pca$quali.sup$coord[,1:4],res.pca$quali.sup$cos2[,1:4],
+ res.pca$quali.sup$vtest[,1:4]),2)

Dim.1 Dim.2 Dim.3 Dim.4 Dim.1 Dim.2 Dim.3 Dim.4 Dim.1 Dim.2 Dim.3 Dim.4
Deca -0.60 -0.04 0.29 -0.14 0.40 0.00 0.09 0.02 -1.43 -0.12 1.05 -0.59
OG 0.28 0.02 -0.13 0.06 0.40 0.00 0.09 0.02 1.43 0.12 -1.05 0.59

We can also build the graph of individuals with components 3 and 4 (see
Figure 1.15). To do so, we use the function plot.PCA (which may be used with
both plot or plot.PCA). Note that both the type of objects to be represented
(choix="ind") and the axes of representation (axes = 3:4) must be specified:

> plot(res.pca,choix="ind",axes=3:4)
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FIGURE 1.15
Decathlon data: graph of individuals on the plane 3-4 (in capitals the results
of the Decastar meeting).
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Further Details. Individuals can be colour-coded according to categori-
cal variables. In the plot function, we specify that the individuals are coloured
according to the 13th variable (habillage=13). It is also possible to change
the font size with the argument cex ("cex = 0.7" instead of 1 by default).

> plot(res.pca,choix="ind",habillage=13,cex=0.7)

Confidence ellipses can be drawn around the categories of a supplemen-
tary categorical variable (i.e., around the barycentre of the individuals charac-
terised by the category). These ellipses are well adapted to plane representa-
tion and enable us to visualise whether or not two categories di↵er significantly.
For this, we consider that the data are multinormally distibuted (which is rea-
sonable when the data are su�ciently numerous as we are interested in centres
of gravity and therefore averages).

In practice, it is necessary to build a data table (a data.frame) with the
categorical variable and the individuals’ coordinates on the two axes. The
confidence ellipses are then calculated and, finally, the ellipses are drawn (see
Figure 1.16).

> concat.data <- cbind.data.frame(decathlon[,13],res.pca$ind$coord)
> ellipse.coord <- coord.ellipse(concat.data,bary=TRUE)
> plot.PCA(res.pca,habillage=13,ellipse=ellipse.coord,cex=0.8)

1.9.3.3 Studying the Cloud of Variables

This representation of the cloud of variables enables rapid visualisation of the
positive or negative links between variables, the presence of groups of variables
that are closely related, and so forth.

The representation of the cloud of variables (Figure 1.17) is also a default
output of the PCA function. The active variables appear as solid lines while
the supplementary variables appear dashed.

The variables 100m and long jump are negatively correlated: therefore, an
athlete who runs 100 metres quickly will generally jump a long way.

The variables 100m, 400m, and 110m hurdles are positively correlated,
that is, some athletes perform well in all four events while others do not.

Overall, the variables relating to speed are negatively correlated with the
first principal component while the variables shot put and long jump are pos-
itively correlated with this component. The coordinates of these active vari-
ables can be found in the object res.pca$var which also gives the represen-
tation quality of the variables (cosine squared) and their contributions to the
construction of the components:

> round(cbind(res.pca$var$coord[,1:4],res.pca$var$cos2[,1:4],
+ res.pca$var$contrib[,1:4]),2)

Dim.1 Dim.2 Dim.3 Dim.4 Dim.1 Dim.2 Dim.3 Dim.4 Dim.1 Dim.2 Dim.3 Dim.4
100m -0.77 0.19 -0.18 -0.04 0.60 0.04 0.03 0.00 18.34 2.02 2.42 0.14
Long 0.74 -0.35 0.18 0.10 0.55 0.12 0.03 0.01 16.82 6.87 2.36 0.98
Shot 0.62 0.60 -0.02 0.19 0.39 0.36 0.00 0.04 11.84 20.61 0.04 3.44
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FIGURE 1.16
Decathlon data: confidence ellipses around the categories on the main plane
induced by components 1 and 2.

High 0.57 0.35 -0.26 -0.14 0.33 0.12 0.07 0.02 10.00 7.06 4.79 1.74
400m -0.68 0.57 0.13 0.03 0.46 0.32 0.02 0.00 14.12 18.67 1.23 0.08
110mH -0.75 0.23 -0.09 0.29 0.56 0.05 0.01 0.08 17.02 3.01 0.61 8.00
Disc 0.55 0.61 0.04 -0.26 0.31 0.37 0.00 0.07 9.33 21.16 0.13 6.38
Pole 0.05 -0.18 0.69 0.55 0.00 0.03 0.48 0.30 0.08 1.87 34.06 28.78
Jave 0.28 0.32 -0.39 0.71 0.08 0.10 0.15 0.51 2.35 5.78 10.81 48.00
1500m -0.06 0.47 0.78 -0.16 0.00 0.22 0.61 0.03 0.10 12.95 43.54 2.46

The coordinates (and representation quality) of the supplementary vari-
ables can be found in the object res.pca$quanti.sup:

> round(cbind(res.pca$quanti.sup$coord[,1:4],res.pca$quanti.sup$cos2[,1:4]),2)
Dim.1 Dim.2 Dim.3 Dim.4 Dim.1 Dim.2 Dim.3 Dim.4

Rank -0.67 0.05 -0.06 -0.16 0.45 0 0 0.03
Nbpts 0.96 -0.02 -0.07 0.24 0.91 0 0 0.06

The graph of variables on components 3 and 4 (see Figure 1.18) can also
be obtained as follows:

> plot(res.pca,choix="var",axes=3:4)

It must be noted that it is possible to obtain an automatic description of
the main components using the dimdesc function (see Section 1.6.3):
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FIGURE 1.17
Decathlon data: graph of variables.

> dimdesc(res.pca)
$Dim.1
$Dim.1$quanti

correlation P-value
Points 0.9561543 2.099191e-22
Long.jump 0.7418997 2.849886e-08
Shot.put 0.6225026 1.388321e-05
High.jump 0.5719453 9.362285e-05
Discus 0.5524665 1.802220e-04
Rank -0.6705104 1.616348e-06
400m -0.6796099 1.028175e-06
110m.hurdle -0.7462453 2.136962e-08
100m -0.7747198 2.778467e-09

$Dim.2
$Dim.2$quanti

correlation P-value
Discus 0.6063134 2.650745e-05
Shot.put 0.5983033 3.603567e-05
400m 0.5694378 1.020941e-04
1500m 0.4742238 1.734405e-03
High.jump 0.3502936 2.475025e-02
Javelin 0.3169891 4.344974e-02
Long.jump -0.3454213 2.696969e-02

This function is very useful when there are a great number of variables. We
see here that the first component is mainly due to the variable number of points
(with a correlation coe�cient of 0.96), and the variable 100m (with a negative
correlation of �0.77). The second component is described by two quantitative
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Decathlon data: graph of variables on the plane induced by components 3-4.

variables only (discus and shot put). No category of any categorical variable
characterises components 1 and 2 with a confidence level of 95%. The level
of confidence can be changed (proba = 0.2, instead of proba = 0.05 by
default), which provides for the quantitative variables:

> dimdesc(res.pca,proba=0.2)
$Dim.1$quali

P-value
Competition 0.1552515

$Dim.1$category
Estimate P-value

OlympicG 0.4393744 0.1552515
Decastar -0.4393744 0.1552515

With this confidence level, we can say that both of the two categories
Olympic Games and Decastar have coordinates that are significantly di↵erent
from 0 on the first component. As the value is positive (negative) for the
Olympic Games (Decastar) we can say that individuals who participated in the
Olympic Games tended to have positive coordinates (or negative, respectively)
on component 1.

1.9.3.4 Joint Analysis of the Cloud of Individuals and the Cloud
of Variables

The representations of both the cloud of individuals and the cloud of variables
are to be analysed together. In other words, di↵erences between individuals
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can be explained by the variables, and relationships between variables can be
illustrated by individuals.

On the whole, the first component opposes performance profiles that are
“uniformly high” (i.e., athletes that are good in all events) such as Karpov
at the Olympics to performance profiles that are (relatively!) “weak in all
events” such as Bourguignon at the Decastar meeting.

Furthermore, the first component is mainly linked to the events using
qualities relating to a burst of energy (100m, 400m, 110m hurdles and long
jump). These four variables constitute a relatively homogeneous group: the
correlation between any two of these performances is higher than 0.52 (see the
correlation matrix on page 42). With just one exception, these variables have
the highest coe�cients. This group of variables “draws” (i.e., contributes to
the construction of) the first principal component and the overall score. It
must here be emphasised that the first principal component is the combination
that best sums up all the variables. In this example, the automatic summary
provided by the PCA corresponds almost exactly with the o�cial summary
(the number of points).

The second component opposes the variables of endurance (400m and
1500m) and power (discus, shot put). Notably, it separates the performance
profiles that are considered “weak”, which suggests that the best performance
profiles are balanced: even among the weakest profiles, athletes can be spe-
cialised. Note that power (discus and shot put) is not correlated with speed
(100m, long jump, 110m hurdles).

As these two variables are not linearly related, there are powerful and
fast individuals (all-round athletes with high values on the first component),
powerful individuals who are not so fast (corresponding to high values on com-
ponent 2) and individuals who are not powerful but fast (with low coordinates
on component 2).

This can be illustrated by comparing Casarsa and Lorenzo from the stan-
dardised data (see the table on the next page). Casarsa performs well in the
events that require power and poorly in speed related events, while the oppo-
site is true for Lorenzo. It must be noted that these two athletes have a low
coordinate on the first principal component and therefore do not have good
overall performances. Their strengths, which are lessened by the second com-
ponent, must therefore be relativised compared to their overall performance.

The variable number of points seems to be entirely unrelated to this
component (correlation of �0.02, see list of coordinates of the supplementary
variables).

The third component is mainly related to the 1500 metres and to a lesser
extent, to the pole vault. It opposes these two events: athletes that do not
perform well in the 1500 metres (N.B. as it is a variable relating to speed, a
high value indicates rather poor performance) do however obtain good results
in the pole vault (i.e., see standardised values for Terek : 1.96 in the pole vault
and 0.98 in the 1500 metres).

This third component mainly highlights four individuals that are particularly
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weak in the 1500 metres: Clay and Karpov at Decastar (with standardised val-
ues of 1.95 and 1.84, respectively), and Terek and Kokhizoglou at the Olympic
Games (with standardised values of 0.98 and 3.29). These four individuals
contribute up to 34.7% of the inertia of component 3.

The fourth component is correlated with the variable javelin and, to a
lesser extent, the variable pole vault. Three profiles are characterised by these
two events: Bernard at the Decastar meeting, and Sebrle and Nool at the
Olympic Games. These three athletes contribute up to 31.3% of the inertia
of this component.

It must be noted that the representations of the individuals and variables
are only approximate representations of the data table on the one hand, and
of the correlation (or variance–covariance) matrix on the other. It is therefore
necessary to support the interpretation by referring back to the data. The
means and standard deviations by variable, the standardised data, and the
correlation matrix can all be obtained using the following lines of code:

> res.pca$call$centre
> res.pca$call$ecart.type

100m Long shot Haut 400m 110mH Disc Pole Jave 1500m
mean 11.00 7.26 14.48 1.98 49.62 14.61 44.33 4.76 58.32 279.02
sd 0.26 0.31 0.81 0.09 1.14 0.47 3.34 0.27 4.77 11.53

Computing the standardised data is useful to facilitate comparison of the
data with the average in terms of number of standard deviations, but also to
compare one variable’s values to another.

> round(scale(decathlon[,1:12]),2)
100m Long Shot High 400m 110mH Disc Pole Jave 1500m Rank Nbpts

Sebrle -0.56 1.83 2.28 1.61 -1.09 -1.18 1.30 0.85 2.53 0.08 -1.40 2.59
Clay -2.12 2.21 0.91 0.94 -0.37 -1.01 1.71 0.49 2.36 0.25 -1.28 2.38
Karpov -1.89 1.74 1.76 1.27 -2.43 -1.35 2.17 -0.58 -0.58 -0.08 -1.15 2.10
Macey -0.41 0.66 1.52 1.95 -0.56 -0.10 1.19 -1.30 0.03 -1.17 -1.03 1.19
Warners -1.44 1.52 0.00 -0.08 -1.43 -1.26 -0.18 0.49 -0.61 -0.08 -0.90 0.99
Zsivoczky -0.33 -0.38 1.01 1.61 -0.19 0.73 0.38 -0.22 1.06 -0.81 -0.77 0.82
Hernu -0.11 -0.22 0.21 0.60 -0.77 -0.75 0.12 0.14 -0.12 -1.26 -0.65 0.68
Nool -0.75 0.85 -0.26 -1.09 -0.70 0.41 -0.67 2.29 0.62 -0.23 -0.52 0.67
Bernard -1.17 0.70 0.39 1.61 -0.42 -0.92 0.13 -1.30 -0.63 -0.23 -0.39 0.64
Schwarzl -0.07 0.73 -0.57 -0.41 0.12 -0.75 -0.56 1.21 -0.41 -0.47 -0.27 0.28
Pogorelov -0.18 0.16 0.76 0.94 1.02 -0.84 0.08 0.85 -1.01 0.74 -0.14 0.23
Schoenbeck -0.37 0.13 0.36 -1.09 0.59 -0.56 0.02 0.85 0.53 -0.02 -0.02 0.21
Barras 0.54 -0.85 0.53 -0.41 -0.18 -0.50 0.15 -0.58 1.29 -1.02 0.11 0.18
Smith -0.56 -1.42 0.93 -0.75 -0.30 -1.26 1.39 -2.02 0.66 -0.54 0.24 0.05
Averyanov -1.70 0.25 -0.04 -0.41 0.09 -0.46 -1.32 0.14 -0.79 -0.69 0.36 0.05
Ojaniemi -1.21 0.76 0.60 -0.41 -0.43 0.86 -1.18 -0.58 0.20 -0.28 0.49 0.00
Smirnov -0.41 -0.60 -0.72 -0.41 -0.44 0.35 -0.55 -0.22 0.53 -1.35 0.62 -0.04
Qi 0.24 0.25 -1.12 -0.08 0.03 0.37 0.24 -0.94 0.51 -0.55 0.74 -0.21
Drews -0.49 0.38 -1.71 -1.09 -0.96 -1.26 -1.25 0.85 -1.41 -0.41 0.87 -0.23
Parkhomenko 0.54 -2.05 1.47 0.60 1.23 0.58 -0.72 0.14 1.55 -0.09 0.99 -0.26
Terek -0.30 -1.01 0.82 -0.41 -0.05 1.09 0.38 1.93 -1.59 0.97 1.12 -0.33
Gomez 0.31 0.00 0.11 -1.43 -0.87 -0.42 -1.00 -1.30 0.50 -0.80 1.25 -0.41
Turi 0.31 -1.11 -1.04 0.60 1.78 -0.73 -1.33 0.14 0.21 0.94 1.37 -0.87
Lorenzo 0.39 -0.73 -1.52 -1.43 -0.24 1.64 -1.22 -0.94 0.01 -1.37 1.50 -1.21
Karlivans 1.26 0.00 -1.43 -0.08 0.80 0.79 -0.29 -0.94 -1.12 -0.03 1.63 -1.23
Korkizoglou -0.52 -0.60 0.40 -0.41 1.34 0.75 0.52 -0.22 -1.09 3.25 1.75 -1.26
Uldal 0.88 -0.85 -1.15 -1.43 1.16 1.03 -0.39 -0.94 0.35 0.23 1.88 -1.49
Casarsa 1.38 -1.83 0.54 -0.41 3.11 1.66 1.28 -1.30 0.06 1.46 2.01 -1.76
SEBRLE 0.16 1.01 0.43 1.05 0.17 0.18 -0.17 0.93 1.01 1.09 -1.40 0.62
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CLAY -0.91 0.44 -0.26 -1.31 -0.21 -1.18 1.89 0.57 0.38 1.93 -1.28 0.34
KARPOV 0.08 0.13 0.36 0.71 -1.08 -1.09 1.37 0.57 -1.66 1.81 -1.15 0.27
BERNARD 0.08 -0.09 -0.28 -0.64 -0.60 0.81 -1.02 2.01 0.92 0.09 -1.03 0.18
YURKOV 1.30 -0.54 0.86 1.38 0.70 1.49 0.57 -0.15 1.06 -0.22 -0.90 0.09
WARNERS 0.43 1.07 -0.20 0.04 -0.81 -0.80 -0.95 0.57 -1.36 -0.08 -0.77 0.07
ZSIVOCZKY 0.50 0.13 -1.21 0.37 -0.86 -0.92 0.40 -1.23 -0.61 -0.94 -0.65 0.00
McMULLEN -0.64 0.16 -0.87 1.72 0.25 -0.48 0.02 -1.23 -0.40 0.52 -0.52 -0.03
MARTINEAU 2.44 -1.42 0.11 -0.30 0.45 0.69 0.97 0.57 -1.24 -1.45 -0.39 -0.59
HERNU 1.41 0.95 -0.08 -1.31 1.29 0.96 0.20 0.21 -0.23 0.52 -0.27 -0.80
BARRAS 1.26 -0.92 -0.47 -0.30 -0.12 -0.27 -0.66 -0.15 -0.60 0.25 -0.14 -0.87
NOOL 1.26 0.03 -2.18 0.04 -0.36 1.45 -1.90 -0.51 -0.18 -1.06 -0.02 -1.03
BOURGUIGNON 1.38 -1.45 -1.23 -1.31 1.34 2.26 -1.14 0.93 -0.75 1.09 0.11 -2.02

Let us illustrate the standardised data table for the variable 100m. Indi-
viduals with a negative standardised value (positive) take less time (or more,
respectively) to run the 100m than the mean of all athletes, which means that
they run faster (or slower) than the average.

In addition, the two individuals with the most extreme results are Clay
and MARTINE. Clay has a particularly good time since his standardised data
is equal to �2.12, in other words he is at 2.12 standard deviations below the
average. MARTINE takes a value of 2.44, meaning that his time is particularly
long, since he is located at 2.44 standard deviations above the mean: he is
particularly slow compared to the average.

If the variable 100m had followed normal distribution, these two indi-
viduals would be part of 5% of the most extreme individuals (95% of the
distribution is between �1.96 and 1.96).

The performances of a given individual can be compared for two events.
Clay is better than the average for the discus and the javelin (the standardised
data are positive for both variables), but he is better at the javelin than at
the discus (his standardised data is more extreme for the javelin than for the
discus).

The correlation matrix can be obtained with the following code (for co-
variance matrix, replace cor by cov):

> round(cor(decathlon[,1:12]),2)
100m Long Shot High 400m 110mH Disc Pole Jave 1500m Rank Nbpts

100m 1.00 -0.60 -0.36 -0.25 0.52 0.58 -0.22 -0.08 -0.16 -0.06 0.30 -0.68
Long -0.60 1.00 0.18 0.29 -0.60 -0.51 0.19 0.20 0.12 -0.03 -0.60 0.73
Shot -0.36 0.18 1.00 0.49 -0.14 -0.25 0.62 0.06 0.37 0.12 -0.37 0.63
High -0.25 0.29 0.49 1.00 -0.19 -0.28 0.37 -0.16 0.17 -0.04 -0.49 0.58
400m 0.52 -0.60 -0.14 -0.19 1.00 0.55 -0.12 -0.08 0.00 0.41 0.56 -0.67
110mH 0.58 -0.51 -0.25 -0.28 0.55 1.00 -0.33 0.00 0.01 0.04 0.44 -0.64
Disc -0.22 0.19 0.62 0.37 -0.12 -0.33 1.00 -0.15 0.16 0.26 -0.39 0.48
Pole -0.08 0.20 0.06 -0.16 -0.08 0.00 -0.15 1.00 -0.03 0.25 -0.32 0.20
Jave -0.16 0.12 0.37 0.17 0.00 0.01 0.16 -0.03 1.00 -0.18 -0.21 0.42
1500m -0.06 -0.03 0.12 -0.04 0.41 0.04 0.26 0.25 -0.18 1.00 0.09 -0.19
Rank 0.30 0.60 -0.37 -0.49 0.56 0.44 -0.39 -0.32 -0.21 0.09 1.00 -0.74
Nbpts -0.68 0.73 0.63 0.58 -0.67 -0.64 0.48 0.20 0.42 -0.19 -0.74 1.00

These correlations between variables can be viewed using the pairs function
(see Figure 1.19):

> pairs(decathlon[,c(1,2,6,10)])
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FIGURE 1.19
Decathlon data: cloud of variables 100m, long jump, 110m hurdles, and
1500m.

1.9.3.5 Comments on the Data

All athletes who participated in both decathlons certainly focused their phys-
ical preparation on their performances at the Olympic Games. Indeed, they
all performed better at the Olympic Games than at the Decastar meeting.
We can see that the dots representing a single athlete (for example, Sebrle)
are in roughly the same direction. This means, for example, that Sebrle is
good at the same events for both decathlons, but that the dot corresponding
to his performance at the Olympic Games is more extreme, so he obtained
more points during the Olympics than at the Decastar meeting.

This data can be interpreted in two di↵erent ways:

1. Athletes that participate in the Olympic Games perform better (on
average) than those participating in the Decastar meeting.

2. During the Olympics, athletes are more motivated by the challenge,
they tend to be fitter, etc.

From the point of view of component 2, however, there is no overall
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di↵erence between the Olympics and Decastar. Overall, athletes’ perfor-
mances may have improved but their profiles have not changed. Only Zsivoczky
changed from a rather powerful profile to a rather fast profile. His per-
formances in shot put and javelin are worse at Decastar compared to the
Olympics, with throws of 15.31m (standardised value of 1.02) and 13.48m
(�1.22) for shot put and 63.45m (1.08) and 55.37m (�0.62) for javelin. How-
ever, he improved his performance in the 400 metres: 49.40 seconds (�0.19)
and then 48.62 seconds (�0.87) and for the 110m hurdles: 14.95 seconds (0.74)
and then 14.17 seconds (�0.94).

1.10 Example: The Temperature Dataset

1.10.1 Data Description — Issues

In this example, we investigate the climates of di↵erent European countries.
To do so, temperatures (in Celsius) were collected monthly for the main Eu-
ropean capitals and other major cities. In addition to the monthly tempera-
tures, the average annual temperature and the thermal amplitude (di↵erence
between the maximum monthly average and the minimum monthly average of
a city) were recorded for each city. We also include two quantitative position-
ing variables (latitude and longitude) as well as a categorical variable: Area
(categorical variable with the four categories north, south, east, and west of
Europe). An extract of the data is provided in Table 1.14.

TABLE 1.14
Temperature Data (Extract): Temperatures Are in Celsius

Jan Feb Mar Apr . . . Nov Dec Ann Amp Lat Lon Area
Amsterdam 2.9 2.5 5.7 8.2 . . . 7.0 4.4 9.9 14.6 52.2 4.5 West
Athens 9.1 9.7 11.7 15.4 . . . 14.6 11.0 17.8 18.3 37.6 23.5 South
Berlin �0.2 0.1 4.4 8.2 . . . 4.2 1.2 9.1 18.5 52.3 13.2 West
Brussels 3.3 3.3 6.7 8.9 . . . 6.7 4.4 10.3 14.4 50.5 4.2 West
Budapest �1.1 0.8 5.5 11.6 . . . 5.1 0.7 10.9 23.1 47.3 19.0 East
Copenhagen �0.4 �0.4 1.3 5.8 . . . 4.1 1.3 7.8 17.5 55.4 12.3 North
Dublin 4.8 5.0 5.9 7.8 . . . 6.7 5.4 9.3 10.2 53.2 6.1 North
Helsinki �5.8 �6.2 �2.7 3.1 . . . 0.1 �2.3 4.8 23.4 60.1 25.0 North
Kiev �5.9 �5.0 �0.3 7.4 . . . 1.2 �3.6 7.1 25.3 50.3 30.3 East
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1.10.2 Analysis Parameters

1.10.2.1 Choice of Active Elements

Cities. We wish to understand the variability of monthly temperatures from
one country to another in a multidimensional manner, that is, by taking into
account the 12 months of the year simultaneously. Each country will be repre-
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sented by the climate of its capital. The data of the other cities are not taken
into account to avoid giving more weight to the countries for which several
cities are listed. Thus, the capitals will be regarded as active individuals while
the other cities will be regarded as supplementary individuals (i.e., individ-
uals which are not involved in the construction of the components). From a
multidimensional point of view, two cities are all the more close when they
present a similar set of monthly temperatures. This data can be summarised
by highlighting the capitals’ principal components. This will provide answers
to questions such as: which are the greatest disparities between countries?
These components could be used as a basis for constructing a typology of the
countries.
Variables. Each variable measures the monthly temperatures in the 23 capi-
tals: the relationships between variables are considered from the point of view
of the capitals alone (i.e., from the active individuals), rather than from all of
the cities. The relationships between the variables are a key objective in such
a study. Two variables are positively correlated if, overall, the warmest cities
according to one variable (the temperature for a given month) are also the
warmest according to the other (for example, is it hot in August where it is
hot in January?). Naturally, we wish to get a picture of these links, without
having to review every pair of variables.

This picture can be obtained using synthetic variables. The question is, can
we summarise monthly precipitation with only a small number of components?
If so, we will examine the links between the initial variables and the synthetic
variables: this indirect review is more convenient than the direct one (with 12
initial variables and 2 synthetic variables, we will examine 24 links instead of
12⇥ 11/2 = 66).

Looking at cities’ temperature profiles, we will consequently consider only
those variables relating to temperature as active (thus eliminating variables
such as latitude and longitude). For the other variables considered supplemen-
tary (average annual temperature and annual amplitude), these are synthetic
indicators that it will be interesting to compare with the principal compo-
nents, but which are not part of the profile itself. Moreover, these variables
use information already present in the other variables.

1.10.2.2 Should the Variables Be Standardised?

Centring and reducing to unit variance (in other words standardising) is es-
sential only when the active variables are not measured in the same units.
The illustrative variables will be analysed through their correlation coe�cient
with the components and thus automatically standardised.

Coherence of units of measurement does not imply that one does not need
to standardise: does 1 degree Celsius represent the same thing in January as
in July? Failing to standardise the data means giving each variable a weight
proportional to its variance. It must be noted that the standard deviations
di↵er su�ciently little from one month to another (at most they are doubled).
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It is therefore reasonable to think that standardising has no real impact on
the results of the analysis. From another point of view, when calculating
distances between towns, failing to standardise the data means attributing
the same influence to a di↵erence of 1 degree, whatever the month. When
standardised, this di↵erence is amplified as it becomes more evident during
the months where the temperatures vary little from one town to another. For
this example, it was decided to standardise the data, thus attributing equal
weights to each month.

1.10.3 Implementation of the Analysis

Here are the lines of code for obtaining the graphs and the outputs of the
analysis that we are commenting:

> library(FactoMineR)
> temperature <- read.table("http://factominer.free.fr/book/temperature.csv",

header=TRUE,sep=";",dec=".",row.names=1)
> res<-PCA(temperature,ind.sup=24:35,quanti.sup=13:16,quali.sup=17)
> plot.PCA(res,choix="ind",habillage=17)
> dimdesc(res)
> res$eig
> res$ind
> res$ind.sup
> res$var
> res$quanti.sup
> res$quali.sup
> scale(temperature[1:23,1:16])*sqrt(22/23)
> cor(temperature[1:23,1:16])

These lines of code allow us:

• to import the data file (specifying that the name of the variables is shown,
the field separator is “;”, the decimal marker is “.” and the name of the
individuals is presented in the first column);

• to compute the PCA with the supplementary individuals from 24 to 35
(towns which are not capital cities), the supplementary quantitative vari-
ables from 13 to 16, and variable 17 which is categorical supplementary;

• to build the graph of individuals by colouring individuals according to the
variable Area;

• to describe the dimensions or principal components based on the variables;

• to provide the table with the variance explained by each component;

• to provide the table of results for the active individuals;

• to provide the table of results for the illustrative individuals;

• to provide the table of results for the active variables (quantitative);

http://factominer.free.fr/book/temperature.csv
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• to provide the table of results for the supplementary quantitative variables;

• to provide the table of results for the additional categorical variables;

• to compute the standardised data for the quantitative variables of the active
individuals only; and

• to compute the correlation matrix.

The first principal component is predominant since it alone summarises
82.9% of the total inertia (see graphical outputs or the results in res$eig).
The second principal component is relatively important since it summarises
15.4% of the total inertia. These two principal components express 82.9 +
15.4 = 98.3% of the total inertia which justifies limiting ourselves to the first
two components. In other words, from two synthetic variables, we are able to
summarise most of the information provided by the 12 initial variables. In this
case study, the summary provided by PCA is almost complete. This means
that the variables and individuals in the main plane are e↵ectively projected,
and that the proximity of two individuals within the plane reflects proximity
in the overall space. Similarly, the angle between two variables in the plane
gives a very good approximation of the angle in the overall space.
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FIGURE 1.20
Temperature data: graph of variables.

First Component
All the active variables are on the same side of the first component (the sign
of the correlation coe�cient with the first component is the same for all 12
variables, see Figure 1.20). We are dealing with a size e↵ect: some cities have
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high temperatures regardless of the months of the year, others have low tem-
peratures regardless of the month. In other words, the months are, in general,
positively correlated two by two. This first component can be summarised
by the term “average annual temperature”. This summary is reinforced by
a correlation coe�cient of 0.998 between this principal component and the
illustrative variable average annual temperature (the graph seems to show a
weaker correlation but the result in res$quanti.sup$coord indicates a corre-
lation of 0.998). Furthermore, we note that the months September, October,
and April are more closely linked than the others to this first component: they
“represent” the best the annual temperatures. Apart from the average annual
temperature mentioned above, another supplementary quantitative variable
is linked to the first principal component: latitude. The correlation between
latitude and the first principal component is worth �0.85 which means that
the cities that are further south (lower latitude) have a higher coordinate on
the first component and are therefore the warmest cities: this is obviously not
a surprise!
Remark
The size e↵ect is more informative than the summary annual temperatures
since it indicates that the hottest cities annually are also (generally) the
hottest each month.
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FIGURE 1.21
Temperature data: graph of individuals.

Due to duality, the coordinate of Helsinki (Athens) reflects a city where
it is cold (or hot, respectively) throughout the year (see Figure 1.21). This is
clearly visible in the data: whatever the month, Helsinki (Athens) is a colder
than average city (or indeed warmer, respectively). This is more easily visible
when working from the standardised data:
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> scale(temperature[1:23,1:12])*sqrt(22/23)

Note that the data is standardised based on active individuals only, that
is, from the first 23 individuals.

Second Component
The second component opposes, on the one hand, the months of the period
May–July and, on the other hand, those of the period November–March. This
can be summed up by the opposition “summer” — “bad season” (i.e., all of
the months which cannot be qualified as being part of “summer”). It is im-
portant to note that this opposition has nothing to do with an evolution of
the averages, since the data are centered prior to analysis. This opposition
reflects the fact that, for a given annual temperature, some cities are relatively
rather hot in summer and others rather cold. In this case, the word “rela-
tively” is required when interpreting due to the fact that data are centered.
The opposition between the cities mentioned above can be found directly in
the standardised data; large variations of averages between months may make
it di�cult to illustrate in the raw data.

Annual thermal amplitude is related to this second component, which can
be connected to the two following facts: first, the highest values of this vari-
able were observed for most continental cities (at the top of the axis), and
second, the lowest values were observed for the cities nearest to the Atlantic
(at the bottom of the axis). Longitude is linked to this component, but the
relationship is not particularly strong (correlation = 0.4196).

Thus, through duality, cities such as Kiev, Moscow, or Budapest have
rather high standardised data during the summer, which is in turn rather
low during the rest of the year. On the other hand, cities such as Dublin
or Reykjavic have rather low standardised data values during the summer
which are in turn mild during winter. In fact, this opposition may also be
read directly in the raw data. This component clearly distinguishes coastal
cities with low thermal amplitude from continental cities with high thermal
amplitude. The temperatures of the coastal cities (for instance Dublin or
Reykjavic) are generally medium or low (indicated by the first component)
and are very low during the summer. In contrast, cities located inland (such
as Kiev, Moscow, or Budapest) are generally medium or low and very low
during winter and high during summer.

The automatic description of the components obtained from quantitative
variables (using the dimdesc function) confirms our interpretation of the com-
ponents. The categorical variable Area also makes it possible to characterise
the components. The categories North and South characterise the first compo-
nent: the category South (North) has a significantly positive coordinate (neg-
ative) on the first component. This is interpreted as meaning that Southern
European cities (Northern) are warmer (or colder, respectively) throughout
the year. The category East (North) has a significantly positive coordinate
(negative) on the second component. This can be interpreted as: Eastern Eu-
ropean cities (Northern) have high (or, respectively, low) thermal amplitudes.
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All of the results concerning the categorical variable Area can be found in
res$quali.sup.

> dimdesc(res)
$Dim.1
$Dim.1$quanti

correlation P-value
Average 0.998 9.58e-26
October 0.992 3.73e-20
September 0.986 1.06e-17
April 0.974 5.30e-15
November 0.952 2.66e-12
March 0.945 1.15e-11
August 0.909 1.90e-09
February 0.884 2.18e-08
December 0.873 5.45e-08
May 0.870 7.01e-08
July 0.844 4.13e-07
January 0.842 4.59e-07
June 0.833 7.96e-07
Latitude -0.852 2.57e-07

$Dim.1$quali
R2 P-value

Area 0.679 6.282e-05

$Dim.1$category
Estimate P-value

South 4.183 2.28e-05
East -1.478 4.09e-02
North -2.823 4.98e-04

$Dim.2
$Dim.2$quanti

correlation P-value
Amplitude 0.944 1.30e-11
June 0.545 7.11e-03
July 0.509 1.32e-02
May 0.458 2.80e-02
Longitude 0.420 4.62e-02
February -0.456 2.88e-02
December -0.473 2.27e-02
January -0.531 9.08e-03

$Dim.2$quali
Estimate P-value

Area 0.546 0.00153

$Dim.2$category
Estimate P-value

East 1.462 4.47e-04
North -0.906 1.66e-02

Conclusion
Assessing the relationships between temperatures revealed positive correla-
tions between monthly temperatures and, more precisely, two periods: the
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summer season (May to August) and the bad season (November to March).
Temperatures are more closely linked within each period than from one period
to the other. Temperatures can be summarised by two synthetic variables: av-
erage annual temperature and thermal amplitude. From these two variables,
we can outline the city typologies. By bringing together those cities which
are close on the map defined by the first two components, and respecting the
geographical location, we can propose the following typology:

• Southern European cities are characterised by high temperatures throughout
the year.

• Western European cities are characterised by average temperatures through-
out the year.

• Northern European cities are characterised by cold temperatures, especially
during summer.

• Eastern European cities are characterised by cold temperatures, especially
during winter.

The temperature profile for the Southern European town of Sarajevo is
more similar to that of towns in Western Europe than it is to those in Southern
Europe.

It may be noted that cities that have not participated in the construction
of the components (the supplementary individuals in the analysis) have similar
temperature profiles to the capitals of the countries they belong to.

The variables November and March are strongly correlated: indeed, the
ends of the arrows are close to the circle of correlation, so the angle between
vectors November and March in the space RK (space of the individuals) is
close to the angle on the plane, namely close to 0. As the correlation coe�cient
is the cosine of the angle in the individuals’ space, the correlation coe�cient
is close to 1. This means that the cities where it is cold in November are also
those where it is cold in March.

The correlation between January and June is close to 0 because, on the
plane, the angle is close to ⇡/2 and the variables are well projected.

1.11 Example of Genomic Data: The Chicken Dataset

1.11.1 Data Description — Issues

The data, kindly provided by S. Lagarrigue, relates to 43 chickens having
undergone one of the six following diet conditions: normal diet (N), fasting
for 16 hours (F16), fasting for 16 hours then refed for 5 hours (F16R5), fasting
for 16 hours then refed for 16 hours (F16R16) fasting for 48 hours (F48), and
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fasting for 48 hours then refed for 24 hours (F48R24). At the end of the
diet, the genes were analysed using DNA chips, and the expression of 7407
genes retained for all the chickens. A biologist selected the most pertinent
genes, since at the beginning, more than 20,000 genes were identified by DNA
chips. The data were then preprocessed in a standard manner for DNA chips
(normalisation, eliminating the chip e↵ect, etc.).

The data table to be analysed is a rectangular array with far fewer individ-
uals than variables: 43 rows (chicken) and 7407 columns (genes). In addition,
there is also categorical variable, Diet, which corresponds to one of the six
stress situations, or diets, outlined above.

The aim of the study is to see whether the genes are expressed di↵erently
depending on the situation of stress (a situation of stress = a mode) which the
chicken is subject to. More precisely, it may be interesting to see how long the
chicken needs to be refed after fasting before it returns to a normal state, i.e.,
a state comparable to the state of a chicken with a normal diet. Might some
genes be underexpressed during fasting and overexpressed during feeding?

1.11.2 Analysis Parameters

Choice of active elements: in this study, all the chickens are regarded as active
individuals and all genes as active variables. The variable Diet is illustrative
since it is categorical.

Should the variables be standardised? In our case, variables are standard-
ised to attribute the same influence to each gene.

1.11.3 Implementation of the Analysis

Technical di�culties can arise when importing this type of data file with many
columns. For example, it is impossible to import the dataset in OpenO�ce
Calc (version 3.0) since it does not support more than 1024 columns. It is
therefore common for the table to be formatted with genes as rows and indi-
viduals as columns. The categorical variable Diet should not be entered into
this table, otherwise, during importation, all the variables would be regarded
as categorical (for a variable, if one piece of data is categorical, the entire
variable is regarded as categorical). The data table (gene ⇥ chicken) can be
imported and then transposed by running the following code:

> chicken <- read.table("http://factominer.free.fr/book/chicken.csv",header=TRUE,
sep=";",dec=".",row.names=1)

> chicken <- as.data.frame(t(chicken))

The categorical variable Diet must then be merged with the data table
(once it is created):

> diet <- as.factor(c(rep("N",6),rep("F16",5),rep("F16R5",8),rep("F16R16",9),
rep("F48",6),rep("F48R24",9)))

> chicken <- cbind.data.frame(diet,chicken)
> colnames(chicken)[1] <- "Diet"

http://factominer.free.fr/book/chicken.csv
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We can then carry out the PCA and build the graph of individuals by
colouring the individuals according to the variable Diet (here the first variable
in the table). The size of the text can be changed using the setting cex ("cex
= 0.7" instead of 1 by default):

> res.pca <- PCA(chicken,quali.sup=1)
> plot(res.pca,habillage=1,cex=0.7)

The principal plane expresses 29.1% of the total inertia (see the graphs or
the object res.pca$eig). Note that here we obtain 42 dimensions at most,
which corresponds to the number of individuals �1 (and not the total number
of variables): the 43 individuals are therefore in a space with 42 dimensions
at most.
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FIGURE 1.22
Genomic chicken data: graph of individuals on the first plane.

The principal plane of the PCA (see Figure 1.22) separates the chickens
into two subgroups. Those that have undergone intense stress (48 hours of
fasting), are greatly dispersed, and those that have been subject to less intense
stress (16 hours of fasting), are more concentrated and located close to the
origin. Furthermore, the first component separates the chickens into three
groups: chickens that have undergone intense stress but that have not been
refed afterwards (F48), chickens that have undergone intense stress and that
have been refed afterwards (F48R24), and the other chickens. Chickens which
have been refed tend to recover from intense stress and their health tends to
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be similar to that of normal chickens. However, 24 hours of feeding is not
enough for the state of the chicken to completely return to normal. This
means that some genes are specific to a state of intense stress, as some genes
are overexpressed under stress while others are underestimated (the graph of
variables shows that certain variables are negatively correlated while others
are positively correlated). The second component is specific to the chickens
F48R24.

The graph of variables is unclear here due to the large number of vari-
ables (see Figure 1.23). To represent this graph, and to examine whether or
not there is a particular structure to the variables, we provide one point per
variable (with no arrows or labels) using the command:

> plot(res.pca,choix="var",invisible="var")
> points(res.pca$var$coord[,1:2], cex=0.5)
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FIGURE 1.23
Genomic chicken data: graph of individuals on the main plane of variability
(each point corresponds to a variable).

This cloud is regularly distributed and does not need to be commented
(but nonetheless had to be verified). It is therefore necessary to characterise
the components using the dimdesc function (here, we provide only the vari-
ables that are the most characteristic of quantitative variables, and the set of
categories that are the most characteristic of quantitative variables):

> dimdesc(res.pca,proba=1e-5)
$Dim.1$quanti $Dim.2$quanti $Dim.3$quanti

Dim.1 Dim.2 Dim.3

HS2ST1 0.93 MPHOSPH9 0.77
.
.
.

.

.

.
TTC151 0.92 BNC2 0.76 AGL -0.83
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PRC1 0.91 XRCC6 0.75 LRRC8A -0.83
KLHL101 0.91 FBXW4 0.75 ARFIP1 -0.84
C6orf66 0.91 OFD11 0.75 PRDM161 -0.85
C16orf48 0.91 USP53 0.73 PDE4B -0.86

TTC8 0.91
.
.
.

.

.

. GLI2 -0.87
KCNJ15 0.90 DNAH10 -0.75 PRKAA2 -0.87
GRIA3 0.90 RHOT2 -0.76 PCSK51 -0.89
C7orf30 0.90 PDCD11 -0.77 DUSP14 -0.89
.
.
.

.

.

. PHYHD1 -0.78 HIPK2 -0.90

$Dim.1$quali $Dim.2$quali $Dim.3$quali
Dim.1 Dim.2 Dim.3

F16R16 2.98 F48R24 4.59 F16 3.58
F48R24 -2.24 F48 -2.25 F16R5 2.30
F48 -5.02 N -3.85

For the first component, the genes that are the most correlated to that
component are all positively correlated. Thus, these genes are underexpressed
when the chickens have been fasting for 48 hours. For component 2, some genes
are overexpressed (MPHOSPH9, BNC2, etc.) when the chickens are refed
after fasting for 48 hours while other genes are underexpressed (PHYHD1,
PDCD11, etc.). Of course, here the statistician needs to ask a biologist to
analyse why these particular genes are under or overexpressed. Several cat-
egories of the variable Diet are characteristic of components 1 and 2: here
we find a result that we see on the plane, but only by using an additional
test (while visually we cannot say whether the di↵erences are significant or
not). The chickens that su↵ered 48 hours of stress have significantly lower
coordinates than the others on component 1, whether refed afterwards or not.
Inversely, chickens that have su↵ered 16 hours of stress and been refed after-
wards have significantly positive coordinates. Component 2 is characterised
by chickens subjected to 48 hours of stress and opposes chickens refed after-
wards (with significantly positive coordinates) with those that were not (with
significantly negative coordinates).

It is also possible to visualise plane 3-4 of the PCA:

> plot(res.pca,habillage=1,axes=3:4)
> plot(res.pca,choix="var",invisible="var",axes=3:4)
> points(res.pca$var$coord[,3:4],cex=0.5)

Plane 3-4 (see Figure 1.24), and more specifically component 3, allows us to
di↵erentiate the diets that have not been di↵erentiated on the principal plane.
Chickens that followed a normal diet have negative coordinates on component
3 and chickens who su↵ered 16 days of stress have positive coordinates on
the same component. Chickens that were refed after 16 days of stress are
between these two groups, with a gradient depending on duration of feeding
time: chickens refed for 5 hours are closer to those that were not refed, and
chickens refed for 16 hours are closer to those that did not su↵er stress. It
therefore seems that some genes are expressed di↵erently according to whether
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FIGURE 1.24
Genomic chicken data: graph of individuals on plane 3-4.

there was a stress of 16 hours or not, when some genes return gradually to
a “normal” state. However, even after 16 hours of feeding, the genes do not
function normally again.

As for the principal plane, the cloud of variables on plane 3-4 is regu-
larly distributed and does not need to be commented (see Figure 1.25). It
is easier to characterise the components automatically using the procedure
dimdesc. Component 3 is characterised by variables HIPK2, DUSP14, or
PCSK51: these are the genes which are the most closely related to the com-
ponent (negative correlation). The categories that characterise the component
are associated with chickens that were not subject to stress (with a signifi-
cantly negative coordinate), chickens which underwent 16 hours of stress and
were not refed afterwards and, to a lesser extent, chickens that su↵ered 16
hours of stress and that were refed afterward for 5 hours (with a significantly
positive coordinate).

It is possible to draw confidence ellipses around the barycentre of the
representation of all the chickens having undergone the same diet. To do
so, a table with the variable diet and the coordinates of the individuals on
components 1 and 2 must be created, and then the coordinates of ellipses
calculated (using the function coord.ellipse and the argument bary=TRUE to
specify that these ellipses are constructed around the barycentres) prior to
constructing the PCA graph (using the function plot.PCA and the argument
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FIGURE 1.25
Genomic chicken data: graph of individuals on the plane stemming from com-
ponents 3-4 (each point corresponds to a variable).

ellipse=bb which specifies that the coordinates of the ellipses can be found
in object bb):

> aa <- cbind.data.frame(chicken[,1],res.pca$ind$coord[,1:2])
> bb <- coord.ellipse(aa,bary=TRUE)
> plot.PCA(res.pca,habillage=1,ellipse=bb)

These confidence ellipses (see Figure 1.26) confirm the visual impression
that the diets under excessive stress (F48 and F48R24) are very di↵erent
from the others. However, one can also see that the confidence ellipses are
disjointed for diets F16 and F16R16, F16R16 and N, or F16 and F16R5:
this di↵erentiation of the diets was not at all obvious without the confidence
ellipses. To obtain the confidence ellipses on components 3-4, we create a table
using the variable Diet and the coordinates of the individuals on components
3 and 4. We then calculate the outline of the ellipses and construct plane 3-4
of the PCA with the ellipses added:

> aa <- cbind.data.frame(chicken[,1],res.pca$ind$coord[,3:4])
> bb <- coord.ellipse(aa,bary=TRUE)
> plot.PCA(res.pca,habillage=1,ellipse=bb,axes=3:4)

On plane 3-4, several categories of the variable Diet are clearly distinguish-
able (see Figure 1.27): diet N is di↵erent from all the others and in particular
from F16R16. This indicates that the chickens which underwent 16 days of
stress and which were refed for the following 16 days still did not recover from
their stress.
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FIGURE 1.26
Genomic chicken data: confidence ellipses around the categories of the variable
Diet on the main plane.
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FIGURE 1.27
Genomic chicken data: confidence ellipses around the categories of the variable
Diet on the plane stemming from components 3-4.
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Correspondence Analysis (CA)

2.1 Data — Notation — Examples

To illustrate this chapter, we will be working from a small data table featur-
ing an extract of the results of a survey which, though not recent, is rather
remarkable1. Completed by 1724 women, a long questionnaire, which among
other things, featured a battery of questions relating to their attitude toward
women’s work. This data represents a turning point in history in sociological
terms. The end of the 1960s also marked the end of a number of feminist strug-
gles, particularly regarding women’s access to paid work (in France, women
could not work without their husband’s consent before 1965). It is for this
reason that a number of studies concerning women’s opinions were conducted
at this time. Our illustration features two questions; the headings for these
questions and the responses can be found in Table 2.1.

TABLE 2.1
Table Showing the Responses to Two Opinion Questions

In an ideal family: The most suitable activity for a mother
when the children go to school

Stay at home Part-time work Full-time work
Both parents work equally 13 142 106 261
Husband works more 30 408 117 555
Only the husband works 241 573 94 908
Total 284 1123 317 1724

This table is known as a “cross tabulation” used by organisations con-
ducting surveys, and as a “contingency table” by statisticians. It summarises
the responses to both questions: 241 therefore corresponds to the number of
people who replied only the husband works to the question about an ideal
family, and stay at home to the question about the best activity for a mother.
The table is supplemented by the sum of terms on any one row (908 peo-
ple replied only the husband works; these numbers are therefore the column
margin) or any one column (284 people chose the answer stay at home; these
numbers therefore correspond to the row margin). The questions were worded
as follows:

1Tabard N. (1974). The needs and hopes of families and young people, CREDOC, Paris.
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Out of the following three options, which best corresponds to your image
of the ideal family:

1. A family where both parents each have a profession which interests
them equally and where housework and childcare are equally shared.

2. A family where the mother has a profession, but which is less time-
consuming than that of the father, and where she carries out the
majority of the housework and childcare.

3. A family where only the husband works and where the wife stays
at home.

When identifying a di↵erence between the period when children are very
young and when they start school, what do you think is the best activity for a
mother :

1. Stay at home
2. Part-time work
3. Full-time work

More generally, a contingency table is constructed as follows (see Fig-
ure 2.1). For n individuals, the values are available for two categorical vari-
ables: V1 (with I categories or levels) and V2 (with J categories). The contin-
gency table carries the general term x

ij

as the number of individuals featuring
in the category i of V1 and j of V2.

V1

1
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FIGURE 2.1
General indications for a contingency table with the two categorical variables
V1 and V2 defined for n individuals; individual l carries the categories i (for
V1) and j (for V2): these are accounted for in x

ij

.

The sums of the table are referred to as the margin and are denoted by
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replacing the index in x
ij

upon which the calculation is made by a point.
Thus:

x
i• =

JX

j=1

x
ij

x•j

=
IX

i=1

x
ij

n = x•• =
X

i,j

x
ij

.

Finally, in correspondence analysis, we consider probability tables2 associ-
ated with contingency tables as the general term f

ij

= x
ij

/n, the probability
of carrying both the categories i (of V1) and those of j (V2). The margins of
this table, which are also known as marginal probabilities, are defined by

f
i• =

JX

j=1

f
ij

f•j

=
IX

i=1

f
ij

f•• =
X

i,j

f
ij

= 1.

Remark
The term “correspondence analysis” (CA) stems from the fact that tables are
analysed by linking two corresponding sets: that which is represented by the
rows, and that represented by the columns (they have symmetrical roles).

2.2 Objectives and the Independence Model

2.2.1 Objectives

Survey results are traditionally summarised by counting the responses to a
series of (carefully chosen) questions. In the example, the answers to question
1 (on the ideal family) clearly show that women (in France in 1970, a detail
that we cannot repeat enough) were generally against the idea of women
working (52.7% chose only the husband works). However, the responses to
question 2 (about the ideal activity for mothers) show, equally clearly, that
women are largely in favour of the idea of women working (only 16.47% women
chose the response stay at home). We might therefore conclude that simply
counting the number of responses to only one question in an opinion poll can
yield only flimsy results (which some say are of little or no value). We must
therefore simultaneously account for the answers to several questions (two in
this chapter, and more than two in the following chapter which deals with
multiple correspondence analysis). In our example, we hope that the cross
tabulation of the answers to both questions will help us to understand the
contradictions which arise when considering each question separately.

Empirically speaking, analysing this table consists of comparing the fig-
ures. If it were simply a series of nine numbers, we would focus on the greatest

2In this example, the term “probability” may seem inappropriate as it refers to an amount
determined from a sample. However, as well as being convenient, it also corresponds well
to the fact that, in correspondence analysis, data are considered as populations insomuch
as they are considered without inferences.
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and the smallest values. Thus, the greatest value in the table, 573, seems to
suggest an “attraction” between the categories only the husband works and
part-time work. It appears to be confirmed by the fact that part-time work is
the most common answer for those people who replied only the husband works
and vice versa. However, when we consult the margins, it can be seen that
these two answers, when considered separately, both represent the majority
within their set of categories. This raises the following question: is the value
of 573 only high because these responses each occur frequently, rather than
due to some “attraction” between the categories? Here it would appear that
the figures in a contingency table can only be compared to one another by
accounting for their corresponding margins. Analysing a table such as this
is thus rather tricky: we must therefore establish the objective of the study
jointly with a methodology in use.

2.2.2 Independence Model and �

2 Test

The main principle behind the construction of a contingency table implies
that the aim of studying a table such as this is to examine the relationships
between the answers to two questions. It must be noted here that, as in
most tables used in CA, we are sure that a relationship exists. In light of the
significance of these questions, conducting a �2 test and finding that there is
no relationship between the questions in Table 2.1 would be something of a
shock, and would call the quality of the data into question.

Studying the link between two variables requires us to position the data in
terms of a given starting point; in this case the absence of a relationship. The
independence model specifies this criterion as a starting point. The standard
relationship of independence between two events (P[A and B]=P[A]P[B]) is
applicable to both categorical variables. Two categorical variables are consid-
ered independent if they verify:

8i, j f
ij

= f
i•f•j

.

As a result, the independence model stipulates that the joint probability
(f

ij

) is dependent on the marginal probabilities (f
i• and f•j

) alone, which
seems to correspond to our remark regarding the value 573.

Studying these relationships means comparing the actual sample sizes
(x

ij

= nf
ij

) and the theoretical sample sizes characterised by the indepen-
dence model (nf

i•f•j

). Table 2.2 combines these two tables to illustrate our
example.

Let us comment on some of the di↵erences between the table of actual
samples, and that of theoretical samples:

• 13 women replied both both parents work equally and stay at home: if the
questions had been independent, 43 people (on average) would have chosen
this pair of answers. The actual sample is very slightly smaller than the
theoretical sample, which is to be expected, given the nature of the answers.
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TABLE 2.2
Actual Samples and Theoretical Samples

Actual Sample Size
Stay at home Part-time work Full-time work Total

Both work equally 13 142 106 261
Husband works more 30 408 117 555
Only husband works 241 573 94 908
Total 284 1123 317 1724

Theoretical Sample Size
Stay at home Part-time work Full-time work Total

Both work equally 43.0 170.0 48.0 261
Husband works more 91.4 361.5 102.1 555
Only husband works 149.6 591.5 167.0 908
Total 284 1123 317 1724

We say that these categories repel one another: when subjects choose one
of the answers, they are unlikely to choose the other.

• 241 people chose both only the husband works and stay at home, a value
which is considerably higher than the (average) theoretical value of 149.6
obtained using the independence hypothesis (again, this result is expected,
given the nature of the answers). We say that these categories attract one
another: when a subject chooses one of the answers, he is likely to choose
the other.

• 573 people chose both only the husband works and part-time work, a sample
which is (very slightly) lower than the theoretical sample of 591.5.

The above results are interesting from a methodological perspective. The
highest value within the table, 573, suggests to the untrained eye a rela-
tionship between the two answers. However, this is not the case because,
quite the contrary, these categories repel one another (although weakly). The
high value of 573 can therefore be attributed to the fact that both categories
(when considered separately) have high frequencies (52.7% and 65.1% of the
responses, respectively) rather than to the fact that they are related in any
way. This result, which could have been predicted, is here clearly quantified
using formalisation (relationship between two variables; divergence from the
independence model).

The �2 test is used to test the significance of the overall deviation of the
actual sample from the independence model. It is expressed as follows:

�2 =
X

i,j

(Actual Sample Size� Theoretical Sample Size)2

Theoretical Sample Size
,

�2 =
X

i,j

(nf
ij

� nf
i•f•j

)2

nf
i•f•j

= n
X

i,j

(f
ij

� f
i•f•j

)2

f
i•f•j

= n�2,

where f
i• can be interpreted as the frequency of individuals who have chosen
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the category i for variable V1, f•j

can be interpreted as the frequency of
individuals who have chosen the category j for variable V2 and �2 is a mea-
surement of the relationship independent of the sample size and total inertia
(see below). In the example, the value of �2 is 233.43, which is a highly sig-
nificant value (p-value: 2.4⇥ 10�49). This is to be expected, given the nature
of the questions. A more detailed look at the calculations (see Table 2.3)
illustrates the contribution of each cell to the deviation from independence (it
is the association between both parents work equally and full-time work which
expresses the greatest deviation from independence: 30.04%, of the total) as
well as that of the rows and columns (note the very weak contribution of
part-time work ; 4.78%).

TABLE 2.3
�2 Decomposition by Cell, Row, and Column (Raw Values and
Percentages)

Stay at home Part-time work Full-time work Total
Both work equally 20.93 4.62 70.12 95.66
Husband works more 41.27 5.98 2.19 49.44
Only husband works 55.88 0.58 31.88 88.34
Total 118.07 11.17 104.19 233.43

Stay at home Part-time work Full-time work Total
Both work equally 8.96 1.98 �30.04 40.98
Husband works more 17.68 �2.56 �0.94 21.18
Only husband works �23.94 0.25 13.66 37.84
Total 50.58 4.78 44.63 100.00

Note: For each “signed” value, we attribute the sign when the observed sample size is less

than that of the theoretical sample.

2.2.3 The Independence Model and CA

Contingency tables must therefore be analysed in terms of independence. This
is done by CA in expressing the independence model as follows:

8i, j f
ij

f
i•

= f•j

.

The quantity f
ij

/f
i• is the conditional probability of carrying category j

(for variable 2) when carrying category i (for variable 1). Therefore, in all
cases, independence arises when the conditional probability is equal to the
marginal probability. This perception of independence is similar to what we
might expect to find: independence arises if the probability of carrying j (from
V2) does not depend on the category carried by V1.

In symmetrical terms, the independence model can be expressed as:

8i, j f
ij

f•j

= f
i•.
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CA simultaneously accounts for both terms, using the terminology from
the row profile {f

ij

/f
i• ; j = 1, J}, the column profile {f

ij

/f•j

; i = 1, I}
and the average profile (row or column) for the distribution of the entire
population for one variable, that is to say {f

i• ; i = 1, I} and {f•j

; j = 1, J}.
The independence model therefore requires that both the row profiles and the
column profiles be equal to the corresponding average profile.

2.3 Fitting the Clouds

2.3.1 Clouds of Row Profiles

From the table of row profiles, we build a cloud of points denoted N
I

, within
the space RJ in which each dimension corresponds to a category of the variable
V2. This construction is similar to that of the clouds of individuals in Principal
Component Analysis (PCA). Each row i, has a corresponding point whose
coordinates for dimension j is f

ij

/f
i•. This cloud is supplemented by the

mean point G
I

, with a jth coordinate value of f•j

(see Figure 2.2).
Besides the transformations into profiles, compared to the cloud of individ-

uals in PCA, the cloud of the rows in CA has the following two characteristics:

1. Each point i is attributed a weight f
i•; this weight is imposed and

represents an integral part of CA. For a given profile, we attribute
an influence to each category which increases with its frequency.
With this weight, the average profile G

I

is the centre of gravity
of N

I

. This point G
I

is taken to be the origin of the axes (as for
individuals in PCA).

2. The distance attributed to the space RJ consists of attributing the
weight 1/f•j

to the dimension j. The square of the distance (called
the �2 distance) between points i and l is expressed as:

d2
�

2(i, l) =
JX

j=1

1
f•j

✓
f

ij

f
i•
� f

lj

f
l•

◆2

.

The main justification for this distance is indirect and lies in the following
property. When considering the weight f

i•, the inertia of point i with respect
to G

I

is expressed as:

Inertia(i/G
I

) = f
i• d2

�

2(i, G
I

) = f
i•

JX

j=1

1
f•j

✓
f

ij

f
i•
� f•j

◆2

,

Inertia(i/G
I

) =
JX

j=1

(f
ij

� f
i•f•j

)2

f
i•f•j

.
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Up to the multiplicative factor n, we recognise the contribution of the row
i to the �2 test, which is why it is referred to as the �2 distance. The result
is that the total inertia of the cloud of points N

I

with respect to G
I

is equal
(up to the multiplicative factor n) to the �2 criterion. It may also be said
that this inertia is equal to �2. Examining the distribution of N

I

in terms of
G

I

means examining the di↵erence between the data and the independence
model. This is what CA does in highlighting the directions of greatest inertia
for N

I

.

Comment on the Total Inertia of N
I

This inertia, equal to �2, o↵ers us vital information as it measures the intensity
of the relationship between the two variables of the contingency table. This
di↵ers from standardised PCA in which the total inertia is equal to the number
of variables and does not depend on the data itself.
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. jf
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1
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2 ( , )d i l

Category j
of V2

i (with weight fi.)

FIGURE 2.2
The cloud of row profiles in CA.

2.3.2 Clouds of Column Profiles

In contingency tables, rows and columns play symmetrical roles: we can study
either V1⇥V2 or V2⇥V1. This is one of the major di↵erences between CA and
PCA in which rows (individuals) and columns (variables) are not analysed in
the same manner: we consider distances between individuals and correlations
between variables. Consequently, CA constructs the cloud of column profiles
in the same way as it builds the cloud of the row profiles (see Figure 2.3):

1. We consider column profiles (thus, depending whether we are in-
terested in the rows or the columns, we do not analyse the same
table; f

ij

/f
i• in one case, f

ij

/f•j

in the other. This is one of the
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major di↵erences between CA and PCA, in which the same data
transformation — centring and reduction — is used for studying
both individuals and variables).

2. Each column has a corresponding point in RI of which the coordi-
nate on the dimension i is f

ij

/f•j

. These points make up the cloud
N

J

.
3. Each point j is attributed a weight f•j

. Using this weight, the
cloud’s centre of gravity, denoted G

J

, is equal to the average profile.
The origin of the axes is located at G

J

.
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FIGURE 2.3
The cloud of column profiles in CA.

In RI , the distance attributes the weight 1/f
i• to the dimension i. The

distance (squared) between two columns j and k is expressed as:

d2
�

2(j, k) =
IX

i=1

1
f

i•

✓
f

ij

f•j

� f
ik

f•k

◆2

.

Inertia in column j with respect to point G
J

is expressed as:

Inertia(j/G
J

) = f•j

d2
�

2(j,G
J

) = f•j

IX

i=1

1
f

i•

✓
f

ij

f•j

� f
i•

◆2

=
JX

j=1

(f
ij

� f
i•f•j

)2

f
i•f•j

.

We can recognise the contribution (up to a multiplicative factor n) of
column j to �2. The total inertia of N

J

is thus the same as that of N
I
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(= 1
n

�2): studying the distribution of N
J

around G
J

means examining the
relationship between both variables V1 and V2.

2.3.3 Fitting Clouds NI and NJ

We work in much the same way as when fitting the cloud of individuals in
PCA (see Section 1.3.2). The steps to be followed to construct the cloud of
row profiles are detailed below.

The origin of the axes is located at the centre of gravity G
I

of cloud N
I

evolving within the space RJ . We are aiming for a sequence of orthogonal axes
with maximum inertia. Let u

s

be the unit vector for the dimension of rank s
and Hs

i

the projection of the profile i on this dimension. u
s

thus maximises
the following quantity:

IX

i=1

f
i• (OHs

i

)2 maximum.

Cloud N
I

is projected on the axes u
s

. We represent these projections on
the planes which associate two axes (for example, the plane with u1 and u2).
As in PCA, due to the orthogonality between the axes, this first plane also
maximises the projected inertia of N

I

: in other words, we obtain the same
plane when searching for the plane of maximum inertia directly (rather than
axis by axis). Thus, solutions are nested and the best dimension is included
in the best plane.

Total inertia measures the intensity of the relationship (in terms of �2)
between the two variables V1 and V2, and the inertia �

s

associated with the
dimension of rank s measures the part of that relationship expressed by that
dimension. The inertia �

s

depends on the coordinates of the row profiles
on the dimension s: the distance between a profile and the origin can be
interpreted as a deviation from the average profile and therefore contributes
to the relationship between V1 and V2. The proximity of two row profiles i and
l also expresses a similar deviation from the average profile. These categories,
i and l, (of V1) are preferentially associated (i.e., more than if they were
independent) to the same categories of V2. Similarly, for the same categories
of V2, i and l are less well associated than in the independence model. The fact
that both row profiles i and l are opposed with respect to the origin expresses
two opposing ways of moving away from the average profile: the categories of
V2 with which i is preferentially associated are also those with which l is less
associated, when compared to independence.

CA is conducted in a symmetrical manner to fit cloud N
J

. The main
stages of this procedure are summarised below. In RI , the origin of the axes
is located at G

J

, the centre of gravity of N
J

. We are aiming for a sequence
of orthogonal axes with maximum inertia. Let v

s

be the unit vector for the
dimension of rank s and Hs

j

the projection of the profile j on this dimension.
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v
s

thus maximises the following quantity:

JX

j=1

f•j

�
OHs

j

�2 maximum.

Cloud N
J

is projected on the planes made up of pairs (v
s

, v
t

), and particularly
the first of these pairs (v1, v2).

Comment on the Number of Dimensions
As cloud N

I

evolves within the space RJ , we may be led to believe that,
generally, J dimensions are required for it to be perfectly represented. In
reality, two other elements intervene:

1. The sum of the coordinates for a profile is equal to 1; cloud N
I

therefore belongs to a subspace of dimension J � 1.
2. Cloud N

I

is made up of I points; it is possible to represent all these
points with I � 1 dimensions.

Finally, the maximum number of dimensions required to perfectly repre-
sent N

I

is therefore min{(I � 1), (J � 1)}. The same value is obtained when
we work from N

J

.

Comment on the Implementation of the Calculations
It can be shown that a matrix diagonalisation is at the heart of CA, and its
eigenvalues represent the projected inertia. This is why the term “eigenvalue”
appears in the listing in place of “projected inertia”: as they represent in-
ertias, these eigenvalues are positive (we will see that they are less than 1)
and are organised in descending order (the first dimension corresponds to the
maximum projected inertia). The coordinates of the rows and columns are
inferred from the eigenvectors associated with these eigenvalues. The rank of
this matrix is a priori min{I, J}: calculation time therefore mainly depends
on the smallest dimension of the table being analysed (as is the case in PCA).
In fact, the rank is smaller than min{I�1, J�1} due to the �2 distance being
centred, and hence a linear dependence being introduced.

2.3.4 Example: Women’s Attitudes to Women’s Work in
France in 1970

The CA applied to Table 2.1 yields the two graphs in Figure 2.4. Given the
size of the table (3⇥ 3), one plane su�ces to perfectly represent both clouds.
We shall limit our interpretation to the first dimension. The commentary
may begin either with the rows or with the columns. We shall illustrate our
interpretation of the CA using the tables of row and column profiles (see
Table 2.4).
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FIGURE 2.4
Planes defined by the first (and the only) two dimensions resulting from a CA
of Table 2.1. Above: representation of the columns; below: representation of
the rows.

2.3.4.1 Column Representation (Mother’s Activity)

The first dimension opposes the categories stay at home and full-time work.
This opposition on the graph inevitably represents an opposition in terms of
profile: thus, women who answered stay at home (profile column 1) responded:

• Only the husband works more often than the average population (= average
column profile): 84.9% compared with 52.7%.

• Both parents work equally less often than the average population (4.6% com-
pared with 15.1%).

Similarly, women who answered full-time work responded:
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TABLE 2.4
Row Profiles (A) and Column Profiles (B) for Table 2.1

Row Profiles
Stay at home Part-time Full-time Total

work work
Both work equally 0.050 0.544 0.406 1.000
Husband works more 0.054 0.735 0.211 1.000
Only husband works 0.265 0.631 0.104 1.000
Average profile 0.165 0.651 0.184 1.000

Column Profiles
Stay at home Part-time Full-time Total

work work
Both work equally 0.046 0.126 0.334 0.151
Husband works more 0.106 0.363 0.369 0.322
Only husband works 0.849 0.510 0.297 0.527
Total 1.000 1.000 1.000 1.000

• Only the husband works less often than the average population (29.7% com-
pared with 52.7%).

• Both parents work equally more often than the average population (33.4%
compared with 15.1%).

This opposition between profiles is the most important aspect (as high-
lighted by the first dimension) of the contingency table’s deviation from inde-
pendence or, furthermore, from the relationship between the two variables.

This aspect involves both extreme categories (as could very well be ex-
pected) and the average categories which play a more neutral role in the
opposition. More generally, in the plane, the category part-time work is ex-
tremely close to the centre of gravity, thus indicating a profile near to the
average profile (this can be observed directly on the table and calculated by
this category’s contribution to �2: 4.78%; see Table 2.3). This can also be
expressed in the following manner: the women who answered part-time work
cannot be distinguished from the rest of the population (in terms of their
responses to question 1). This observation also suggests that the answer part-
time work was chosen, at least in part, for that which Tabard describes as
its “moderate nature” (especially for those who responded only the husband
works). However, in the end, this answer does not seem to be particularly
informative: when a woman gives this answer, this does not provide us with
any further insight into what her answer to question 1 might be (technically,
the conditional distribution of part-time work is equal to the marginal distri-
bution). This sheds light on the contradiction between the impressions given
by the two questions (though it must be noted that the answers to the ques-
tions about family imply that the participants’ opinion of women’s work is
less favourable than the answers to the other question).

In synthetical terms, it may be said that the first dimension organises the
categories of the second variable from the least favourable to women’s work to
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the most favourable. As in PCA, dimensions are generally designated by one
(or a few) words which sum up their meanings: here, it therefore seems natu-
ral to name this dimension “attitude to women’s work”. The word “attitude”
must here be understood in psychological terms, that is, each object (here the
concept of women’s work) has a valence (either positive or negative); the opin-
ions relating to the object are then organised according to that valence, and
thus in a primarily one-dimensional manner. The attitude (of an individual
toward an object) is represented by her position along this dimension.

2.3.4.2 Row Representation (Partner’s Work)

The first dimension organises the categories from the least favourable to
women’s work (only the husband works) to the most favourable (both parents
work equally). Here, again, we can call this dimension “attitude to women’s
work”, and this is no coincidence. We can illustrate this arrangement by refer-
ring to the row profiles: we will leave the reader to do so, as we have already
illustrated it in the example for the columns. We will, however, comment that
the mediating category is at a distance from the origin of the axes (unlike for
the cloud of columns), but remains clearly on the favourable side of women’s
work.

2.3.5 Superimposed Representation of Both Rows and
Columns

Up until now, we have considered the cloud of rows N
I

in RJ and the cloud
of columns N

J

in RI separately. Each of these clouds was projected onto
its directions of maximum inertia; projections which have been commented
on separately, each with its own optimality (with each maximizing projected
inertia). However in CA, as in PCA, the analyses of both the cloud of rows
and the cloud of columns are closely linked due to their relations of duality.
Duality, or dual nature, stems from the fact that we are analysing the same
data table but from di↵erent points of view (either rows or columns). This
duality is particularly apparent and fruitful in CA as the rows and columns
in contingency tables are fundamentally the same, that is to say, categories of
categorical variables.

The first relationship has already been presented: clouds N
I

and N
J

have
the same total inertia. In CA, the clear and indeed crucial nature of this total
inertia (�2 = deviation from independence) e↵ectively illustrates that we are
studying the same thing through either N

I

or N
J

.
The second relationship suggests that when projected onto the dimension

of rank s (u
s

for N
I

in RJ ; v
s

for N
J

in RI), the inertia of N
I

is equal to that
of N

J

and is denoted �
s

. Thus:
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So, not only do N
I

and N
J

have the same total inertia but they also have the
same projected inertia on the dimensions of the same rank.

The third relationship, and that which is key to interpretation, brings the
rows’ coordinates and those of the columns together on the axes of the same
rank. Thus:

F
s

(i) =
1p
�

s

JX

j=1

f
ij

f
i•

G
s

(j),

G
s

(j) =
1p
�

s

IX

i=1

f
ij

f•j

F
s

(i).

where F
s

(i) is the coordinate of the row profile i on the dimension of rank s
(in RJ); G

s

(j) is the coordinate of the column profile j on the dimension of
rank s (in RI); and �

s

is the inertia of N
I

(and N
J

, respectively) projected
onto the dimension of rank s in RJ (and in RI , respectively).

This property is fundamental to the superimposed representation, or “si-
multaneous representation”, of rows and columns (see Figure 2.5, overlapping
of the graphs in Figure 2.4). Thus for dimension s of this superimposed rep-
resentation, up to the multiplicative factor 1/

p
�

s

:

• A row i is at the barycentre of the columns, each column j having a weight
f

ij

/f
i• (these weights are positive and sum to 1).

• A column j is at the barycentre of the rows, with each row i having a weight
f

ij

/f
i•j

(these weights are also positive and sum to 1).

This property, which is referred to as barycentric (or sometimes pseudo-
barycentric in order to evoke the coe�cient 1/

p
�

s

; also known as transition
relations as they are used to transit from one space — RI or RJ — to an-
other) is used both to interpret the position of one row in relation to all of the
columns and the position of one column in relation to all of the rows. Each
row (or column, respectively) is near to the columns (and rows, respectively)
with which it is the most closely linked, and is far from the columns (and rows,
respectively) with which it is the least closely linked. Thus, in the example:

• Stay at home is on the same side as only the husband works, a category with
which it is strongly related, and is on the opposite side from the other two
categories, with which it is weakly associated.

• Both parents work equally is on the same side as full-time work and is at
the opposite side to stay at home.

It must be noted that the origin of the axes coincides with the average
profile (= barycentre) of each of the two clouds. Thus, when a row profile i
has a positive coordinate:

• It is generally more associated to the categories j that have positive coordi-
nates than it would have been in the independence model.
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FIGURE 2.5
Simultaneous representation of rows and columns (= superimposed graphs
from Figure 2.4).

• It is generally less associated to the categories j that have negative coordi-
nates than it would have been in the independence model.

The word “generally” in the previous sentence is important. Row profile
coordinates are determined by all of the column coordinates. We can therefore
comment on the position of a row with respect to the positions of all of the
columns but it is impossible to draw conclusions about the distance between
a specific row and a specific column. Associations between rows and columns
on which we wish to comment have to be checked directly from the data (the
contingency table).

Barycentre and Pseudo-Barycentre
During interpretation, the coe�cient 1/

p
�

s

must always be taken into ac-
count. It is important to remember that, in CA, eigenvalues lie always between
0 and 1 (this will be explained in further detail later on). As a consequence,
when compared with exact barycentres, representations provided by CA are
expanded. Thus, in the example, 1/

p
�1 = 2.93 and 1/

p
�2 = 7.33:

• The category stay at home (in column), which is almost exclusively asso-
ciated with the category only the husband works (in row) might almost be
confused with the latter in an exact barycentric representation; its position
within the plane is much further from the origin.

• The category both parents work equally (in row) is associated more or less
equally (142 and 106) with the categories part-time and full-time and, in an
exact barycentric representation, would be situated around half-way between
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these two categories. On the plane, the category (in row) is much further
from the origin and, along dimension 1, appears (slightly) beyond full-time
work.

One may be led to think that it could be more appropriate to represent the
exact barycentres rather than the pseudo-barycentres. However, in this case,
two graphs are necessary, and in each one the rows and the columns do not
play symmetrical roles. Furthermore, the set of rows and the set of columns
do not have the same inertia as the cloud of barycentres is centred around
this origin (as compared to usual representation), which makes interpreting
the associations between categories more di�cult (see Figure 2.6).
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FIGURE 2.6
Representation of exact barycentres; the top graph represents the rows and
the bottom the columns for a CA of Table 2.1.

The aim of an exact barycentric representation is to be able to visualise the
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intensity of the relationship expressed by the plane (in terms of parts of �2).
A cloud of barycentres (such as that of the rows) clustered around the origin
(along the dimension of rank s) illustrates a weak relationship (expressed by
the dimension of rank s) between the two variables V1 and V2 (each row profile,
being near to the origin di↵ers only slightly from the average profile). However,
in this case, the associations between the rows and columns are di�cult to see.
This is what enables the expansion via the coe�cient 1/

p
�

s

, an expansion
which increases as the part of the relationship expressed by the dimension
weakens. It thus appears that the simultaneous representation produced by
the CA is designed to visualise the nature of the relationship between the
variables (i.e., relationships between rows and columns) and tells us nothing
about its intensity. This intensity is calculated from eigenvalues which are
components of �2. In standard CA practice, both aspects of the relationship
between two variables (nature and intensity) are identified by separate tools
(graphs and eigenvalues).

Another advantage of quasi-barycentric representation can be observed
in the synthetic interpretation of the simultaneous representation in this ex-
ample. The first dimension opposes the categories which are favourable to
women’s work to those which are not. More precisely, the first dimension or-
ganises the categories of the two variables from the least favourable to women’s
work (stay at home) to the most favourable (both parents work equally). With
this in mind, CA implies that stay at home is a much less favourable response
to women’s work than only the husband works. This result tells us how the par-
ticipants interpreted the multiple choices associated with the two questions.
We should therefore focus the search within the data to identify the origin
of the di↵erence between the two categories perceived by CA. The category
which is furthest from the origin, stay at home, corresponds to the biggest
di↵erence from the average profile, as demonstrated by its contribution to �2

(118.07 for stay at home; 88.34 for only the husband works). In more tangi-
ble terms, it may observed that almost all (84.9%) of those who replied stay
at home also replied only the husband works: this data thus groups together
the two least favourable responses to women’s work. Again, in only 26.5%
of cases did women who replied only the husband works give both of these
unfavourable answers. In this case, it could be said that stay at home, which
predisposes women to give a second unfavourable response to women’s work
is in itself less favourable to women’s work than only the husband works.

We will not attempt to o↵er a psycho-sociological explanation for the find-
ings in this table. We will, however, retain the idea that, through simultaneous
representation, CA clearly and simply illustrates the characteristics of the ta-
ble being analysed which are not necessarily apparent when simply looking
at the data presented in the table. This quality, which is already so apparent
when used on a data table as small as this, becomes much more obvious and
indeed more valuable as the size of the table increases.
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2.4 Interpreting the Data

As in PCA, CA interpretation is based on inertias and graphical representa-
tions (i.e., the coordinates of the rows and the columns on the dimensions).
Nonetheless, when interpreting the data, one occasionally feels the need for
indicators to answer a few specific questions. Some of these issues are listed
below, along with a few tips on how to deal with them.

2.4.1 Inertias Associated with the Dimensions (Eigenvalues)

One of the results of the dual barycentric properties is another important
attribute of CA, as introduced by the following reasoning:

1. We consider the projection of N
I

on the dimension of rank s.
2. N

J

is placed at the exact barycentres. Cloud N
J

is thus “inside”
N

I

, which cannot be a cloud of barycentres of N
J

.
3. The dual property, “N

I

to the barycentres of N
J

and N
J

to the
barycentres of N

I

” is never true unless an expansion coe�cient is
considered. This coe�cient must expand the cloud of exact barycen-
tres and thus must be positive. Hence �

s

 1.

In the particular case when �
s

= 1, the cloud N
I

having been positioned,
the only reason cloud N

J

would not be located within cloud N
I

(in terms of
barycentres) would be in the case of a mutually exclusive association between
rows and columns. Figure 2.7 illustrates the structure of data in this case: the
set I of lines (and columns, J , respectively) can be divided into two subsets I1

and I2 (J1 and J2, respectively); I1 (I2, respectively) is exclusively associated
with J1 (J2, respectively). This data structure indicates a strong relationship
between the two variables V1 and V2, as illustrated by CA with a dimension
moving apart, on the one hand I1 and J1, and on the other hand I2 and J2.

0

0

0

0

0

0I1

J1

I2

J2

F1

F2

FIGURE 2.7
Case of an eigenvalue of 1; data structure and map defined by the two first
dimensions (�1 = 1).
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In practice, the eigenvalues of a CA are almost never exactly 1; however,
a high eigenvalue indicates a structure similar to that in Figure 2.7, and
it is essential to appreciate this when analysing contingency tables. It is
therefore important to have a look at the eigenvalues in CA. In the example,
the eigenvalues are rather small (see Table 2.5). Despite being associated
with a strong structure, the first eigenvalue is small: therefore, that which is
illustrated here is merely a tendency, even if it is highly significant (see �2

test).
Again, we will not attempt to propose a psycho-social interpretation for

the “weakness” of this relationship. Might it simply be due to the fact that
the questions are not identical? Or perhaps because of the “noise” which
always encumbers the answers to opinion polls?

TABLE 2.5
Eigenvalues (= Projected Inertias) Resulting from a CA of
Table 2.1

Eigenvalue Percentage Cumulative
of variance percentage

Dim 1 0.117 86.29 86.29
Dim 2 0.019 13.71 100.00

Having insisted on the fact that the inertia associated with a particular
dimension is part of the relationship between the two variables V1 and V2, it
seems natural to express this dimension as a percentage (see Table 2.5). In
the example, it therefore appears that the first dimension represents 86.29%,
and thus almost all of the di↵erence between the actual sample (the data ta-
ble) and the theoretical sample under the independence hypothesis. This is
one of the arguments for considering this dimension alone for interpretation.
More generally, eigenvalues calculate the relative importance of the dimen-
sions: their order suggests the dimensions that we should focus on. With this
in mind, we shall represent this sequence using a bar chart. Figure 2.8 illus-
trates a historic case (12 prevailing tobacco brands) (Benzécri, 1973, p. 339) in
which five dimensions are proposed, each slightly larger than the others. The
fact that the slow decrease of eigenvalues continues beyond the fifth suggests
that the corresponding dimensions represent only “noise”.

In a more detailed study of a case such as this, it is advisable to examine
the sixth dimension, at least superficially, as a clear understanding of this
dimension would mean that one would have to retain it when commenting the
results. Although it might seem unusual, this common practice (taking into
account interpretable dimensions even if they have only very weak inertias) is
not a bad idea (it is di�cult not to comment on a dimension that one knows
how to interpret). However, it is the cause of a great deal of debate.

As the axes are orthogonal, the projected inertias from multiple axes can
be added. In the example, 100% of the relationship is expressed by the plane.
This is not a feature of the data but rather results from the dimensions of the
table (3⇥3; see comment on the number of dimensions Section 2.3.3). In more
general terms, we use the sum of S first percentages of inertia to measure the
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FIGURE 2.8
Example: bar chart illustrating the order of the eigenvalues of a CA.

component of inertia accounted for in a commentary of the first dimensions
S.

Returning to the idea of geometric interpretation of the eigenvalues in
terms of projected inertia; the percentage of the inertia associated with the
dimension is expressed as:

projected inertia of N
I

(or N
J

) on the dimension of rank s

total inertia of N
I

(or N
J

)
⇥ 100.

This criterion here appears as a measurement of the overall representation
quality of cloud N

I

(or N
J

) by the dimension of rank s. More generally, we can
examine projection on a plane. In this case, the criterion is a response to the
following question: When projecting cloud N

I

(or N
J

) onto a plane (usually
the first plane, constructed from dimensions 1 and 2), the cloud is distorted as
the projection procedure can only reduce the distance between points. Is this
distortion significant? In other words, do the distances between points (of one
set, either rows or columns) on a plane successfully reflect the distances in the
initial space (RJ or RI)? If they do, interpretation is simple, as the distances
on the plane can easily be identified within the data even if eigenvalues are
low. If they do not, the general value of the representation is not in question.
However, poor representation quality indicates that other phenomena, visible
on the following planes, are added to that shown by the plane in question.
In such a case, it would be di�cult to identify results shown by the analysis
within the data, particularly in the case of low eigenvalues (but it is always
easy when the eigenvalues have a value approaching 1).

Finally, the representation quality associated with a plane is one charac-
teristic to be considered, however it is not an absolute indicator about the
interest of the plane. Our small example is a good illustration of this (de-
spite being a limited case): the representation quality of 100% is due to the
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small dimensions of the table and in no way helps to predict the utility of the
analysis.

Comment on the Maximum Value of �2

The table I⇥J generates a maximum of inf(I�1, J�1) non-null eigenvalues,
each of which is less than or equal to 1. The maximum value of �2 is therefore
inf(I � 1, J � 1). By relating the observed value of �2 to its theoretical
maximum, we are led to the statistical indicator known as Cramer’s V , defined
as:

V =
✓

�2

inf(I � 1, J � 1)

◆1/2

.

The purpose of this criterion is to vary between 0 (independence) and 1 (max-
imum relationship in terms of each category of the variable with the greatest
number of categories being exclusively associated with one category from the
other variable). Due to its range of variation, Cramer’s V acts in a simi-
lar manner as a correlation coe�cient, up to a certain point. Thus, when
presented with multiple categorical variables (defined on the same individu-
als), we can produce a V matrix (in the same way as we might construct a
correlation matrix).

2.4.2 Contribution of Points to a Dimension’s Inertia

The inertia associated with a dimension can be decomposed by points. The
contribution of point i to the inertia of the dimension of rank s is generally
expressed by (working from the notations in Section 2.3.3):

ctr
s

(i) =
inertia of i projected on the dimension of rank s

inertia of N
I

projected on the dimension of rank s
,

=
f

i• (OHs

i

)2
P

I

i=1 f
i• (OHs

i

)2
=

f
i• (OHs

i

)2

�
s

.

This contribution is often multiplied by 100 or 1000 to facilitate the con-
struction of the tables. It is often said to be “relative” as it is related to
the entire cloud. “Absolute” contribution is thus the projected inertia of
point(f

i• (OHs

i

)2). This distinction between “relative” and “absolute” contri-
bution is not always referred to as such by all authors. Often, “contribution”
(or even “absolute contribution”) means that which is referred to in this book
as “relative contribution”.

Contributions are calculated for both rows and columns. They may be
added for multiple rows (respectively, columns). They are particularly use-
ful when there are a great number of points. Choosing the points which
contribute the most often facilitates interpretation. The atypical case of a di-
mension caused by only one or two points can thus be detected immediately:
interpretation can therefore focus on this point(s) and thus prevent risky gen-
eralisations.
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Due to the small sample size, the analysis of data on attitudes towards
women’s work does not necessarily require the use of contributions. However,
the data are su�cient to be able to illustrate how contributions are calculated.
For example, the contributions of only the husband works and both parents
work equally on the first dimension demonstrate the respective roles of weights
and distances when comparing two close contributions.

ctr1(only the husband ...) =
0.5267⇥ 0.30962

0.1168
=

0.5267⇥ 0.0958
0.1168

= 0.432

ctr1(both parents ...) =
0.1514⇥ 0.55862

0.1168
=

0.1514⇥ 0.312
0.1168

= 0.404

The point both parents work equally is (roughly) twice as far from the origin
as the other, thus suggesting a greater influence. However, the weight of both
parents work equally is (roughly) three times less, therefore simultaneously
suggesting a lesser influence. As far as inertia is concerned (criterion used to
define the dimensions), it is the square of the distance which intervenes: thus,
in the end, both contributions balance out.

Coordinates Contributions Representation Quality
Dim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2

both work equally -0.56 0.23 40.43 44.43 0.85 0.15
husband works more -0.24 -0.17 16.37 51.44 0.67 0.33
only husband works 0.31 0.04 43.20 4.13 0.99 0.01

Dim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2
stay at home 0.62 0.18 53.91 29.61 0.92 0.08
part-time work 0.00 -0.10 0.01 34.85 0.00 1.00
full-time work -0.54 0.19 46.08 35.53 0.89 0.11

Remark
In CA, the points generally have di↵erent weights and the contribution cal-
culations play a more important role than in standardised PCA (in which
the elements have equal weights). Indeed, in standardised PCA contribution
is proportional to the square of the distance to the origin and can be read
(approximately) on the graphical representations.

2.4.3 Representation Quality of Points on a Dimension or
Plane

The percentage of inertia associated with a dimension has been presented,
among other things, as an indicator of the quality of a cloud’s representation.
This indicator can be applied to one point and we can thus calculate the
representation quality of a point i by the dimension of rank s which we denote
qlt

s

(i) (see Section 1.6.1.2). Thus:

qlt
s

(i) =
inertia of i projected on the dimension of rank s

total inertia of i
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=
(OHs

i

)2

(Oi)2
= cos2(�!Oi,

���!
OHs

i

).

This ratio indicates how the deviation of category i from the average profile
is expressed on the dimension of rank s. Again, this indicator is not really
pertinent for the results of CA as applied to the table of attitudes towards
women’s work. This is due to the small size of the table which leads to a perfect
representation of the clouds (and therefore each point) on the first (and only)
plane. However, this data enables us to clearly illustrate the meaning of the
indicator, as explained below:

1. The four extreme categories are successfully represented by the first
dimension (representation quality: > 0.85). The deviation of each
category from the average profile (i.e., the categories which are more
or less connected than in the case of independence) is also success-
fully illustrated by this dimension. The other dimension tells us
relatively little about these categories.

2. The category part-time work is ine↵ectively represented by the first
dimension, but this does not necessarily mean that we should disre-
gard it during interpretation (quite the reverse in fact; the central
position of this category has indeed been commented on at length).
This e↵ectively illustrates the pre-eminence of the coordinates in
the interpretation. In other words, the category’s deviation from
the average profile can only be perceived on other axes.

In practice, representation qualities are mainly used in the following cases:

• When examining one specific category; the representation quality enables us
to select the plane on which the category is expressed the most successfully.

• When looking for a small number of categories to illustrate the significance
of dimension s with the help of raw data. This is extremely useful for com-
municating results; first, the categories with the most extreme coordinates
are selected (as the e↵ect represented by dimension s is extreme). One must
then decide between these categories in order to favour those that are rep-
resented most successfully (as the e↵ect of dimension s is found only here).

It must be noted that these comments, made within the context of CA, can
also be applied to other principal component methods (for example, by re-
placing the notion of the average profile in CA by the “average individual”
for PCA).

2.4.4 Distance and Inertia in the Initial Space

Independently, or more precisely, prior to the results of CA, one might won-
der which categories are the most, or indeed the least, “responsible” for the
deviation from independence. Two di↵erent perspectives may be assumed:
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1. Inertia has already been used in the �2 decomposition into rows
or columns. Table 2.7 thus illustrates the relatively similar roles
played by each of the four most extreme categories.

2. The distance from the average profile. In this instance, we do not
take the category’s sample size into account: the distances are sum-
marised in Table 2.7, which gives the distance from the origin for
each of the two categories only the husband works and the husband
works more (the limited number of lines reduces the relevance of
this indicator during interpretation and, in this respect, the domi-
nant category only the husband works (52.7%) cannot di↵er greatly
from the average profile as it is part of this average profile).

In practice, the distances from the origin are used to select the row and/or
column which is the most, or least, similar to the average profile. This is a
helpful way of illustrating the diversity of the profiles.

TABLE 2.7
Distance (Squared) to Average Profile and Inertia (in Initial Spaces,
RI and RJ)

Both work equally Husband works more Only husband works
Distance 0.3665 0.0891 0.0973
Inertia 0.0555 0.0287 0.0512

Stay at home Part-time work Full-time work
Distance 0.4158 0.0099 0.3287
Inertia 0.0685 0.0065 0.0604

2.5 Supplementary Elements (= Illustrative)

As with any principal component method (see PCA, Section 1.6.2), we can
introduce supplementary elements (i.e., rows and/or columns), a term which
refers to their status: they do not participate in the construction of the dimen-
sions (however, they may still be projected onto the dimensions in the same
way as the other active elements). They are also referred to as “illustrative”
elements, in reference to the way in which they are the most frequently used;
that is to say, to enrich and illustrate dimension interpretation.

In CA, supplementary elements are generally contingency tables. Their
position within the plane is calculated using the barycentric properties. It
must be noted that the expansion coe�cient 1/

p
�

s

is dependent on the re-
lationship between the active variables V1 and V2 and not the supplementary
elements. The result is that the representation of a contingency table’s cate-
gories introduced in additional columns (confronting V1 with a third variable
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V3 for example) accounts for the strength of the relationship between V1 and
V2. Thus, the cloud of the categories from V3 (see Figure 2.9) will be more
(or less, respectively) closely concentrated around the origin than that for the
categories from V1 if the relationship (and more precisely the part of the re-
lationship expressed by the dimension in question) between V1 and V3 is less
(or more, respectively) intense than that between V1 and V2. One might be
led to believe that using another expansion coe�cient for the supplementary
elements would enable us to “better” visualise the associations between addi-
tional columns and active rows for example. However this is not the case as,
if we did so, we could no longer compare the relative positions of active and
additional columns.

This can be illustrated by the following example: in his work, Tabard3 also
published another table confronting V1 and a new question (see Table 2.8),
which we shall call V3. This new variable is in a standard format for opinion
polls. The participants are given a list of possible opinions: for each opinion,
participants express agreement or disagreement using a scale; here a four-
point scale from totally disagree to totally agree. The precise wording of the
question is: What do you think of the following opinion: Women who don’t
work feel like they’re cut o↵ from the world?

1. Totally agree
2. Somewhat agree
3. Somewhat disagree
4. Totally disagree

It must be noted that the relationship between V1 and V3 is highly sig-
nificant (�2 = 162.19; p-value =2.04 ⇥ 10�32) but moderate in intensity
(�2 = 0.094; V (V1, V3) = 0.217); in particular, it is less intense than the
relationship between V1 and V2 (�2(V1, V2) = 0.135; V (V1, V2) = 0.260).

Going beyond the face value of the questions, this weak relationship refers
to the “noise” which accompanies the responses to questions like V3. A com-
mon problem with the categories expressing an agreement is that they may
not oppose one another: those expressing disagreement may simply be ex-
pressing general hostility towards the questionnaire. This may be one of the
reasons behind the contradictory responses which can conceal relationships
between the questions.

We shall limit our commentary of the projection of the categories for vari-
able V3 to the following points:

• The categories expressing agreement with the opinion women who stay at
home feel cut o↵ from the world are found on the side of the unfavourable
attitudes towards women’s work, and inversely for the categories expressing
disagreement. Interpretation of the dimension is therefore enhanced.

3Tabard N. (1974). The needs and hopes of families and young people, CREDOC, Paris.
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FIGURE 2.9
Representation of Figure 2.5 enhanced by the categories of the supplementary
variable women who stay at home feel cut o↵ from the world.

• The cloud of categories for V3 is more tightly clustered around the origin
than those of the other two variables. Here, we reencounter the fact that
the relationship between V1 and V3 is less intense than that between V1 and
V2.

• The category totally agree is further from the origin of the axes than totally
disagree; it would therefore seem to be more typical of a favourable attitude
towards women’s work than totally disagree is typical of an unfavourable
attitude.

Comment: Fields of Application for Correspondence Analyses
Correspondence analysis was designed to process contingency tables and its
entire theoretical justification lies within this context. Nevertheless, using a
CA program can provide useful results for many other types of tables contain-
ing positive numbers, and whose margins can be interpreted. One example
of such a use can be found in the case of an incidence matrix associated with
a graph (whose general term x

ij

is worth 1 if an edge connects the vertices i
and j or 0 otherwise).

To justify the use of CA with a table such as this, and thus to be able to in-
terpret the output, users must question the significance of the main properties
of CA. Thus, within the case of an incidence matrix: (1) the barycentric prop-
erty ensures that each vertex appears at the barycentre of those with which
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TABLE 2.8
Table of Opinions Laid Out in Supplementary Columns of the CA for
Table 2.1

Women who don’t
work feel like they’re
cut o↵ from the world?

Ideal family is the one who:
Both parents Husband Only the husband Sum
work equally works more works

Totally agree 107 192 140 439
Somewhat agree 75 175 215 465
Somewhat disagree 40 100 254 394
Totally disagree 39 88 299 426
Sum 261 555 908 1724

they are connected via an edge; and (2) the maximum inertia ensures rele-
vance, particularly in the first plane. It is as close as possible to the vertices
linked by multiple paths of length 2, and separates the others.

2.6 Implementation with FactoMineR

In this section we shall demonstrate how to conduct a CA with FactoMineR.
We will therefore again be working with the di↵erent results from the CA of
Table 2.1 which have already been commented on in the previous sections.

> library(FactoMineR)
> work <- read.table("http://factominer.free.fr/book/work_women.csv",

header=TRUE,row.names=1,sep=";")
> summary(work)

The �2 test and Table 2.2 are obtained using only the first three columns
of the dataset:

> res.test.chi2 <- chisq.test(work[,1:3])
> res.test.chi2
> round(res.test.chi2$expected,1)

Table 2.3 is obtained using:

> round(res.test.chi2$residuals^2, 2)
> round(100*res.test.chi2$residuals^2/res.test.chi2$stat,2)

Having transformed the data table into a matrix, Table 2.4 is obtained by:

> dd <- rbind(don,apply(don[,1:3],2,sum))
> rownames(dd)[4] <- "Mean profile"
> round(prop.table(as.matrix(dd),margin=1),3)

> dd <- cbind(work,apply(work[,1:3],1,sum))
> colnames(dd)[4] <- "Mean profile"
> round(prop.table(as.matrix(dd),margin=2),3)

http://factominer.free.fr/book/work_women.csv
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The CA is then performed. By default it provides a graph depicting the
superimposed representation (see Figure 2.5).

> res.ca <- CA(work[,1:3])

The graph representing the rows, and that representing the columns (see
Figure 2.4) are obtained using the function plot.CA.

> plot(res.ca,invisible="col")
> plot(res.ca,invisible="row")

The graphs representing the exact barycentres (see Figure 2.6) are obtained
using:

> plot(res.ca,invisible="col")
> coord.col = sweep(res.ca$col$coord,2,sqrt(res.ca$eig[,1]),FUN="*")
> points(coord.col,pch=17,col="red")
> text(coord.col,rownames(coord.col),col="red")

> plot(res.ca,invisible="row")
> coord.row = sweep(res.ca$row$coord,2,sqrt(res.ca$eig[,1]),FUN="*")
> points(coord.row,pch=20,col="blue")
> text(coord.row,rownames(coord.row),col="blue")

The table and graph of eigenvalues (see Table 2.5) are obtained with:

> res.ca$eig
> barplot(res.ca$eig[,1],main="Eigenvalues",

names.arg=1:nrow(res.ca$eig))

The table of contributions, and that of representation qualities of the rows
and columns (see Table 2.6) are obtained using:

> cbind(res.ca$row$coord,res.ca$row$contrib,res.ca$row$cos2)
> cbind(res.ca$col$coord,res.ca$col$contrib,res.ca$col$cos2)

The inertias of rows and columns (see Table 2.7) are obtained directly
whereas the distances squared must be recalculated using the row margin and
the column margin:

> res.ca$row$inertia
> res.ca$col$inertia
> res.ca$row$inertia/res.ca$call$marge.row
> res.ca$col$inertia/res.ca$call$marge.col

The graph in Figure 2.9 is obtained by conducting a new CA, specifying
that, after column 4, all of the subsequent columns are supplementary:

> res.ca2 <- CA(work,col.sup=4:ncol(work))
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2.7 CA and Textual Data Processing

The methodologies which focus on analysing a group of texts in terms of the
words contained within them are grouped together under the term “textual
data”. At the heart of these methodologies, we find correspondence analysis of
a given table (known as the lexical table or the occurrence table) of texts and
words. Generally, x

ij

denotes the number of times the word j is used in the
text i. At first glance, it seems to be simply a di↵erent use of the standard
methods of data analysis. However, textual data have a number of unique
features, requiring specific methodologies. From this perspective, it becomes
clear that we are dealing with a specific and separate scientific domain (which
also has its own conferences: for example, JADT — Journées d’analyse des
données textuelles or Textual Data Analysis Days). We shall first examine
this data as a new field of application and then as a scientific domain.

Let us go back to the occurrence table mentioned above. It may be per-
ceived as a contingency table (and therefore use a CA) when considered in
the following manner. The most basic statistical unit is the graphical form,
a sequence of characters positioned according to two separators (punctuation
marks and space). Each graph is characterised by two categorical variables:
the variable “text” (whose categories are the texts themselves), and the vari-
able “dictionary” (whose categories are words). The occurrence table dis-
tributes graphical forms according to these two variables and, in this respect,
is also a contingency table.

CA is well suited to studying this kind of table (and indeed it is for pre-
cisely this purpose that it was invented: the first ever application of CA to
be published, in Brigitte Escofier’s thesis in 19654, was of this type), more
precisely, it describes the deviation between this table and the independence
model. CA’s approach to this deviation is based on the notion of profile: in
this context, we are referring to a text’s lexical profile (the overall frequencies
of the words in a text), and a word’s usage profile (overall frequency of this
word in the texts).

Independence occurs when all of the profiles (both usage and lexical) are
identical, and thus the same as the average profile (total number of words
in each texts; overall usage frequency of each word). The deviation from
independence increases as these profiles di↵er from the average profile. CA
analyses this deviation in order to summarise the information in the form of
a visualisation organised as a sequence of dimensions. A dimension may, for
example, identify a group of texts which all have a high frequency (i.e., higher
than the average profile) for some words and a low frequency (i.e., lower than
the average profile) for others. Through duality, this same dimension may also
identify a group of words which share the property of having a high frequency
(i.e., higher than the average profile) for certain texts. These are the words

4Escofier B. (1965). L’analyse des correspondances, PhD, University of Rennes, France.



Correspondence Analysis 89

which characterise the texts identified by this same dimension. Thus, the
visualisation provided by CA corresponds exactly to that which we might
expect to achieve through the exploratory analysis of a set of texts.

The distinguishing feature of textual data appears in the way the table is
constructed; i.e., the choice of the rows and of the columns.

Which Texts Can Be Used?
Until now, for convenience, we have referred to “text” as that found in a row
in an occurrence table. Defining these texts is not always simple, as we shall
illustrate in the following two examples.

In the first application of CA, the original corpus is taken from the play
Phèdre by Racine, first performed in 1677. To analyse this body of text, it
must first be broken down. The criterion chosen was that of character: one
row of the table (and therefore one text) contains all of the lines for a given
character. It therefore became possible to construct a map of the characters
in terms of the vocabulary that they use. The first dimension corresponds to
social status: great men (here, Phèdre, although generalisations are tempting)
do not use the same words as their subjects (in French, this is most obviously
characterised by the use of the words “tu” and “vous”). There are other ways
of dividing up the text: by scene (to picture the sequence of events) or, more
specifically, by confronting characters and acts, in order to follow the evolution
of the characters over the course of the play.

One primary application of textual data analysis is to study open questions
in questionnaires. One famous example of this type of question is the following
pair of questions, asked consecutively: for you, what is the Right? For you,
what is the Left? The purpose of this type of questions is (almost) universally
recognised: the spontaneity of the answers is proof of the importance the
participant places on the aspects involved; information which can otherwise
be di�cult to obtain. In this example, do we obtain economic, social or
political aspects? Are these aspects the same for the Left and the Right?

First, we might want to consider each participant as a row of the table.
However this table is somewhat sparse (many cells are empty), and analysing
it using CA is often tedious and in the end rather disappointing (many dimen-
sions identify small groups of individuals with a few specific words in common)
as it is not very synthetical. One recommended methodology is to group to-
gether the surveys according to a criterion which confronts all or some of the
following traditional variables: gender (male/female), educational level and
age (broken down into several classes). There are, of course, other ways of
grouping the data, and the user should think carefully about this choice, as it
can have a strong e↵ect on the results. A text is therefore an amalgamation
of the answers to one of the categories resulting from the way the participants
are grouped together.

Which Words?
Again, to simplify matters, we have until now referred to “word” as that
found in a column of an occurrence table. In practice, the definition of that
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which a column should represent is rather tricky as there are many di↵erent
opinions on the matter, each with interesting aspects. The user must make
those decisions which seem to him/her to be the most suited to his/her data
and objectives. Some of the key considerations are outlined below.

Selection According to Overall Frequency. Unusual words are both uninter-
esting for the user in synthetical terms, and can also modify the CA. Indeed,
a word used in only one text containing only this word can create a dimen-
sion associated to the (maximum) eigenvalue of 1. Even if this never actually
happens in practice, it is a useful case of reference, taking into account high
eigenvalues of around 0.5 which are frequently observed in this type of anal-
ysis. We will therefore eliminate the rare words from the data. The notion
of rarity is of course relative and the threshold must be defined for each case
depending on the overall frequency of words.

Tool Words. Should articles, conjunctions, and so forth, be retained for
analysis? At first glance, users are tempted to eliminate these words which
seem insignificant. It must be noted that if these words are evenly spread
throughout the text according to the average profile (when their occurrence
does not depend on the length of the text), they are therefore close to the
cloud’s centre of gravity and have little e↵ect on the analysis. However, if
their usage frequency is dependent on the text, they indicate something and
thus should be retained.

Lemmatisation. Should we, for example, group together the graphical rep-
resentations corresponding to the singular and the plural of the same noun?
Or to the same verb? Lemmatisation consists of grouping together the graphs
relating to one dictionary entry. There is both support and opposition to this
approach. Let us show the property of distributional equivalence, a tradition-
ally general property of CA which was notably highlighted using lexical tables
illustrated by a “textual” example: if day and days have the same profile, it
makes no di↵erence whether they are considered together or separately. This
property is one of the strong arguments against lemmatisation: if the profiles
are equal, nothing is gained, however if they are not, that variation is lost.
Nonetheless, in practice, one must ensure that the above variation really mer-
its our attention, which is usually not the case for the rarest of words (unless
we use an exaggeratedly high selection threshold).

Stemmatisation. This technique consists of grouping together the graphs
with the same root. Thus, in comments made during a wine tasting, we
might want to group together lively and young. Stemmatisation has similar
inconveniences to lemmatisation, however here the risk of confusing distinct
notions is much higher.

Repeated Segments. Some words tend to appear in combination with other
words and this combination (“repeated segments”) is often much more mean-
ingful than the words considered separately and can help avoid ambiguity.
Thus, remaining in the field of wine tasting, red fruits is much more evocative
than fruit (think of the taste of dried fruits in sweet wines) and red (the colour
red does not, in principle, imply the flavour qualities of red fruits). The best
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example of repeated segments has to be social security, the meaning of which
cannot be easily inferred from either social or security. It is therefore highly
useful to consider repeated segments by assigning each one a column.

The above considerations are by no means exhaustive in textual data anal-
ysis but o↵er the key points of reference for its implementation. Thus, the
majority of the work involved is required prior to conducting the CA; in order
to establish the lexical table from a body of texts.

The package tm (“text mining”) is dedicated to the analysis of textual data.
FactoMineR’s textual function is a lexical function from which a contingency
table can be constructed. Let us illustrate this function with the following
example, which contains two categorical variables and one textual variable:

> don
Millésime Wine Text

1 Millésime 1 Wine 1 Acidity, fruity
2 Millésime 2 Wine 1 Fruity, light
3 Millésime 1 Wine 1 Woody
4 Millésime 2 Wine 1 Acidity
5 Millésime 1 Wine 2 Sweet
6 Millésime 2 Wine 2 Sweet, syrupy
7 Millésime 1 Wine 2 Light, fruity
8 Millésime 2 Wine 2 Sweet, light

The textual function enables us to construct the contingency table for each
category of one or more categorical variables and/or for each combination of
categories of the two categorical variables. The argument sep.word defines
the word separators and the argument maj.in.min transforms all of the words
to lower case letters. The following command line builds a contingency table
with the words as columns and the second variables and category combinations
from the first and second variables in the rows. It also gives the number
of times each word is used (nb.words) and the number of rows in which it
features (an output which is useful for texts but irrelevant for open questions
as single words are never repeated).

> textual(don,num.text=3,contingence.by=list(2,1:2),sep.word=", ",maj.in.min=TRUE)
$cont.table

acidity fruity light sweet syrupy woody
Wine 1 2 2 1 0 0 1
Wine 2 0 1 2 3 1 0
Millésime 1.Wine 1 1 1 0 0 0 1
Millésime 1.Wine 2 0 1 1 1 0 0
Millésime 2.Wine 1 1 1 1 0 0 0
Millésime 2.Wine 2 0 0 1 2 1 0

$nb.words
words nb.list

sweet 3 3
light 3 3
fruity 3 3
acidity 2 2
woody 1 1
syrupy 1 1



92 Exploratory Multivariate Analysis by Example Using R

2.8 Example: The Olympic Games Dataset

2.8.1 Data Description — Issues

The data table confronts, in the rows, the di↵erent athletic events and, in
the columns, the di↵erent countries. Each cell contains the total number of
medals (gold, silver, and bronze), won at the Olympiads between 1992 and
2008 (Barcelona 1992, Atlanta 1996, Sydney 2000, Athens 2004, Beijing 2008).
An extract of the dataset is provided in Table 2.9. Over the 5 Olympiads,
58 countries won at least 1 medal in one of the 24 events: 10 000 m, 100 m,
110 m hurdles, 1 500 m, 200 m, 20 km, 3 000 m steeplechase, 400 m, 400 m
hurdles, 4⇥100 m, 4⇥400 m, 5 000 m, 50 km, 800 m, decathlon, discus, high
jump, javelin, long jump, marathon, hammer, pole jump, triple jump. The
table contains a lot of zeros as only 360 medals were awarded whereas there
are 1392 cells in the table.

TABLE 2.9
Olympic Data: Number of Medals Won by Event and by Country over 5
Olympiads (The 10 countries who won the most medals.)

USA KEN RUS GBR ETH CUB MAR GER JAM POL
10 000 m 0 4 0 0 8 0 2 0 0 0
100 m 5 0 0 1 0 0 0 0 1 0
110 mH 9 0 0 0 0 3 0 1 0 0
1500 m 0 5 0 0 0 0 3 0 0 0
200 m 8 0 0 1 0 0 0 0 1 0
20 km 0 0 3 0 0 0 0 0 0 1
3000 m Steeple 0 12 0 0 0 0 1 0 0 0
400 m 11 1 0 1 0 0 0 0 1 0
400 mH 7 0 0 1 0 0 0 0 2 0
4x100 m 4 0 0 1 0 2 0 0 1 0
4x400 m 5 0 1 2 0 1 0 0 2 0
5000 m 0 5 0 0 4 0 3 1 0 0
50 km 0 0 4 0 0 0 0 1 0 3
800 m 1 5 1 0 0 0 0 1 0 0
Decathlon 5 0 0 0 0 1 0 1 0 0
Discus 0 0 0 0 0 1 0 3 0 1
High Jump 3 0 3 2 0 2 0 0 0 1
Javelin 0 0 2 3 0 0 0 0 0 0
Long Jump 7 0 0 0 0 2 0 0 1 0
Marathon 1 3 0 0 3 0 1 1 0 0
Hammer 1 0 0 0 0 0 0 0 0 1
Pole Jump 4 0 3 0 0 0 0 1 0 0
Shot Put 8 0 0 0 0 0 0 0 0 1
Triple Jump 3 0 2 3 0 2 0 0 0 0

The data is available in the FactoMineR package:

> library(FactoMineR)
> data(JO)

This is indeed a contingency table, with the 360 medals as individuals.
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Two categorical variables are associated with each medal: the event to which
it refers, and the country which won that medal. The table confronts these
two variables.

From a rather formal perspective, in a table such as this we are interested
in studying the relationship between the two variables: event and country.
However, this expression is not particularly pertinent. It may be rendered
more tangible in the following way: by looking for an association between the
events and countries which might be considered remarkable in one way (i.e.,
a given country only wins medals in one specific event), or another (a given
country wins no medals in a specific event and thus compensates by winning
many in another event).

Resorting to the notion of profile, which is indeed the cornerstone of CA,
is here, as is often the case, more natural, more accurate, and more beneficial.
First, a country’s athletic profile is defined by looking at all the medals, broken
down into events (one column from the table). The question then becomes:
can each country be considered to have the same athletic profile or, on the
contrary, do some countries perform better in certain events? If this is the
case, can these “specialisations” be summarised? For example, by highlighting
the oppositions between, on the one hand, the countries with the same profiles
(i.e., who performed well in the same events) and, on the other hand, those
who have opposing profiles (i.e., do not perform well in the same events).

Similarly, the way in which the medals for one event are distributed defines
the “geographical profile” for that event (one row from the table). Can each
event be considered to have the same geographical profile or, on the contrary,
are some events the speciality of specific countries? Might we be able to
summarise these specialisations by highlighting the oppositions between, on
the one hand, the events which share the same profile (i.e., won by the same
countries) and, on the other hand, the events with opposing profiles (i.e., won
by other countries)?

The two approaches outlined above are dependent on the notion of sim-
ilarity between the profiles. In this similarity, each country’s total number
of medals should not be considered, as it would mean dividing those coun-
tries which obtained many medals from the others, in which case CA would
no longer be useful. Also, the above notion of profile must be considered in
terms of CA, that is to say, in terms of conditional probability or, more simply,
percentages (of medals obtained by each country for each event).

Comment: Margins
The very nature of this data means that the sum of the column (or column
margin) must be constant and equal to: 3 (types of medals) ⇥ 5 (Olympiads)=
15 (although there are some rare exceptions due to medals being withdrawn).
This has two consequences. First, in the analysis, the events have the same
weight (and thus, with a constant profile, they have the same influence). Sec-
ond, the “average” athletic profile, which acts as a point of reference (located
at the origin of the axes) is therefore a constant profile. CA, which highlights
the deviations from the average profile, will indicate the important role played
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by the countries with a very specific athletic profile (the most extreme case of
which would be if one country won all its medals in the same event).

The row margin contains the total number of medals won by each country.
These figures vary greatly (from 1 medal for 18 countries to 82 medals for the
USA). Country weights therefore vary a great deal: with constant profiles,
the countries with the most medals have a greater influence on the analysis.
The average profile, located at the origin of the axes, therefore contains the
proportions of medals won by the countries (very di↵erent to a constant pro-
file). Thus, an event A may be more characteristic of a country X than of a
country Y even if X won more medals than Y in this event (because Y won
more medals than X overall).

The margins may be calculated after the correspondence analysis has been
conducted (see the end of this section for how to obtain the margins).

2.8.2 Implementation of the Analysis

Here, we consider all rows and lines as active. To conduct this analysis, we use
the CA function of the package FactoMineR. The primary input parameters
are: the data table, the indexes of the supplementary rows and the indexes of
the supplementary columns. By default, none of the rows or columns are con-
sidered supplementary (row.sup=NULL and col.sup=NULL), in other words,
all of the elements are active.

> res.ca <- CA(JO)

The function CA gives the CA graph representing the rows and columns
as well as the following digital output from the command res.ca:

> res.ca
**Results of the Correspondence Analysis (CA)**
The variable in rows have 24 categories, the variable in columns 58 categories
The chi square of independence between the two variables is equal to 2122.231
(p-value = 2.320981e-41).
*The results are available in the following objects:

name description
1 "$eig" "eigenvalues"
2 "$col" "results for the columns"
3 "$col$coord" "coord. for the columns"
4 "$col$cos2" "cos2 for the columns"
5 "$col$contrib" "contributions of the columns"
6 "$row" "results for the rows"
7 "$row$coord" "coord. for the rows"
8 "$row$cos2" "cos2 for the rows"
9 "$row$contrib" "contributions of the rows"
10 "$row.sup$coord" "coord. for the supplementary rows"
11 "$row.sup$cos2" "cos2 for the supplementary rows"
12 "$call" "summary called parameters"
13 "$call$marge.col" "weights of the columns"
14 "$call$marge.row" "weights of the rows"
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Prior to the CA, the �2 test indicated whether or not the table’s deviation
from independence might be caused by “random fluctuations” (as, unlike CA,
this test accounts for the overall sample size). �2 has a value of 2122 and is
associated with a p-value of 2.32⇥ 10�41.

Here, however, the total sample size (5⇥5⇥24 = 360 medals) is extremely
small in terms of the number of cells in the table (24 ⇥ 58 = 1392). We
are thus far from the conditions of test validity (even the most “relaxed” of
which consider 80% of the theoretical sample size to be greater than 5, and
the others to be greater than 1) and the p-value here can be considered for
information only. However, the p-value is here so small that the significance
of the deviation of this table from independence cannot be questioned.

2.8.2.1 Choosing the Number of Dimensions to Examine

As in all principal component methods, the study of the inertia of the dimen-
sions enables us to see whether or not the data is structured, and, on the other
hand, to determine the number of dimensions to interpret.

The command res.ca$eig contains the eigenvalue (i.e., the inertia or
explained variance) associated with each dimension, the percentage of inertia
it represents in the analysis, and the sum of these percentages. Below are the
results, rounded to the nearest two decimal places using the function round:

> round(res.ca$eig,2)
eigenvalue percentage cumulative percentage

variance of variance
dim 1 0.82 13.85 13.85
dim 2 0.62 10.53 24.38
dim 3 0.54 9.23 33.62
dim 4 0.48 8.16 41.78
dim 5 0.40 6.72 48.50
dim 6 0.36 6.17 54.67
dim 7 0.33 5.55 60.23
dim 8 0.32 5.35 65.58
dim 9 0.27 4.56 70.14
dim 10 0.24 4.16 74.29
dim 11 0.23 3.91 78.20
dim 12 0.18 3.11 81.31
dim 13 0.16 2.78 84.09
dim 14 0.14 2.46 86.55
dim 15 0.13 2.22 88.77
dim 16 0.12 2.06 90.82
dim 17 0.10 1.76 92.58
dim 18 0.09 1.58 94.16
dim 19 0.08 1.44 95.60
dim 20 0.08 1.35 96.95
dim 21 0.07 1.27 98.21
dim 22 0.06 1.05 99.27
dim 23 0.04 0.73 100.00

These eigenvalues can be visualised using a bar chart (see Figure 2.10):

> barplot(res.ca$eig[,1],main="Eigenvalues",
names.arg=paste("dim",1:nrow(res.ca$eig)))
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FIGURE 2.10
Olympic data: eigenvalues associated with each dimension of the CA.

The first two dimensions express 24.40% of the total inertia. It may be in-
teresting to consider the next dimensions which also express a high percentage
of the total inertia.

2.8.2.2 Studying the Superimposed Representation

The superimposed representation of the CA (see Figure 2.11) is a default
output of the function CA.

We can identify all of the row coordinates (and column, respectively) in
the function res.ca$row (res.ca$col, respectively). We therefore obtain a
table detailing the coordinates, contributions (indicating to what extent an
individual contributes to the construction of a dimension), cosines squared
(measuring the quality of the projection of individuals on a dimension), and
the inertias for each element (corresponding to the distance from the barycen-
tre counterbalanced by the weight of the element).

A graph can also be constructed for dimensions 3 and 4 (see Figure 2.12).
In this case we use the function plot.CA (which can be summoned using plot
or plot.CA). We then specify the axes of representation (axes = 3:4):

> plot(res.ca,axes=3:4)

2.8.2.3 Interpreting the Results

First, let us examine the projections of the various events on the plane induced
by the first two dimensions. The results here are rather astonishing, as all of
the events involving long-distance races are separated from the other events
on the first dimension. Among other things, there is a gradient of the di↵erent
events going from 10 000 m to 800 m. All of the events, without exception, are
sorted from the longest distance to the shortest. This means that the results of
the 10 000 m are more noteworthy than those of the other endurance events.
Nonetheless, the marathon is much closer to the centre of the graph than
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FIGURE 2.11
Olympic data: superimposed representation.
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FIGURE 2.12
Olympic data: superimposed representation on plane (3, 4).
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expected. This is due to the fact that it is not the same kind of endurance
event as the others.

The countries with negative coordinates on the first dimension are those
which won many medals in the endurance events compared with the results
of these countries in the other events, but also compared with the number of
medals won by the other countries in endurance events. Here we find those
African countries that specialise in endurance events (Eritrea, Ethiopia, Bu-
rundi, Morocco, Qatar, Kenya) and New Zealand (N.B., New Zealand only
won one medal, in the 1 500 m, which is why it has such an extreme coordi-
nate).

It is interesting here to examine the contributions of the di↵erent coun-
tries. It must be noted that in CA, unlike PCA, the most extreme elements
are not necessarily those which contributed the most to the construction of
the dimensions, as the weights di↵er from one element to another. The con-
tributions of the 13 countries which contributed most to the construction of
dimension 1 are featured below (countries are organised in descending order):

> res.ca$col$contrib[rev(order(res.ca$col$contrib[,1])),1]
ken eth mor usa gbr eri cub bdi alg jam tri

31.387 22.072 12.160 9.149 2.139 1.947 1.683 1.452 1.352 1.313 1.119

Ethiopia, Kenya, and Morocco account for 65% of the construction of the
first dimension. These countries won a great number of medals in these events.
The three countries won a total of 60 medals, of which 59 were obtained in
endurance events.

The second dimension separates sprinting events from the discus, the ham-
mer, and walking (20 km and 50 km). Again, here, there is a gradient between
the sprinting events: the 100 m is more extreme than the 200 m and the 400 m.
The relay events are also less extreme than the individual events. Here, we
can clearly observe that the 400 m is a sprinting event, whereas the 800 m is
an endurance event. In the same way, walking (20 km and 50 km) is distin-
guishable from both sprinting and endurance events. And again, the 50 km
is more extreme than the 20 km.

The countries which won medals in the sprinting events are Barbados,
Namibia, Trinidad and Tobago, Jamaica, the Dominican Republic, and so
forth. The contributions of these countries to the construction of the second
dimension are much more consistent than for the first dimension. The USA
contributed significantly to the construction of this dimension even though its
coordinate is relatively close to 0. This is due to the great number of medals
won by this country: a total of 82, of which 49 were won in sprinting events
(compared to the percentage of sprinting events: 7/24). The 15 countries
which contributed most to the construction of dimension 2 are detailed below:

> res.ca$col$contrib[rev(order(res.ca$col$contrib[,2])),2]
usa ltu blr hun pol eun tri est ger nam jam

11.324 10.942 7.175 6.911 6.314 5.582 4.790 4.234 3.766 3.643 3.629
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For the discus and hammer events, eastern European countries such as
Lithuania, Hungary, Slovenia, and, also Turkey won the most medals.

Dimensions 3 and 4 also separate the discus and the hammer from the
walking events (20 km and 50 km). The javelin is a very di↵erent event than
those of the hammer and the discus. Northern European countries (Norway,
Czechoslovakia, the Czech Republic, Finland, and Latvia) score highly in the
javelin event.

The row and column margins can be obtained thus (as can the number of
medals obtained by each country, by multiplying the column margin by the
total number of medals, 360):

> res.ca$call$marge.row
> res.ca$call$marge.col[rev(order(res.ca$call$marge.col))]

usa ken rus eth gbr cub ger mar jam pol esp ita
0.228 0.097 0.053 0.042 0.042 0.039 0.028 0.028 0.025 0.022 0.022 0.019
> res.ca$call$marge.col[rev(order(res.ca$call$marge.col))]*360
usa ken rus eth gbr cub ger mar jam pol esp ita
82 35 19 15 15 14 10 10 9 8 8 7

2.8.2.4 Comments on the Data

Athletics fans might at first be disappointed when reading this example. In-
deed, CA first overturns the biggest trends emanating from this data: the
endurance events are dominated by African athletes, sprinting events are dom-
inated by the USA, and sprint, endurance and throwing events are relatively
diverse. However, this is exactly what we ask of an analysis: to identify the
primary characteristics.

Nevertheless, when we look closer, certain results are interesting and may
attract the curiosity of athletics fans (or even athletes themselves!). We shall
outline a few of these results and leave the specialists to interpret them as
they see fit.

• The results of the CA point to a distinct separation between endurance
events (1 500 m, 3 000 m steeple, 5 000 m, 10 000 m and marathon) and
sprinting events (100 m and 200 m). The two resistance events, the 400 m
and the 800 m, are not included and the other running events are separated
into two categories with a limit situated somewhere between the 400 m and
the 800 m (the 800 m is similar to the endurance events whereas the 400 m
is similar to the sprinting events). Energy is therefore managed di↵erently
in these two events.

• Furthermore, the marathon is indeed an endurance event but does not be-
have in the same way as the others: it is much more extreme than may have
been expected. Similarly, the walking events (20 km and 50 km) are not
endurance events in the same way as running races.

• The athletes who participate in sprinting events often tend to “double up”
and run 100 m and 200 m or 200 m and 400 m. The graph shows that 100 m
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and 200 m are very similar events, and are more similar than 200 m and
400 m. The 100 m and 200 m are both power events whereas the 400 m is
a resistance event.

• The two hurdle events (110 m and 400 m hurdles) are somewhat di↵erent:
the 110 m hurdles is relatively far from the 100 m whereas the 400 m hurdles
is close to the 400 m. The 100 m and 110 m hurdles events draw on very
di↵erent qualities: the 110 m hurdles is a technical event whereas the 100 m
requires bursts of energy, which explains why no athletes participate in both
of these events. However, the 400 m hurdles is a much less technical event
than the 110 m hurdles. It draws on qualities similar to those used in the
400 m, which explains why athletes can participate in both events.

• In the throwing events, the hammer and the discus are very similar whereas
the shot put and the javelin are somewhat di↵erent. The hammer and the
discus are thrown in rotation (with a leverage e↵ect) while the javelin is
thrown in a straight line. The shot put is thrown with or without rotation
(and without leverage, as the shot must be in contact with the neck when
thrown).

• The decathlon, the ultimate all-round event, is opposed to the endurance
events on the first dimension. This event is therefore not suitable for en-
durance athletes, generally speaking. Decathlon athletes’ morphology, with
a great deal of muscle mass and a capacity for bursts of energy, does not help
them in endurance events. Decathlon athletes often have di�culty finishing
their event by a 1 500 m.

It must be noted that all comments are made entirely on the basis of
the number of medals won by di↵erent countries and by event, and in no
way reflect the physical capabilities of the athletes who participated in these
events.

2.9 Example: The White Wines Dataset

2.9.1 Data Description — Issues

Within the context of research into the characteristics of the wines from
Chenin vines in the Loire Valley, a set of 10 dry white wines from Touraine
were studied; five Touraine Protected Appellation of Origin (AOC) from
Sauvignon vines, and five Vouvray AOC from Chenin vines (see Table 2.10).

These wines were chosen with the objective of illustrating the diversity of
Loire Valley wines within each specific vine (although we can imagine that,
given the profession of the person responsible for choosing the wine, there
may be one restriction to this diversity: he most likely did not choose wines
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that he does not like). It must be noted that there is very little connection
between the Protected Appellation of Origin (AOC) and the vine (in terms
of experimental planning). For this reason, and to simplify matters, we shall
limit ourselves to the vine.

TABLE 2.10
Wine Data: The 10 Wines Studied

Number Name Vine Label of Origin Comments
1 Michaud Sauvignon Touraine
2 Renaudie Sauvignon Touraine
3 Trotignon Sauvignon Touraine
4 Buisse Sauvignon Touraine
5 BuisseCristal Sauvignon Touraine
6 AubSilex Chenin Vouvray 7 g of residual sugars
7 Aub.Marigny Chenin Vouvray Cask-aged
8 FontDomaine Chenin Vouvray
9 FontBrûlés Chenin Vouvray
10 FontCoteaux Chenin Vouvray Cask-aged

These wines were used for a number of sensory analyses, combining dif-
ferent types of evaluations and protocols. The data analysed are from a wine
tasting by 12 professionals and are of a “textual” nature. The instructions
were: for each wine, give one (or more) word(s) which, in your opinion, char-
acterises the sensory aspects of the wine. As is the tradition in wine tasting,
the wines were presented “blind”; that is to say, those tasting the wines did
not know which wines they were tasting. Nonetheless, as this tasting took
place at the Trade Fair for Loire Valley Wines, the tasters could easily have
guessed that they were tasting Loire Valley wines, even if it was never specified.
However, given the diversity of Loire Valley wines in terms of soil, vines and
wine-making techniques, it may be assumed that the very general knowledge
about the entire set of wines had no real e↵ect on the relative characteristics
of each one.

Participants were thus given a questionnaire comprising 10 open questions
(one per wine). This data was brought together in a table with the wines as
rows and the columns as words, where the general term x

ij

is the number of
times that a word j was associated with a wine i (see Table 2.11).

This table can be viewed as a contingency table, considering that there
are n sensory descriptions (a description is the association between a word
and a wine), and that these descriptions are divided between two categorical
variables: the wine to which it refers, and the word used. The CA will analyse
the distance between the table and the independence model, a model in which
each wine has the same word profile and, proportionally, each word is used
the same number of times for each wine.

This type of table is often constructed and analysed using CA (historically,
the first CA published was on an analogue table5), although usually the sam-
ple size tends to be much larger. Here we find ourselves very near to the

5Escofier B. (1965). L’analyse des correspondances, PhD, University of Rennes, France.
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TABLE 2.11
Wine Data: The Number of Times Each Word Was Used for Each Wine (30
Words)

1S-Mic 2S-Ren 3S-Tro 4S-Bui 5S-Bui 6C-Aub 7C-Aub 8C-Fon 9C-Fon 10C-Fon Total
721341043551ytiurF

Sweet, smooth, syrupy 0 1 1 0 0 11 1 2 1 1 18
615107020001ydoow ,kaO

Light,  supple 1 0 2 2 1 2 0 0 4 0 12
111212012101cidicA
110030011132surtiC

Golden yellow 2 0 0 1 0 1 2 1 2 2 11
110001131032 yleviL

Fruity flavours 2 1 2 1 0 1 0 1 1 0 9
Delicate, discrete 0 2 1 4 0 0 0 1 1 0 9

83210000011rettiB
81110020210larolF
81212200000ytsum ,hciR

Pale yellow, pale 1 2 2 0 1 2 0 0 0 0 8
70000002221looc ,hserF

Long finish, persistent 1 1 1 0 0 0 2 0 1 1 7
Floral, white flowers 2 1 1 0 1 0 0 0 0 1 6

60110013000yrD
51101100001lluf ,esnetnI
50111100010yenoH

Lack of character, weak 0 0 0 0 0 3 0 2 0 0 5
Open, Lots of character 2 0 1 0 0 0 0 1 1 0 5
Full-flavoured 1 1 1 1 0 0 0 0 0 0 4
Foreign flavour (wax, tyre) 0 0 0 0 0 0 3 0 0 1 4
Vigourous flavour 2 0 2 0 0 0 0 0 0 0 4

40000011011 ytlaS
Slightly acidic 1 0 0 1 2 0 0 0 0 0 4
Little character, expressivity 0 0 0 0 0 1 2 0 1 0 4

41000000111nongivuaS
Strong flavour 1 0 0 0 2 0 1 0 0 0 4

54202621262622232627282latoT

threshold for CA use, as the total number of occurrences (n = 245) is ex-
tremely low. Nonetheless, the analysis is possible as wine experts tend to use
rather standardised vocabulary, thus yielding a low total number of words and
thus a “su�cient” number of words with an acceptable frequency. Prior to
the analysis, a number of “neighbouring” words were grouped together (for
example, sweet, smooth, and syrupy, all of which refer to the same perception;
that of the sweet taste of the wine). In this text, in order to simplify matters
we use the term “word” for the rows in Table 2.11, even when they represent
groups of words as they appear in the questionnaire (e.g., vigourous flavour) or
when grouped together subsequently, for example, sweet, smooth, and syrupy.
In this type of analysis, we eliminate the words which are used the least fre-
quently. Due to the small sample size, the threshold below which words were
no longer included was set at 4. This threshold was determined empirically:
with this data, setting the threshold at 5 would not change the representation
significantly, but would remove important words (such as “Sauvignon”). On
the other hand, a threshold of 3 would lead to heavily laden graphs and words
with weak coordinates.

The aim of this analysis is to provide an image summarising the diversity
of the wines. Usually, the sensory diversity of wines is studied using a much
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stricter protocol: a questionnaire is established using a list of descriptors
(acidity, bitterness, etc.), a jury is then asked to evaluate the wine using the
descriptors, and then a final evaluation is conducted. One of the aims of
our study is methodological; is it possible to obtain a significant image of
the diversity of the wines using a simplified procedure (the tasters do not all
participate at the same time, and they are free to use their own vocabulary)?

2.9.2 Margins

Examining the margins is important both in terms of direct interpretation
(Which words are used the most often? Are some wines more prone to com-
ments than others?), and in terms of their influence in CA (as a weight).

The word used most frequently is “fruity”, which seems to correspond to
our observations of comments about wine-tasting (if you are in any doubt,
just look at the label on any bottle of wine, and you will almost always en-
counter the expression “wonderfully fruity”). The second most common is
sweet, smooth, syrupy. It must be noted that these wines are all dry and thus
any perception of sweetness would constitute a remarkable characteristic. Fi-
nally, the perception expressed by the term oak, associated with wines aged
in barrels, is often used by professionals, and thus was frequently cited in this
study (unlike an odour which might be perceived easily but which is unrecog-
nisable and therefore expressed di↵erently depending on who is describing it).
Extending the commentaries of these sample sizes goes beyond the context
of a data analysis book such as this. On a technical level, the weight of the
words will increase with the frequency at which they are cited.

However, the number of words per wine seems to be stable. No one wine
seems to attract significantly more comments than the other, which is un-
doubtedly a consequence (and indeed a desired result) of the form of instruc-
tions given (“for each wine, give one or more words ...”). To be sure, we can
conduct a �2 test of best fit for the 10 observed samples (final row of Ta-
ble 2.11) to uniform distribution. The p-value (0.97) confirms that we must
not focus on the di↵erences between the numbers of words for each wine. In
terms of CA, we can consider that the wines will all have around the same
influence on the analysis. When the number of words per wine di↵ers, the
analysis attributes a greater weight to a wine if it is the subject of a great
number of commentaries (it has a more well-known profile).

2.9.3 Inertia

Total inertia (�2) has a value of 1.5, and subsequently a �2 of 368.79 (n = 245)
associated with a p-value equal to 1.23 ⇥ 10�5. This table has poor validity
test conditions (in theory, at least 80% of the theoretical sample size must
have a value higher than 5 and none of them should be nil). However, the
p-value is so low that the worth of CA for this data cannot be questioned. It
must be noted, for those who are familiar with the diversity of Loire Valley
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wines (especially when we consider that these wines were chosen with the aim
of illustrating this diversity), that the relationships between the words and the
wines are to be expected. The question “put to the �2 test” is not so much that
which proves the existence of a relationship but rather that which relates to
the capacity of a set of data which is so limited that this relationship becomes
evident. Here then, we may consider the response to be positive, but the data
do not have the “statistical reliability” of the table of opinions on women’s
work (remember: for the latest table, p= 10�49). We shall therefore be doubly
careful when interpreting the data. In tangible terms, this means frequently
referring back to the raw data and drawing connections with other external
information. These comments are all the more important as there is no doubt
about the significance of the CA, which only accounts for probabilities.

The intensity of the relationship, measured using Cramer’s V , is rather
strong: 0.409 (where 1 corresponds to a mutual exclusivity between each wine
and a group of words; something that would be almost impossible in blind
wine tasting). This value is higher, for example, than that of the data on
women’s work (0.26).

CA is implemented using the following commands:

> library(FactoMineR)
> data.wine = read.table("http://factominer.free.fr/book/wine.csv",

header=TRUE,row.names=1,sep=";")
> colnames(data.wine)=c("1S.Michaud","2S.Renaudie","3S.Trotignon","4S.Buisse",

"5S.BuisseCristal","6C.AubSilex","7C.Aub.Marigny","8C.FontDomaine",
"9C.FontBrûlés","10C.FontCoteaux","Total")

> res.ca=CA(data.wine,col.sup=11,row.sup=nrow(data.wine))
> barplot(res.ca$eig[,1],main="Eigenvalues",

names.arg=1:nrow(res.ca$eig))

1 2 3 4 5 6 7 8 9 10

Valeurs propres

0.
0

0.
1

0.
2

0.
3

0.
4

FIGURE 2.13
Wine data: chart of eigenvalues from the CA of Table 2.11.

http://factominer.free.fr/book/wine.csv
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TABLE 2.12
Wine Data: Eigenvalues

Eigenvalue Percentage Cumulative percentage
variance of variance

Dim 1 0.436 28.932 28.932
Dim 2 0.371 24.666 53.598
Dim 3 0.181 12.055 65.653
Dim 4 0.156 10.348 76.001
Dim 5 0.100 6.645 82.646
Dim 6 0.096 6.353 88.999
Dim 7 0.066 4.382 93.380
Dim 8 0.062 4.133 97.513
Dim 9 0.037 2.487 100.000
Dim 10 0.000 0.000 100.000

The sequence of eigenvalues (see Figure 2.13 and Table 2.12) shows two
dimensions with noticeably higher inertias than on the following dimensions
which, when considered along with the accrued inertia percentage of 53.6%,
leads us to focus our interpretation on the first plane. These two dimensions
each have rather high inertia (0.4355 and 0.3713): associations between wines
and words should therefore be clearly visible.

2.9.4 Representation on the First Plane

Many di↵erent grids are available for analysis. For grids per axis we prefer,
at least to start with, to use a grid per pole based on the wines. There are
three possible poles (see Figure 2.14):

1. Aubuissières Silex (6), characterised by sweet, cited 11 times for
this wine. This is the only wine to contain more than trace level
residual sugars. This unusual (although authorised) characteristic
for a dry wine, stands out, as it is only rarely cited for the other
wines (7 times in total, but never more than twice for one wine),
and accounts for over a third of the words associated with this
wine. The graph highlights the wine’s lack of character; although
this term was only cited 3 times for this wine, we have classed it
in second place (among other things, this characteristic is really a
lack of a characteristic and is therefore less evocative).

2. Aubuissières Marigny (7) + Fontainerie Coteaux (10). These two
wines were mainly characterised by the terms oak, woody, which
were each cited 7 and 5 times respectively, whereas the word was
only used 3 times elsewhere. This description can, of course, be
linked to the fact that these two wines are the only two to have
been cask aged. According to this plane, foreign flavour best char-
acterises these wines, but we chose to place it second due to the low
frequency of this term (4), even if it was cited for these two wines
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FIGURE 2.14
Wine data: first two dimensions map of the CA for Table 2.11.
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alone. It should also be noted that the e↵ect of ageing wine in casks
does not only lead to positive characteristics.

3. The five Touraine wines (Sauvignon; 1–5). Characterising these
wines was more di�cult. The terms lots of character, fresh, delicate,
discrete, and citrus were cited for these wines which seems to fit
with the traditional image of a Sauvignon wine, according to which
this vine yields fresh, flavoursome wines. We can also add two more
marginal characteristics: musty (and little character, respectively),
cited 8 times (4 times, respectively), and which are never used to
describe the Sauvignon wines.

Once these three poles are established, we can go on to qualify the dimen-
sions. The first distinguishes the Sauvignons from the Chenin wines based on
freshness and flavour. The second opposes the cask aged Chenin wines (with
an oak flavor) with that containing residual sugar (with a sweet flavour).

Having determined these outlines, the term lack of character, which was
only used for wines 6 and 8, seems to appear in the right place, i.e., far from
the wines which could be described as flavoursome, whether the flavour be
due to the Sauvignon vines or from being aged in oak casks.

Finally, this plane o↵ers an image of the Touraine white wines, accord-
ing to which the Sauvignons are similar to one another and the Chenins are
more varied. This could therefore be understood in a number of di↵erent,
noncontradictory ways:

• There is only one way of producing Sauvignon whereas there are a numerous
ways of making Chenin.

• Viticulturists “work harder” to produce Chenin, the noble Touraine vine,
by testing many di↵erent techniques in order to obtain the best flavour.

In saying these things, we are moving away from our role as statisticians,
but we merely wanted to illustrate some of the ways in which the final user
might interpret the results.

Dimensions 3 and 4
We shall consider the next dimensions only briefly, due to space restrictions.
Following this approach, contributions may be useful to summarise a dimen-
sion.

Thus, from the point of view of contributions, dimension 3 confronts
wines 1 and 4 with the words dry delicate and vigorous. These associa-
tions/oppositions are evident in the data. However, aside from the fact that
they both have small sample sizes, they do not suggest that they require inter-
pretation. Dimension 4 underlines wine number 5, which associates the words
lively and slightly acidic. Again, this association can be observed in the data
(just barely), but it also deals with small sample sizes and does not imply
anything specific (on the contrary, lively and slightly acidic tend to oppose
one another).
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Conclusions
From a viticulturist’s point of view, this analysis identifies the marginal char-
acteristics of the Chenin vine. In practice, this vine yields rather varied wines
which seem particularly di↵erent from the Sauvignons as they are somewhat
similar and rather typical.

From a sensory standpoint, it is possible to obtain a reliable representa-
tion (here, reliability is suggested by clear relationships between the sensory
“descriptions” and the “external” information available about the vine and
whether or not the wine is cask-aged) with a much less strict procedure than
usual (only one session).

From a statistical point of view, CA seems well-suited to analysing “mar-
ginal” matrices (with many either low-value or empty cells). However, the fact
that we discarded those words with extremely low frequency ( 3) should not
be overlooked.

2.10 Example: The Causes of Mortality Dataset

2.10.1 Data Description — Issues

This contingency table opposes causes of death, with age subdivided into age
groups for the French population, for each year from 1979 to 2006. In each
table (corresponding to a specific year), we can observe, at the intersection
of the rows i and columns j, the number of individuals belonging to a given
age group j who died (in the given year) due to cause i. To simplify matters,
we mainly refer to the tables corresponding to the years 1979 and 2006, and
their totals. We also refer to the table which opposes the French population
for the entirety of the period from 1979 to 2006, for all causes, years and age
groups. The general term for this last table is, at the intersection of the rows
i and columns j, the number of individuals belonging to a given age group j
who died in year i (from all of the possible causes). These tables are grouped
together in columns as shown in Figure 2.15.

Data was taken from the Centre d’épidémiologie sur les causes médicales
de décès (Cépidc) which o↵ers access to some of its data online at http:
//www.cepidc.vesinet.inserm.fr/.

The real issue at hand here is to study the relationship between age and
cause of death. Initially, the age variable is quantitative. The transformation
of this variable, through dividing the range of variation into intervals, into a
categorical variable, plainly highlights the nonlinear aspect of this relationship.
This expectation of a nonlinear relationship stems from prior knowledge of the
phenomenon being studied. This is particularly relevant when defining the
age groups which are intended to group together individuals in a standardised
manner, in terms of causes of mortality. The age groups were therefore sorted

http://www.cepidc.vesinet.inserm.fr/
http://www.cepidc.vesinet.inserm.fr/
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12 age groups

Sum
1979 + 2006

65 causes 
of death

Data
1979

Data
2006

Year
from 1979
to 2006

Total

65 causes 
of death

65 causes 
of death

FIGURE 2.15
Mortality data: structure of the data table.

by periods of 10 years for the majority of the age range. However, as is often
the case when dividing data into groups, the exceptions are almost all found
at the extremities but here they carry rather di↵erent meanings: grouping
together individuals of over 95 years of age means that the sample for this
group remains an acceptable size. On the other hand, the youngest individuals
are sorted into much smaller groups, as there is good reason to believe that
newborns (0–1 year) and young children (1–5) may be subject to di↵erent
causes of mortality than the other age groups.

By introducing the table grouping together all the deaths between 1979
and 2006 as active, we avoid focusing too much on one specific year and
thus our results will have higher validity. With this in mind, it was possible
to simultaneously analyse all of the years for the specified period, and not
simply the two extreme years. This choice is purely practical, with the aim of
avoiding a huge volume of data (whilst at the same time conserving maximum
variability of the annual tables, which hypothesises a steady evolution over
time).

The coordinates of the rows and columns on the dimensions of the CA for
the active table provide a framework for analysing the relationship between
age and cause of death for the specified period. Introducing these annual
tables as supplementary rows means that the evolution of this relationship
can be analysed within this framework, in terms of causes of mortality. This
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perspective can be justified as follows: each row in the active table, i.e., a cause
of death, has a corresponding distribution of individuals who “belong” to this
cause according to the age groups, which we refer to as the “age profile”. The
aim of the CA can be explained as a way of highlighting the main dimensions
of variability for these profiles. For example, we expect a dimension which
will oppose “young” profiles (causes of death representative of young people)
with “elderly” profiles (causes of death characteristic of elderly people).

The supplementary rows are therefore also age profiles; they each corre-
spond to a cause of death for a given year. Thus, there are many age profiles
for each cause of death (or more specifically, there are many points on the
graph), and it will be possible to analyse the evolution of these profiles using
observations such as: a given cause of death, which was typical for young
people in 1979, was much less so in 2006.

2.10.2 Margins

The margins indicate the age groups which are more subject to mortality,
and the most frequent causes of death. They also designate the weights of
each category of the CA. The two margins vary greatly (see Figure 2.16 and
Figure 2.17). The diagrams and the numerical data can be obtained using the
following commands:

> library(FactoMineR)
> death <- read.table("http://factominer.free.fr/book/death.csv",

header=TRUE,sep=";",row.names=1)
> colnames(death) <- c("0-1","1-4","5-14","15-24","25-34","35-44",

"45-54","55-64","65-74","75-84","85-94","95+")
> res.ca=CA(death,row.sup=66:nrow(death), graph=FALSE)
> round(res.ca$call$marge.col,3)
> round(res.ca$call$marge.row[order(res.ca$call$marge.row)],3)
> par(las=1)
> barplot(res.ca$call$marge.col,horiz=TRUE)
> barplot(res.ca$call$marge.row[order(res.ca$call$marge.row)],horiz=TRUE)
> par(las=0)

The most frequent cause of death is linked to cerebrovascular diseases.
The age group with the highest number of deaths is the range between 75 and
84 years. The higher age groups (85–94 years and 95 years and over) feature
fewer deaths simply because there are far fewer people of this age. It may
also be noted that the number of deaths in the lowest age group (0–1 year)
is relatively high when compared to the next age groups. This is even more
surprising as this age group includes individuals all born in the same year,
whereas the other groups include groups with a range of 4 and then 10 years.
The percentage of children from 0–1 year who die is therefore much higher
than the percentage for children from 1–4 years or 5–14 years.

http://factominer.free.fr/book/death.csv
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FIGURE 2.16
Mortality data: age group margins.

2.10.3 Inertia

When applied to the active data, the �2 test of independence finds the re-
lationship between the data to be significant. The observed �2 has a value
of 1,080,254, and the associated p-value is extremely close to 0 (the software
gives a result of 0). The significance of the text was expected due to that
which we can all observe around us (even the simple fact that the expression
“infant mortality” exists), and from the very high values observed in the data
table. Although the test hypotheses are not validated (many of the cells have
theoretical sample sizes of less than 5), the p-value is so low that the signif-
icance cannot be questioned. Total inertia is equal to �2 = 1.0213, and the
intensity of the relationship, measured using Cramer’s V , is high: 0.305 (1
would indicate an exclusive association between each age group and a group
of causes of mortality).

> res.ca=CA(death,row.sup=66:nrow(death))
> barplot(res.ca$eig[,1],main="Eigenvalues",

names.arg=1:nrow(res.ca$eig))
eigenvalue percentage of cumulative percentage

variance of variance
dim 1 0.5505 53.9002 53.9002
dim 2 0.2570 25.1628 79.0630
dim 3 0.1385 13.5653 92.6283
dim 4 0.0338 3.3141 95.9424
dim 5 0.0199 1.9439 97.8863
dim 6 0.0143 1.4022 99.2885
dim 7 0.0037 0.3665 99.6550
dim 8 0.0017 0.1624 99.8174
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FIGURE 2.17
Mortality data: margins for causes of death.
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FIGURE 2.18
Mortality data: chart of eigenvalues.

dim 9 0.0013 0.1256 99.9430
dim 10 0.0004 0.0439 99.9868
dim 11 0.0001 0.0132 100.0000

The sequence of eigenvalues (see Figure 2.18) identifies three dimensions.
These three dimensions account for 92.6% of the total inertia and therefore
e↵ectively summarise overall variability (within a 12 � 1 = 11-dimensional
space). We can therefore focus our interpretation on these first three dimen-
sions.

Prior to conducting the CA, that is to say, with the filled spaces, it may be
interesting to decompose the inertia by row and by column. The commands
res.ca$row$inertia and res.ca$col$inertia carry the total inertia de-
composed by row and by column. It is most fitting to express these inertias
as percentages. For the columns, we obtain:

> 100*res.ca$col$inertia/sum(res.ca$col$inertia)
0-1 1-4 5-14 15-24 25-34 35-44 45-54 55-64 65-74 75-84 85-94 95+

52.62 2.16 1.67 12.22 6.18 3.99 4.56 3.97 2.08 2.39 5.34 2.82

The inertia for the age group 0–1 year is high, as 52.6% of the total inertia
is due to this age group. “Half” of the relationship between age and cause
of death therefore resides in the characteristic of this age group, which will
therefore have a strong influence on the results of the CA. After this first set,
the two other age groups which contribute the most to this relationship are
15–24 years and 25–34 years. These age ranges have very specific mortality
profiles and will also strongly influence the CA.

For the 65 causes of death, we here list those with the five highest inertias
(in the entire space), in descending order:
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>100*res.ca$row$inertia[rev(order(res.ca$row$inertia))]/sum(res.ca$row$inertia)
Perinatal infection 32.41

Road accidents 13.70
SIDS 7.94

Congenital defects of the circulatory system 6.54
Suicides 5.00

Perinatal infection has high inertia compared with the other causes of mortal-
ity (32.41%), however its weight is relatively low (with a margin of 0.00336).
This cause of death has a very specific age profile (as suggested by the name).

By thoroughly inspecting the data, we can view the details of the calcula-
tions of these inertias in the form of a table summarising the weight (equal to
the margin expressed as a percentage), the distance from the origin, and the
inertia (raw, and as a percentage) for each row and each column. Thus, for
the rows:

> bb<-round(cbind.data.frame(res.ca$call$marge.col,
sqrt(res.ca$col$inertia/res.ca$call$marge.col),
res.ca$col$inertia,res.ca$col$inertia/sum(res.ca$col$inertia)),4)

> colnames(bb)<-c("Weight","Distance","Inertia","% of inertia")
Weight Distance Inertia % of inertia

0-1 0.0099 7.3829 0.5374 0.5262
1-4 0.0021 3.2375 0.0221 0.0216
5-14 0.0032 2.3039 0.0170 0.0167
15-24 0.0118 3.2583 0.1248 0.1222
25-34 0.0140 2.1275 0.0632 0.0618
35-44 0.0251 1.2736 0.0408 0.0399
45-54 0.0657 0.8413 0.0465 0.0456
55-64 0.0994 0.6390 0.0406 0.0397
65-74 0.1900 0.3342 0.0212 0.0208
75-84 0.3189 0.2765 0.0244 0.0239
85-94 0.2189 0.4993 0.0546 0.0534
95 + 0.0410 0.8375 0.0288 0.0282

It would therefore seem that the strong contribution of the age group 15
to 24 years stems primarily from the distance from the origin, and therefore
is a highly specific mortality profile.

2.10.4 First Dimension

The first dimension separates newborns of 0 to 1 years from the other age
groups (see Figure 2.19). Figure 2.20 draws attention to the specific causes
of mortality in this age group, that is to say, infant diseases which a↵ect this
age group exclusively, or quasi-exclusively (perinatal infection, SIDS, etc.). In
this case, CA therefore highlights a specific phenomenon of a given category.

In CA, as the elements (rows and columns) do not have the same weight,
one must consider the contributions before proposing an interpretation. The
commands res$col$contrib and res$row$contrib contain the contribu-
tions for the rows and columns for the di↵erent dimensions. They are ex-
pressed as percentages (and are therefore sometimes referred to as relative
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FIGURE 2.19
Mortality data: representation of age groups on the first plane.
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FIGURE 2.20
Mortality data: representation of age groups and the most specific causes of
mortality on the first plane.

contributions). We present those in the columns in their “natural” order,
thus:
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> round(res.ca$col$contrib[,1],3)
0-1 1-4 5-14 15-24 25-34 35-44

97.071 0.730 0.256 0.240 0.122 0.024
45-54 55-64 65-74 75-84 85-94 95+
0.004 0.068 0.306 0.660 0.451 0.069

The contributions confirm that the age group 0–1 year contributes (almost)
entirely to the first dimension (as suggested by Figure 2.19); at this age,
therefore, causes of mortality are extremely specific. This result supports
that relating to the inertia of this age group in the overall space (0.5262)
commented above.

As there are many causes of death, we present their contributions in the
descending order, limiting ourselves to the 5 causes with the greatest contri-
butions (these five causes account for 95.56% of the construction of the first
dimension). Thus:

> res.ca$row$contrib[rev(order(res.ca$row$contrib[,1])),1]
Perinatal infection 59.101

SIDS 14.440
Congenital defects of the circulatory system 11.512

Other congenital defects and chromosomal abnormalities 7.428
Congenital defects of the nervous system 3.079

The dimension highlights the specific causes of death (almost by definition,
as seen in the terms “perinatal” and “infant” in the age group of 0 to 1 year.
These contributions complete the graph in indicating the key role of infection.

2.10.5 Plane 2-3

The first dimension highlights the most prominent trait of the deviation from
independence: causes of mortality specific to newborn babies. At this stage,
two options are available:

1. As the specificity of this age range has been well established, this
age group is removed from the analysis and the analysis conducted
a second time. In doing so, the range of our study is altered: we
focus specifically on the population of individuals of more than one
year old. One is often tempted by this method, which breaks a
wide-ranging domain down into simple elements prior to studying
them.

2. Continue the investigation of this CA. The orthogonality of the
dimension ensures that as the uniqueness of the 0 to 1 age group has
been expressed on the first dimension, it will not go on to “distort”
the following axes. This is the tactic that we chose to follow (and
which, generally, we would recommend).

We shall now go on to consider plane 2-3 (see Figures 2.21 and 2.22). The
representation of the age groups identifies a Guttman e↵ect (or horseshoe
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e↵ect). Such an e↵ect may appear in the case of ordered categorical variables
when one axis confronts the smallest categories to the highest and another
axis confronts those extreme categories to the ones in between. The second
dimension (abscissa axis) confronts the youngest age groups with the eldest
age groups whereas the third dimension confronts the extreme ages with the
average age groups.
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FIGURE 2.21
Mortality data: representation of age groups on plane 2-3.

Along dimension 2, the “adult” age groups (� 15 years) are arranged
according to their “natural” order. This indicates a regular increase of the
mortality profile with age. This representation requires two further remarks:

1. The di↵erence between the two curves of the parabola stem from
the di↵erences in sample sizes; the youngest categories are generally
the rarest (and of course, in this case, this is not a criticism, as
we are talking about the number of deaths), and the origin of the
dimensions is located in the clouds’ centre of gravity (of both rows
and columns). It is e↵ectively found near to the categories with
the greatest sample size (the average life expectancy is 70.98 years,
which corresponds to the results in the graph). Another approach to
this di↵erence in sample size between young and elderly age groups
is that the latter are “automatically” closer to the average profile
as they influence it the most.

2. Furthermore, the graph clearly shows that the upper age groups are
closer to one another than those of younger adults.
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FIGURE 2.22
Mortality data: plane 2-3 with the representation of age groups and causes of
mortality with a contribution greater than 1.5% on one of the two dimensions.

We can validate this observation in the overall space by calculating the
distances between age groups in this space. The command used to obtain this
matrix, along with the matrix itself, is given below.

> res.ca=CA(death,row.sup=c(66:nrow(death)),ncp=Inf)
> round(dist(res.ca$col$coord),3)

0-1 1-4 5-14 15-24 25-34 35-44 45-54 55-64 65-74 75-84 85-94
1-4 6.818
5-14 7.221 2.069
15-24 7.965 3.656 2.008
25-34 7.611 3.263 1.874 1.840
35-44 7.495 3.241 2.118 2.694 1.250
45-54 7.480 3.322 2.352 3.166 1.944 0.874
55-64 7.483 3.354 2.428 3.329 2.171 1.175 0.412
65-74 7.480 3.346 2.428 3.374 2.249 1.343 0.767 0.445
75-84 7.480 3.342 2.445 3.410 2.312 1.496 1.073 0.827 0.422
85-94 7.486 3.351 2.485 3.449 2.373 1.619 1.282 1.094 0.754 0.380
95+ 7.505 3.390 2.562 3.508 2.463 1.766 1.491 1.355 1.098 0.807 0.474

First, this matrix illustrates the great distance between the 0 to 1 age group
and the others, as shown on the first dimension. Furthermore, it indicates
that the distance between consecutive age groups decreases steadily between
1 year and 54 years, after which it stabilises around a weak value. This is
in line with our observation on plane 2-3 concerning the age groups above 15
years (for 1 to 4 and 5 to 15 years, other dimensions, including the first, are
required to account for this specificity).
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The contributions to the constructions of dimensions and the representa-
tion qualities are as follows for the di↵erent age groups:

> round(cbind(res.ca$col$contrib[,2:5],res.ca$col$cos2[,2:5]),3)
Contributions Representation Quality (cos2)

Dim 2 Dim 3 Dim 4 Dim 5 Dim 2 Dim 3 Dim 4 Dim 5
0-1 1.060 0.146 0.015 0.599 0.005 0.000 0.000 0.000
1-4 0.711 1.031 2.089 58.057 0.083 0.065 0.032 0.523
5-14 2.659 2.375 4.075 15.458 0.401 0.193 0.081 0.180
15-24 33.216 21.793 13.518 0.920 0.684 0.242 0.037 0.001
25-34 18.946 5.357 4.207 6.381 0.771 0.118 0.023 0.020
35-44 12.049 0.074 19.113 1.596 0.759 0.003 0.159 0.008
45-54 9.017 12.762 11.460 2.453 0.498 0.380 0.083 0.010
55-64 3.585 20.883 0.002 2.923 0.227 0.713 0.000 0.014
65-74 0.038 10.562 11.896 0.471 0.005 0.690 0.190 0.004
75-84 5.439 0.719 9.790 5.097 0.573 0.041 0.136 0.042
85-94 10.447 16.309 6.272 0.298 0.492 0.414 0.039 0.001
95+ 2.832 7.988 17.564 5.747 0.253 0.385 0.207 0.040

For causes of death, contributions are sorted in descending order and the
five strongest contributions are given for dimensions 2 and 3.

> cbind(res.ca$row$contrib[,2],res.ca$row$cos2[,2],res.ca$call$marge.row)
[rev(order(res.ca$row$contrib[,2])),]

contrib cos2 Sample size in %
Road accidents 41.048 0.754 0.015
Suicides 16.250 0.818 0.019
Other cardiomyopathies 4.272 0.546 0.092
Other accidents 4.130 0.592 0.024
Events of undetermined intention 3.390 0.886 0.003

> cbind(res.ca$row$contrib[,3],res.ca$row$cos2[,3],res.ca$call$marge.row)
[rev(order(res.ca$row$contrib[,3])),]

contrib cos2 Sample size in %
Road accidents 19.199 0.190 0.015
Malignant tumour of the larynx, trachea, ... 16.503 0.818 0.048
Chronic liver disease 12.206 0.625 0.022
Other ill-defined symptoms and conditions 5.312 0.351 0.036
Other cardiomyopathies 5.071 0.349 0.092

Along the second dimension, the age groups between 15 and 44 years
account for a combined contribution of 64.211%, and is therefore the basis for
the interpretation of the results. The contributions of these three age groups
therefore support the coordinates (the three sample sizes are similar). The age
group 15–24 is the most extreme example, that we should focus our attention
in order to illustrate the dimension.

Road accidents contribute the most to this dimension (41.05%) and have
the coordinate with the highest value. This cause of death is characteristic
of young adults (high-value coordinate). This, along with its relatively high
frequency (see Figure 2.17) means that young adults account for an essential
dimension (the second of the deviation from independence (high contribution).
This can be directly illustrated using the data (see Table 2.13): the percentage
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of young people in the deaths caused by road accidents is much higher than
the percentage of young people among the overall deaths.

A similar parallel can be drawn with “homicides”, which also has a high
coordinate value indicating that it is characteristic of young adults. However,
the low frequency of this latter cause (see Figure 2.17) leads to a weak con-
tribution (1.86%): it is therefore not a typical cause of death in young adults.
Again, Table 2.13 e↵ectively illustrates the results directly from the data. In
comparison with “road accidents”, the lowest percentage for the 15–25 age
group for homicide (14.56% instead of 28.80%) fits the fact that “homicides”
is positioned closer to the centre.

The cause “suicides” is notably less characteristic of young adults (a more
central position along with the lower percentage among young adults than for
the two previous causes), however, its relatively high frequency (1.93%) means
that this cause makes an considerable contribution to the causes characterising
the deaths of young adults.

TABLE 2.13
Mortality Data: Extract of Some of the Data Concerning the Causes
Characterising Death in Young Adults; Raw Data and Frequencies

15–24 25–34 35–44 Other Total
Road accidents 4 653 2451 1841 7211 16,156
Homicides 144 199 180 466 989
Suicides 1431 2693 3280 13,003 20,407
Other 6203 9415 21,299 983,288 1,020,205

15–24 25–34 35–44 Other Total
Road accidents 0.288 0.152 0.114 0.446 1.000
Homicides 0.146 0.201 0.182 0.471 1.000
Suicides 0.070 0.132 0.161 0.637 1.000
Other 0.006 0.009 0.021 0.964 1.000

2.10.6 Projecting the Supplementary Elements

There are many possible approaches to analysing the data from 1979 and
from 2006. Thus, we can conduct a CA for each of the two tables, or for their
combined table. In this event, we chose to introduce the annual tables as
supplementary rows in the combined CA. The advantage of this approach is:
(1) that we do not conduct multiple analyses; (2) to simultaneously analyse
the two tables in an “average” framework which, has already been interpreted.

Each supplementary row is associated with a couple (cause, year), which
we shall refer to as the “annual-cause”.

Figure 2.23 illustrates the evolution of a few causes of mortality. A given
cause of death, corresponding to the combined years 1979 and 2006, is con-
nected to the supplementary points for this same cause of death in 1979 and
in 2006. There is one unique property of CA when representing multiple pro-
files and their sum: the average point (i.e., that which corresponds to the
sum) is located at the barycentre of the points for which it is the sum; in this
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case, the two points 1979 and 2006. Thus, for example, the point addiction
to prescription medication 2006 is closer to the average point than the point
addiction to prescription medication 1979. There were therefore more deaths
attributed to “addiction to prescription medication” in 2009 (189) compared
to 1979 (33). In contrast, deaths from influenza have decreased sharply (117
in 2006 compared with 1062 in 1979).
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FIGURE 2.23
Mortality data: projection of a number of supplementary elements.

Let us consider two annual causes relating to the same cause. Going
beyond their position in relation to the average point, it is above all their
distances on the plane which is informative, as they indicate an evolution of
the corresponding age profiles. The causes featured in Figure 2.23 were chosen
precisely because of the marked evolution between 1975 and 2006 in terms of
age profile. We shall briefly comment on two examples.

Addiction to Prescription Medication. The graph points to an evolution
of the age profile towards young people. This can be validated using the data
directly, by combining the ages into two groups to simplify matters:  44
years and > 44 years (the 44-year limit is suggested by the raw data). The
increase of this cause of death in young people is noticeable in terms of absolute
frequency (an increase from 13 to 167) or relative frequency (the percentage
of this cause in young people increased from 39% to 88%, see Table 2.14).

As the sample sizes are rather small, it is best to validate the relationship
between age and year using a �2 test conducted on the “Total” table at the
bottom of Figure 2.15. This yields a value of 43.913 (with a p-value equal to
3.4⇥ 10�11), which is highly significant.
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TABLE 2.14
Mortality Data: Extract of Data Relation to Addiction to
Medication

Sample size Percentage
15–44 Other Total 15–44 Other Total

79 Addiction to medication 13 20 33 0.394 0.606 1
06 Addiction to medication 167 22 189 0.394 0.606 1
Addiction to medication 180 42 222 0.811 0.189 1

Suicides. The graph suggests an evolution in the opposite direction to
that described above; thus a slight decrease in this cause in young people.
This evolution seems to be much less marked than that of the previous cause,
however, as “suicide” has a high frequency; it nonetheless merits our attention.
Table 2.15 confronts age (grouped into two categories, divided this time at 34
years, as suggested by the raw data) and year. It indicates that, between 1979
and 2006, the percentage of young people among those who commit suicide
decreased from 24.6% to 16.0%. This evolution is less spectacular than that
of addiction (the �2 calculated from the table are 0.198 for the first year and
0.011 for the second), however, due to the larger sample size, they are even
more significant (p-value less than: 2.2⇥ 10�16).

TABLE 2.15
Mortality Data: Extract of Data Relating to Suicides

Sample size Percentage
15–34 Other Total 15–34 Other Total

79 Suicides 2461 7531 9992 0.246 0.754 1.000
06 Suicides 1663 8752 10,415 0.160 0.840 1.000
Suicides 4124 16,283 20,407 0.202 0.798 1.000

Besides the “annual-causes”, the average age profile (i.e., all causes of
death combined) of each year can be introduced as supplementary. For the
years 1979 and 2006, these profiles are the row profiles of the 1979 and 2006
tables. They are used to study the evolution of the distribution of deaths
by age group in the period between the two years. Figure 2.23 shows that,
between 1979 and 2006, the average age profile has moved towards higher age
groups. This is due to: (1) the ageing population (it must not be forgotten that
the data are sample sizes and not rates); and (2) increasing life expectancy.

We have already shown that these data are actually available for every year
between 1979 and 2006, whereas only these two years were introduced in the
analysis so as not to complicate the results. However it is possible, without
complicating the analysis, to introduce the row margins for each yearly table
as supplementary rows. The graph in Figure 2.24 is obtained by repeating
the analysis with the same active elements but by introducing only the yearly
age profiles as supplementary.

The sequence over the years is surprisingly regular, showing a steady evo-
lution towards older age profiles, to such an extent that the irregularities in
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FIGURE 2.24
Mortality data: evolution of the total number of deaths by year and by age
group.

this trajectory merit our attention. For example, in 1999, the annual tra-
jectory changes direction. Although the position of a row (i.e., a year) on
the plane should be interpreted in terms of all of the columns (age groups),
Figure 2.24 illustrates a trajectory which, until 1999 moves away from the
age groups 45–54 and 55–64 years, and then no longer continues in this direc-
tion. An investigation of the evolution of deaths in the 45–64 age group (see
Figure 2.25) does indeed show a decrease until 1999–2000, and then a slight
increase after this date. This increase could well be due to the arrival in this
age group of a generation of baby boomers.

Technically, there are two ways of constructing the graph in Figure 2.24:

1. We discard the supplementary elements which do not correspond
to the total number of deaths per year between 1976 and 2006:

> res.ca$row.sup$coord <- res.ca$row.sup$coord[130:157,]
> plot.CA(res.ca,invisible=c("row","col"),axes=2:3)
> points(res.ca$row.sup$coord[,2:3],type="l")

2. We conduct another CA with only the total number of deaths per
year between 1976 and 2006 as supplementary rows. We then con-
struct another graph without the active elements using the argu-
ment invisible=c("row","col"). Thus, we visualise the supple-
mentary elements alone, and then connect the points:
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> tab.evol <- death[-(66:194),]
> res.evol <- CA(tab.evol,row.sup=66:nrow(tab.evol),graph=FALSE)
> plot.CA(res.evol,invisible=c("row","col"),axes=2:3)
> points(res.evol$row.sup$coord[,2:3],type="l")
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FIGURE 2.25
Mortality data: evolution of deaths in the 45–64 age group.

2.10.7 Conclusion

This example e↵ectively illustrates the nature of the summaries that CA can
yield from a complex table. The dimensions can highlight both specific cases
if they present specific qualities (the 0–1 year age group), and more general
phenomena.

The choice of active and supplementary elements is crucial and represents
a precise objective. There are a number of di↵erent choices to be made.
Within a period of learning new methodologies, or collecting data, the user
can confront multiple approaches. When communicating the results, the user
should then choose one of these approaches to avoid being overwhelmed. It
is thus vital to clearly specify the objective of the chosen analysis. In the
example of the tables of annual deaths, let us compare chosen methodology
(analysis of overall table and introduction of annual tables as supplementary),
with a second methodology (analysis of a juxtaposition – in a column – of the
annual tables and introduction of the overall table as supplementary).

As has already been noted, the CA of the overall table examines the rela-
tionship between the variables “cause” and “age” over the given period. The
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annual evolution of this relationship is then studied via that of the age profiles
of the causes of death. In this analysis, the evolutions which do not fit into
the overall relationship (i.e., over the whole period) cannot be illustrated.

The second approach, a CA of the juxtaposition in a column (see Fig-
ure 2.15), deals with not the overall relationship and its evolution through
that of the cause profiles. Presenting the objective this way is more pertinent
than presenting it based on the relationship between age and the variable con-
fronting cause and time, which is more formal although fundamental to CA. In
this analysis, the specific dimensions of the annual evolution (i.e., nonrelated
to the overall relationship) can be illustrated.

In addition, it must be noted that the annual table can also be brought
together in rows, showing the evolution of the age-cause relationship through
that of the death profiles for di↵erent age groups. This is suggested by a third
CA (the annual tables brought together in an active row), but also by intro-
ducing annual age groups as supplementary columns in the CA of the overall
table. This first analysis is again enhanced whilst at the same time retaining
its simplicity (due to that of the active elements) and is recommended, at
least during the first stages.

Finally, it must be noted that CA (like other multidimensional data analy-
sis methods) simply provides a way of visualising the data. This visualisation
is highly valuable and suggests interpretations that cannot be inferred from
the raw data, without disproving them. The example presented here e↵ec-
tively illustrates this quality by highlighting the overall annual evolution, but
CA tells us nothing about the evolution of the population pyramid or the
evolution of mortality rates by cause or age range. CA helped us to answer
the initial question (what is the relationship between age and causes of mor-
tality?) but in the end raises yet more questions. Users may therefore remain
hungry for further answers, but is this not symptomatic of all research?
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Multiple Correspondence Analysis (MCA)

3.1 Data — Notation — Examples

Multiple Correspondence Analysis (MCA) is not really a new mathematical
method but rather the specific application of correspondence analysis (CA) to
tables with individuals and their answers to a number of categorical variables.
It is nonetheless considered a separate method due to its unique properties
and the interesting results obtained when using it. MCA is applied to tables
with individuals in the rows and categorical variables in the columns. It is
most commonly used to analyse data obtained through surveys: in such a
context, each question corresponds to a variable and each possible answer to
the question corresponds to a category of that variable. For example, eight
possible answers (categories) are associated with the question “Which of these
categories best describes your profession?” farmer, student, manual labourer,
professional, senior management, employee, other profession, unemployed. For
each of these variables, the individual must choose one single category.

In the following example section (Section 3.9), we will detail a few appli-
cations of MCA for data which does not come from surveys.

We denote x
ij

the category chosen by the individual i for variable j, i
varies from 1 to I and j from 1 to J . We consider categorical variable j to
have K

j

categories.
This chapter will be illustrated using a survey of 300 tea drinkers. The bat-

tery of questions with which they were presented dealt with their tea-drinking
behaviour, the image they have of the product, and finally a few descrip-
tive questions. In the following analysis, tea-drinking behaviours are the only
active variables, whereas image and descriptive data are supplementary.

There are 19 questions relating to tea-drinking behaviour.

1. “What kind of tea do you drink the most (black tea, green tea,
flavoured tea)?”

2. “How do you take your tea (nothing added, with lemon, with milk,
other)?”

3. “What kind of tea do you buy (tea bags, loose tea, both)?”
4. “Do you add sugar to your tea (yes, no)?”
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5. “Where do you buy your tea (in the supermarket, in specialist shops,
both)?”

6. “What kind of tea do you buy (cheapest, supermarket brand, well-
known brand, luxury, it varies, I don’t know)?”

7. “How often do you drink tea (more than twice a day, once a day, 3
to 6 times a week, once or twice per week)?”

8–13. Six questions deal with the location in which the tea is drunk: “Do
you drink tea at home?” “Do you drink tea at work?” “Do you
drink tea in tearooms or co↵ee shops?” “Do you drink tea at friends’
houses?” “Do you drink tea in restaurants?” “Do you drink tea
in bars?” For each of these six questions, the participants were
required to answer yes or no.

14–19. Six questions deal with the time of day when the tea is drunk: “Do
you drink tea at breakfast?” “Do you drink tea in the afternoon?”
“Do you drink tea in the evening?” “Do you drink tea after lunch?”
“Do you drink tea after dinner?” “Do you drink tea throughout the
day?” For each of these six questions, the participants were required
to answer yes or no.

Twelve questions were asked about the image of the product: “Do you
consider tea to be exotic?” “Do you associate tea with spirituality?” “Is tea
good for your health?” “Is tea a diuretic?” “Do you associate tea with friend-
liness?” “Does tea stop the body from absorbing iron?” “Is tea feminine?”
“Is tea refined?” “Will tea help you to lose weight?” “Is tea a stimulant?” “Is
tea a relaxant?” “Does tea have any e↵ect on your overall health?” For each
of these 12 questions, the participants were required to answer yes or no.

Four descriptive questions were also asked: sex, professional category
(farmer, manual labourer, professional, senior management, employee, other
profession, student, unemployed), age, and whether or not the participant
regularly played sports (yes or no).

3.2 Objectives

The data may be studied according to the individuals, the variables and the
categories. This raises a certain number of questions relating to each of these
very di↵erent aspects.

3.2.1 Studying Individuals

Studying the individuals means understanding the similarities between the
individuals in terms of all the variables. In other words, to provide a typology
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of the individuals: which are the most similar (and most dissimilar) individ-
uals? Are there groups of individuals which are consistent in terms of their
similarities? In the example, two tea drinkers are considered similar if they
answered the questions in the same way.

Individuals are compared on a basis of presence–absence of the categories
which they selected. From this perspective alone, the distance between two
individuals depends entirely on their characteristics and not on those of the
other individuals. However, it is important to account for the characteristics
of the other individuals when calculating this distance.

Let us consider four examples in order to understand how the distance
between two individuals might be calculated:

1. If two individuals select the same categories, the distance which
separates should be nil.

2. If two individuals both select a lot of the same categories, they
should be close together.

3. If two individuals select all of the same categories except for one
which is selected by one of the individuals and only rarely by all of
the other individuals, they should be distanced to account for the
uniqueness of one of the two.

4. If two individuals share a rare category, they should be close to-
gether despite their di↵erences elsewhere in order to account for
their common distinctiveness.

These di↵erent examples can be used to show that the individuals must be
compared category by category whilst at the same time taking into account
the rarity or the universal nature of that category.

3.2.2 Studying the Variables and Categories

As in principal component analysis (PCA), the aim is to summarise the rela-
tionships between the variables. These relationships are either studied in pairs
(see Chapter 2 on CA) or all together. In this last case, we are looking for
synthetic variables which sum up the information contained within a number
of variables. The information carried by a variable can be studied in terms
of its categories. In MCA, we focus primarily on studying the categories,
as categories represent both variables and a group of individuals (all of the
individuals who select this category).

To study how close the categories are to one another, one must first de-
termine the distance between the categories. Thus, two categories k and k0

are each associated with a group of individuals. One way of comparing these
two categories is to count the individuals which select both categories: two
categories can therefore be said to be further away (in terms of distance),
the fewer individuals they have in common. In other words, the number of
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individuals which has either category k, or category k0 is rather high; this
number is expressed I

k 6=k

0 .
However, it is important to account for the size of each group of individ-

uals when calculating this distance. Let us consider an example with three
categories k, k0, and k00, each composed of 10, 100, and 100 individuals, respec-
tively. If categories k and k0 share no individuals, I

k 6=k

0 = 110. If categories
k and k0 share 45 individuals, I

k

0 6=k

00 = 110. However, assume that k and
k0 share 0% individuals whereas k0 and k00 share 45% individuals. Categories
k and k0 need to be further apart than categories k0 and k00. It is therefore
important to account for the sample size for each category.

3.3 Defining Distances between Individuals and
Distances between Categories

As seen above in Section 2.2 on Objectives, we focus mainly on individuals and
categories when analysing a table of individuals ⇥ categorical variables. From
a data table of individuals ⇥ variables it is therefore natural to construct an
indicator (dummy) matrix with individuals in the rows and all of the categories
for every variable in the columns. The element x

ik

of this table has a value of
1 if individual i carries category k, and 0 if it does not. This table has I ⇥K
dimensions (with K =

P
J

j=1 K
j

) and is composed entirely of 0 and 1.

3.3.1 Distances between the Individuals

By using indicator matrix along with the objectives outlined above, the dis-
tances between individuals can be calculated by adding the di↵erences between
categories, (x

ik

� x
i

0
k

)2, and counterbalanced using a function inversely pro-
portional to I

k

(with I
k

the number of individuals carrying category k). This
distance (squared) is expressed as:

d2
i,i

0 = C
KX

k=1

(x
ik

� x
i

0
k

)2

I
k

,

where C is a constant.

3.3.2 Distances between the Categories

The distance between two categories k and k0 is calculated by counting the
individuals which carry either category k or category k0 (such as I

k 6=k

0), and
counterbalancing using a function inversely proportional to I

k

and I
k

0 . This
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distance can therefore be expressed as:

d2
k,k

0 = C 0 I
k 6=k

0

I
k

I
k

0
,

where C 0 is a constant. However, according to the encoding (x
ik

= 0 or 1),
the number of individuals carrying only one of the two categories is equal to
I
k 6=k

0 =
P

I

i=1(xik
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0)2. Thus:
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In further developing this equation, we obtain:
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By using the encoding properties (x
ik

= 0 or 1 and therefore x2
ik

= x
ik

and
thus

P
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=
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), we obtain:
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The distance (squared) between two categories can therefore be expressed as:
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3.4 CA on the Indicator Matrix

3.4.1 Relationship between MCA and CA

If in the following expressions, we consider that the constant C = I/J , the
distance (squared) between two individuals i and i0 is expressed as:

d2
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0 =
I

J
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1
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When including the notations from the contingency table introduced in CA
and applied to the indicator matrix, we obtain:

f
ik

= x
ik

/(IJ),

f•k

=
IX

i=1

x
ik

/(IJ) = I
k

/(IJ),

f
i• =
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x
ik

/(IJ) = 1/I.

Here we can identify the �2 distance between the row profiles i and i0 calcu-
lated from the indicator matrix:
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Furthermore, if we assume that the constant C 0 = I, the distance (squared)
between two categories k and k0 is expressed as:
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Here we can identify the distance of �2 between the column profiles k and k0

calculated from the indicator matrix:

d2
�

2(column profile k, column profile k0) =
IX

i=1

1
f

i•

✓
f

ik

f•k

� f
ik

0

f•k

0

◆2

.

The “cautious” choice of constants C and C 0 stems from the �2 distances
of the row and column profiles thus relating back to correspondence analysis.
In terms of calculations (i.e., by the programme), MCA is therefore based on
a correspondence analysis applied to an indicator matrix.

3.4.2 The Cloud of Individuals

Once the cloud of individuals has been constructed, as in CA (creation of
profiles, distance from �2, weight = margin), it is represented using the same
principal component approach as seen previously for PCA and CA: maximis-
ing the inertia of the cloud of individuals projected onto a series of orthogonal
axes (see Section 3.6 on implementation).
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FIGURE 3.1
Tea data: plane representation of the cloud of individuals.

The graph of individuals for the first two principal components (17.99% of
the explained inertia) is provided for the tea example in Figure 3.1. As in most
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analyses of survey data, the cloud of individuals is made up of many points and
our objective is to see if we can identify a specific shape, or groups of notable
individuals. In the example, there are no notable groups of individuals: the
cloud of points is a rather consistent shape.

To illustrate the notion of distance between individuals, we shall consider
the following four individuals: 200, 262 (at the negative extremity of the
first principal component) and 265, 273 (at the positive extremity of the first
principal component). Individuals 200 and 262 (265 and 273, respectively) are
close as they share a lot of common categories. Pairs 200–262 and 265–273
are far from one another (opposed on the first axis) as they share only very
few categories (see Figure 3.2).
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FIGURE 3.2
Tea data: comparison of individuals 200, 262, 265, and 273 (light gray =
presence of the category).

As in any principal component method, the dimensions of the MCA can
be interpreted using the individuals. Individuals 265 and 273 both drink tea
regularly and at all times of day. Individuals 200 and 262 only drink tea at
home, either at breakfast or during the evening. This exploratory approach
can be tedious due to the large number of individuals, and is generalised by
studying the categories through the individuals that they represent.

3.4.3 The Cloud of Variables

The variables can be represented by calculating the correlation ratios between
the individuals’ coordinates on one component and each of the categorical
variables. If the correlation ratio between variable j and component s is close
to 1, the individuals carrying the same category (for this categorical variable)
have similar coordinates for component s. The graph of variables for the tea
example is shown in Figure 3.3.

The variables type, format, and place of purchase are closely related to
each of the first two components, although it is unclear how (this appears in
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Tea data: plane representation of the cloud of variables.

the representation of the categories). This graph is especially useful to clear
the way when faced with a large number of variables.

3.4.4 The Cloud of Categories

As with the supplementary categorical variables in PCA, the categories can
be represented at the barycentre of the individuals with those categories. This
representation is optimised as it corresponds to the representation obtained by
maximising the inertia of the cloud of categories on a sequence of orthogonal
axes by homothetic transformations (see Section 3.4.5).

The graph of categories for the tea example is shown in Figure 3.4. The
first component opposes the categories tearoom, supermarket + specialist shop,
teabag + loose, bar, restaurant, work with the categories not.with.friends,
not.work, not.restaurant, not.home. This first component thus opposes regular
tea drinkers with those who drink tea only occasionally. The second compo-
nent distinguishes the categories specialist shop, loose, luxury and, to a lesser
extent green and after dinner, from all of the other categories.

Remark
The barycentre of all of the categories for a given variable is located at the
cloud of individuals’ centre of gravity. It therefore merges with the origin of
the axes.
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Tea data: plane representation of the cloud of categories.

The inertia for a category k can be calculated from the distance (squared)
from k to the centre of gravity of the cloud of categories with coordinates of
1/I (i.e., the average vector of all of the categories):
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=
I

I
k

� 1.

This distance increases as only very few individuals have taken the category k.
It must be noted that, as in CA, the weight of a column profile corresponds

to its margin (here, I
k

/(IJ)). The inertia of category k can therefore be
expressed as:
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This formula shows that the inertia of a category increases when the cate-
gory is rare: for example, if 1% of individuals carry category k and 50% carry
category k0, the inertia associated with k will be approximately twice that of
k0. It is therefore common for the principal dimensions of the MCA to be
generated by a few rare categories. This is almost systematic if these rare cat-
egories are shared by the same individuals, which is quite common when these
categories are missing data (for example, an individual who did not reply to
several questions in a survey). As the components are constructed according
to only a few individuals, in such cases it may be preferable to eliminate these
rare categories in order to focus on the phenomena at hand. To do so, it is
possible to group together certain categories, which is quite natural, partic-
ularly in the case of sequential categories (for example, it would be possible
to group 60–75 years along with over 75 years). It is also possible to ran-
domly distribute the individuals associated with rare categories within other
categories (whilst respecting the proportions associated with each one). This
method is known in France as “ventilation” (see Section 3.7.1.2).

The inertia of all of the K
j

categories for a variable j, known as the inertia
of variable j, is equal to:

Inertia(j) =
K

jX

k=1

1
J

✓
1� I

k

I

◆
.

As
P

K

j

k=1 I
k

= I, we obtain:

Inertia(j) =
K

j

� 1
J

.

Thus, the inertia of a variable only depends on the number of categories that
make it up: it is therefore greater when this number is higher. In the example,
the variable type (which has six categories) has five times more inertia than
the variable sugar (which has two categories).

Remark
It is recommended that the questionnaires be constructed with an equal num-
ber of answers to each question (in order to have an equal number of categories
for each variable) but this is merely a recommendation and not a requirement.



138 Exploratory Multivariate Analysis by Example Using R

Indeed, in practice, if a variable has a large number of categories, these cat-
egories are shared over many di↵erent dimensions (number of dimensions =
number of categories minus 1). Therefore, this variable will not systematically
influence the construction of the principal components.

Finally, the inertia associated with all of the categories can be calculated,
and also corresponds to the inertia of the cloud of categories (N

K

):

Inertia(N
K

) =
JX

j=1

K
j

� 1
J

=
K

J
� 1.

This inertia only depends on the structure of the questionnaire, or more pre-
cisely, the average number of categories per variable. For example, if all of
the variables have the same number of categories (8j, K

j

= c), the inertia of
the cloud will be equal to c� 1.

3.4.5 Transition Relations

As in PCA or CA, transition relations link the cloud of individuals N
I

to
the cloud of categories N

K

. In the following transition formulae, obtained
by applying CA relations to indicator matrix, F

s

(i) (G
s

(k), respectively) des-
ignates the coordinate for individual i (and category k, respectively) on the
component of rank s.
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On the component of rank s, up to the multiplicative factor 1p
�

s

, the
first relationship expresses that individual i is at the centre of gravity of the
categories that it carries (as x

ik

= 0 for the categories that it does not carry).
On the component of rank s, up to the multiplicative factor 1p

�

s

, the
second relationship expresses that category k is at the centre of gravity of the
individuals that carry it.

As the categories correspond to groups of individuals, it seems logical to
represent them on the graph of individuals. The transition relations show
that two representations are possible: to draw the categories at the centre of
gravity of the individuals, or to draw the individuals at the centre of grav-
ity of the categories. Both of these graphs are interesting but, as in CA, it
is impossible to obtain both of these properties simultaneously. To compro-
mise, we therefore construct a graph as follows: the graph of individuals is
constructed, and we then position the categories by multiplying their coor-
dinates on the component of rank s by the

p
�

s

coe�cient (see Figure 3.5).
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As a result, the cloud of categories is reduced by a di↵erent coe�cient for
each component. This graph means we can avoid having all of the categories
concentrated around the centre of the diagram. It should, however, be noted
that most often we refer quickly to the shape of the cloud of individuals (most
of the time the individuals are anonymous), prior to interpreting the cloud of
categories in detail.
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FIGURE 3.5
Tea data: plane representation of the cloud of individuals (grey points) and
categories.

The second transition relation meets the objective fixed in Section 3.2.2:
two categories are similar if they are carried by the same individuals. It also
suggests one way of interpreting this proximity between two categories when
they belong to the same variable. In this case, both categories cannot be cho-
sen by one individual (limited choice) thus distancing them from one another
by design. However, as each category represents a group of individuals, two
groups of individuals can be close if they have the same profiles elsewhere.
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In the example, the categories supermarket brand and well-known brand
associated with the question “What type of tea do you buy (cheapest, su-
permarket brand, well-known brand, luxury, it varies, I don’t know)?” are
represented side by side (see Figure 3.4). In fact, these two categories group
together consumers with similar profiles: they both tend to buy tea in super-
markets rather than in specialist shops, to drink tea in teabags, and to add
sugar to their tea (see Table 3.1). The influence of all of these variables brings
these two categories closer together, and this multidimensional approach pre-
vails over the exclusive nature of the responses to each question.

TABLE 3.1
Tea Data: Comparison of Consumers Buying Well-Known Brands (and
Supermarket Brands, Respectively) with the Average Profile

Well-known Supermarket Overall
brand brand

Place of purchase=supermarket 86.32% 95.24% 64.00%
Format=tea bag 73.68% 76.19% 56.67%
Sugar=yes 52.63% 61.90% 48.33%
Format=tea bag+loose 21.05% 19.05% 31.33%
Place of purchase=specialist shop 2.11% 0.00% 10.00%
Place of purchase=supermarket+specialist 11.58% 4.76% 26.00%

Note: 86.32% (95.24%, respectively) of consumers who purchase well-known brands (and
supermarket brands, respectively) buy tea in supermarkets compared with 64% for all
participants.

3.5 Interpreting the Data

3.5.1 Numerical Indicators

3.5.1.1 Percentage of Inertia Associated with a Component

The percentage of inertia associated with a component is calculated in the
same way as for any principal component method (see Section 1.6.1.1). In
MCA, the percentages of inertia associated with the first components are gen-
erally much lower than in PCA. This is because, in PCA, only the linear
relationships are studied: one single component should be su�cient to repre-
sent all of the variables if they are highly correlated. In MCA, we are studying
much more general relationships and at least min(K

j

, K
l

)� 1 dimensions are
required in order to represent the relationship between two variables, each
of which has K

j

and K
l

categories, respectively. It is therefore common for
many more dimensions to be studied in MCA than in PCA.

In the example, 17.99% of the data are represented by the first two com-
ponents (9.88% + 8.10% = 17.99%). It can be seen (Table 3.2 or Figure 3.6)
that there is a steady decrease in eigenvalues. Here we shall analyse only the
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first two components, even if it might also be interesting to examine the next
components.

TABLE 3.2
Tea Data: Decomposition of Variability for the
First 10 Components

Eigenvalue Percentage Total percentage
of inertia of inertia

Dim 1 0.15 9.88 9.88
Dim 2 0.12 8.10 17.99
Dim 3 0.09 6.00 23.99
Dim 4 0.08 5.20 29.19
Dim 5 0.07 4.92 34.11
Dim 6 0.07 4.76 38.87
Dim 7 0.07 4.52 43.39
Dim 8 0.07 4.36 47.74
Dim 9 0.06 4.12 51.87
Dim 10 0.06 3.90 55.77
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FIGURE 3.6
Tea data: chart of eigenvalues.

3.5.1.2 Contribution and Representation Quality of an Individual
or Category

The calculations and interpretations for both contribution and representation
quality for individuals and categories are the same as in CA. However, due to
the scale of the dataset, representation quality on a given plane is often much
weaker compared to the representation qualities obtained in CA (or PCA).
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The larger scale of the dataset does not a↵ect contribution, as this aspect
is calculated for each component. It should be noted that the contribution
of a categorical variable to a given component can be calculated by adding
the contributions to these categories. The contribution (to the component of
rank s) of a categorical variable divided by J�

s

is equal to the correlation
between the principal component and the categorical variable. In PCA, the
vector of the coordinates for the individuals on the component of rank s is
referred to as the principal component; this concept is transferred directly
into MCA.

3.5.2 Supplementary Elements

As in PCA, supplementary elements may be individuals or categorical and/or
quantitative variables.

For a supplementary individual i0 and a supplementary category k0, the
transition formulae are expressed as:
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These transition formulae are identical to those of the active elements
(individuals and categories). In the example (see Figure 3.7), the categories
of the variables relating to the image of tea can be projected. These categories
are at the centre of the graph, which shows that it will be rather di�cult to
connect, on the one hand, the behavioural variables with, on the other, the
image and descriptive variables.

The quantitative supplementary variables are represented in the same way
as in PCA (see Section 1.6.2): on a correlation circle using correlation coe�-
cients between the variable and the principal components. In the example, the
correlation circle (see Figure 3.8) is used to represent the quantitative variable
age. This variable is not well represented, however the correlation with the
second principal component (0.204) is significant due to the great number of
individuals. Young people are less likely to buy their tea in specialist shops.
It can therefore also be said that older people are more likely to buy luxury
loose tea in specialist shops.

Remark
The variable age was divided into categories: (15–24 years, 25–34 years, 35–
44 years, 45–59 years, 60 years and over) and is represented as a categorical
supplementary variable. This division may help us to highlight nonlinear re-
lationships. If we “zoom in” on the supplementary categories (see Figure 3.9),
we can see that the categories of the variable age are arranged in their natural
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FIGURE 3.7
Tea data: representation of active and supplementary categories.

order along the second component (see Figure 3.9). This supports the positive
correlation between the variable age and the second principal component.

3.5.3 Automatic Description of the Components

In the same way as in PCA (see Section 1.6.3), the components provided by
MCA can be described automatically by all of the variables, be they quanti-
tative or categorical (in this case we also use the categories), active or supple-
mentary.

In the example (see Table 3.3), the first component is characterised by the
variables place of purchase, tearoom, and so forth. In addition, we can see that
certain supplementary variables are also related to this component (sex and
friendliness). Since most variables have two categories, characterisation by
category (see Table 3.4) is similar to that calculated from the variables, but
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FIGURE 3.8
Tea data: representation of the supplementary variable age.

specifies the direction of the component: for example, the coordinate tearoom
is positive whereas the coordinate not tearoom is negative. Individuals with
more positive coordinates would therefore be more likely to go to tearooms.

TABLE 3.3
Tea Data: Description of the First Dimension by
Categorical Variables (Object $‘Dim 1‘$quali)

R2 P-value
Place of purchase 0.4180 1.26e-35
Tearoom 0.3720 6.08e-32
Format 0.2990 1.27e-23
Friends 0.2430 8.62e-20
Restaurant 0.2260 2.32e-18
Afternoon tea 0.1920 1.65e-15
Type 0.2160 4.05e-14
Pub 0.1470 5.85e-12
Work 0.1120 3.00e-09
How 0.1030 4.80e-07
Variety 0.0895 8.97e-07
After lunch 0.0746 1.57e-06
Frequency 0.0944 1.85e-06
Friendliness 0.0713 2.71e-06
Evening 0.0531 5.59e-05
Anytime 0.0448 2.22e-04
Sex 0.0334 1.49e-03
After dinner 0.0329 1.61e-03
Breakfast 0.0254 5.67e-03
Sugar 0.0153 3.23e-02
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FIGURE 3.9
Tea data: representation of supplementary categories.

3.6 Implementation with FactoMineR

In this section, we shall illustrate how to conduct an MCA using FactoMineR

and how to retrieve the results obtained from the tea dataset.

> library(FactoMineR)
> tea <- read.table("http://factominer.free.fr/book/tea.csv",header=T,sep=";")
> summary(tea)

The MCA is obtained by specifying that, in this case, variable 22 is quan-
titative supplementary and variables 19 to 21 and 23 to 36 are categorical
supplementary:

> res.mca<-MCA(tea,quanti.sup=22,quali.sup=c(19:21,23:36))

This command executes the MCA and produces the graph of variables
(with both active and supplementary variables, see Figure 3.3), the graph of
individuals (featuring the individuals and the categories for the active and
supplementary variables, see Figure 3.5) as well as the graph of quantitative

http://factominer.free.fr/book/death.csv
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TABLE 3.4
Tea Data: Description of the First Dimension by
Overexpressed Categories (Object $‘Dim 1‘$category)

Estimate P-value
Tearoom 0.2970 6.08e-32
Supermarket and specialist 0.3390 6.34e-23
Friends 0.2000 8.62e-20
Restaurant 0.2080 2.32e-18
Afternoon tea 0.1700 1.65e-15
Tea bag+loose 0.2350 2.72e-12
Pub 0.1810 5.85e-12
Work 0.1420 3.00e-09
Varies 0.2760 1.20e-07
After lunch 0.1490 1.57e-06
Friendliness 0.1300 2.71e-06
Other 0.3820 3.27e-06
Evening 0.0935 5.59e-05
Flavoured 0.1220 1.18e-04
More than 2/day 0.1490 1.30e-04
Anytime 0.0858 2.22e-04
Luxury 0.1710 7.32e-04
Black 0.1240 8.90e-04
Female 0.0716 1.49e-03
Not after dinner 0.1370 1.61e-03
Breakfast 0.0614 5.67e-03
Senior management 0.1680 6.09e-03
Not sugar 0.0476 3.23e-02

supplementary variables (see Figure 3.8). To construct a graph which features
only certain specific elements, the function plot.MCA is used. The following
commands are used to retrieve the graph of individuals (see Figure 3.1), along
with those of active categories (see Figure 3.4), of superimposed representa-
tions (see Figure 3.5), of active and supplementary categories (see Figure 3.7),
and of supplementary categories (see Figure 3.9):

> plot(res.mca,invisible=c("var","quali.sup"),cex=0.7)
> plot(res.mca,invisible=c("ind","quali.sup"))
> plot(res.mca,invisible="quali.sup")
> plot(res.mca,invisible="ind")
> plot(res.mca,invisible=c("ind","var"))

The table of eigenvalues (see Figure 3.6):

> round(res.mca$eig,2)
> lapply(dimdesc(res.mca),lapply,round,4)

The command dimdesc leads to an automatic description of the dimensions
by the categorical variables (see Table 3.3) or the categories (see Table 3.4).
The function lapply is only used to round data within a list (in this case within
a list of lists!):

> lapply(dimdesc(res.mca),lapply,signif,3)

Additional Details. Confidence ellipses can be drawn around the cat-
egories of a categorical variable (i.e., around the barycentre of the individu-
als carrying that category), according to the same principle as that detailed
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for PCA (see Section 3.6). These ellipses are adapted to given plane repre-
sentations and are used to visualise whether two categories are significantly
di↵erent or not. It is possible to construct confidence ellipses for all of the
categories for a number of categorical variables using the function plotellipses
(see Figure 3.10):

> plotellipses(res.mca,keepvar=c("restaurant","place.of.purchase",
"relaxant","profession"))
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FIGURE 3.10
Tea data: representation of confidence ellipses for a few variables.

It is also possible to construct confidence ellipses for the categories of
a single categorical variable. To do so, we reuse the instructions from the
function plot.PCA: we conduct a nonstandardised PCA on the elements of
the MCA (which yields the same results as the MCA), and then reconstruct
a PCA graph with confidence ellipses (see Figure 3.11):

> res.mca <- MCA(tea,quanti.sup=22,quali.sup=c(19:21,23:36),graph=FALSE)
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> new.data <- cbind.data.frame(tea[,11],res.mca$ind$coord)
> res.pca <- PCA(new.data,quali.sup=1,scale=FALSE,graph=FALSE)
> res.pca$eig[1:5,]=res.mca$eig[1:5,]
> concat.data <- cbind.data.frame(tea[,11],res.mca$ind$coord)
> ellipse.coord <- coord.ellipse(concat.data,bary=TRUE)
> plot.PCA(res.pca,habillage=1,ellipse=ellipse.coord,cex=0.8,label="none")
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FIGURE 3.11
Tea data: representation of confidence ellipses around the categories of the
variable Restaurant.

3.7 Addendum

3.7.1 Analysing a Survey

3.7.1.1 Designing a Questionnaire: Choice of Format

When writing a questionnaire, researchers often want to use multiple choice
questions. By design, these questions can yield a di↵erent number of responses
to each question depending on the participant. In the example, the question
originally posed regarding the image of tea was: “Which of the following words
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would you associate with the image of tea?” Participants can therefore choose
from the following list: exotic, spiritual, good for you, diuretic, friendliness,
absorb iron, feminine, refined, slimming, stimulant, relaxant, no e↵ect on
health. To use this information, each word is e↵ectively considered as a binary
question (“Do you consider tea to be exotic? yes/no”). This multiple choice
question therefore becomes 12 binary questions. In terms of the data table,
we would therefore have one column (one variable) per word.

It is also possible to process data collected using open-ended questions,
that is, for which there are no proposed answers. In the example, tea drinkers
answered the following question: “Why do you drink tea?” In this example,
the words used were listed and those which were frequency cited were selected.
From this list, binary questions were created for each word. If the participant
cited the word, we attributed the category yes, and if not, we attributed
no. The open question is therefore processed in the same way as the other
binary questions. This approach can give rise to a great number of binary
variables and therefore lead to the individuals being represented in larger
spaces. Among other things, the category yes for these variables generally has
a very low frequency, and introducing them as active variables is only very
rarely satisfactory. In a case such as this, it may prove interesting to group
the words together according to meaning (lemmatisation, see Section 2.7). It
is preferable, however, not to use too many open questions.

When we wish to consider a quantitative variable as active, it is possible to
recode this variable into categories in order to make it categorical. There are a
number of di↵erent choices in terms of recoding: categories with equal-width
bins, categories with equal-count bins, categories according to naturally oc-
curring divisions (these divisions can be visualised on a histogram or obtained
automatically using a clustering method, see Section 4.10).

In the case of questions being conditioned by the answers to a previous
question j (known as overlapping questions), one way of analysing the data
is to consider each of the subpopulations brought about by each category of
j. In the example, the question “Do you drink tea?” divided our participants
in half and we were only interested in tea drinkers. If we had studied all of
our participants, the first components of the MCA would simply have opposed
tea drinkers and non-tea drinkers, insomuch as non-tea drinkers systematically
answer no to the di↵erent locations, di↵erent times of day, and so forth. It is
therefore preferable to limit the number of these types of questions.

It must finally be noted that the number of categories can di↵er from
one variable to the next: those variables which have more categories have
greater inertia, but this inertia is shared over a greater number of components.
Therefore, the first dimensions will be made up of those variables with very
few categories, and those with many.
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3.7.1.2 Accounting for Rare Categories

When certain variables admit categories with small sample sizes, there are a
number of ways to ensure that these categories do not have too much influence
on the analysis.

• Naturally grouping certain categories. This solution is recommended for
sequential categories: for example grouping the categories 70–85 years and
85 years and over.

• Ventilation. The concept of ventilation is to randomly attribute those in-
dividuals associated with rare categories to other categories. To do so, the
proportions of the other categories are calculated and used when attributing
those individuals with rare categories.

• Elimination of individuals with rare categories. This solution should be
avoided wherever possible. It should only be used if all of the rare categories
are due to a very small number of individuals (situation which sometimes
occurs when questions remain unanswered).

3.7.2 Description of a Categorical Variable or a
Subpopulation

Multidimensional analysis is often supplemented by univariate analyses which
are used to characterise a number of specific variables. We shall here focus
on describing a specific categorical variable as well as groups of individuals
defined by the categories of this variable. To do so, we can use quantitative
variables, categorical variables, or the categories of categorical variables.

For example, we shall here describe the variable type in detail (cheapest,
luxury, supermarket, etc.); one interesting feature of this variable is that it
has more than two categories. The results of the catdes function applied to
the variable type are detailed as follows:

> catdes(tea,num.var=18)

3.7.2.1 Description of a Categorical Variable by a Categorical
Variable

To evaluate the relationship between the categorical variable we are inter-
ested in (type), and another categorical variable, we can conduct a �2 test.
The smaller the p-value associated with the �2 test, the more questionable
the independence hypothesis, and the more the categorical variable charac-
terises the variable type. The categorical variables can therefore be sorted in
ascending order of p-value. In the example (see Table 3.5), the variable place
of purchase is the most closely related to the variable type.
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TABLE 3.5
Tea Data: Description of the Variable Type by
the Categorical Variables (Object $test.chi2)

P-value Df
Place of purchase 1.1096e-18 10
Format 8.4420e-11 10
Tearoom 1.6729e-03 5
Friends 4.2716e-02 5
Slimming 4.3292e-02 5
Variety 4.9635e-02 10

3.7.2.2 Description of a Subpopulation (or a Category) by a
Quantitative Variable

For each category of the categorical variable type and for each quantitative
variable (denoted X), the v-test (a test-value) is calculated as follows:

v-test =
x̄

q

� x̄r
s

2

I

q

⇣
I�I

q

I�1

⌘ ,

where x̄
q

is the average of variable X for the individuals of category q, x̄ is
the average of X for all of the individuals, and I

q

is the number of individuals
carrying the category q. This value is used to test the following null hypothesis:
the values of X for the individuals who chose the category q are selected at
random from all of the possible values of X. We therefore consider the random
variable X̄

q

, average of the individuals for category q. Its expected value and
variance are:

E(X̄
q

) = x̄ and V(X̄
q

) =
s2

I
q

⇥ I � I
q

I � 1
.

The v-test can therefore be considered a “standardised” deviation between
the mean of those individuals with the category q and the general average.
Among other things, we can attribute a probability to the v-test. If, among
the participants, X is normally distributed according to the null hypothesis,
the X̄

q

distribution is as follows:

X̄
q

= N
 

x̄,
sp
I
q

r
I � I

q

I � 1

!
.

If X is not normally distributed, we can still use normal distribution as an
approximate distribution for X̄

q

. We consider the v-test as a statistic of the
test for H0 (“the average of X for category q is equal to the general average”,
or in other words, “variable X does not characterise category q”) and can
therefore calculate a p-value.

Remark
When categories stem from a clustering: this test can only be applied satis-
factorily to supplementary variables (i.e., which were not used to determine
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the categories), but they are also calculated for the active variables for infor-
mation.

As the p-value provides an indication of the “significance” of a given de-
viation, it makes sense to organise the quantitative variables in descending
order of v-test by limiting oneself to p-values less than 5%.

In the example (see below), the only category to be characterised by a
quantitative variable is t luxury. This category is characterised by individuals
of above-average age as the v-test is positive. The average age of those who
buy in this class is 43.4 years whereas the average overall age is 37.1 years.
The standard deviations are provided for both the class (16.9) and the overall
population (16.8).
> catdes(tea,num.var=18)
$quanti$cheapest
NULL

$quanti$known.brand
NULL

$quanti$luxury
v.test Mean in category Overall mean sd in category Overall sd p.value

age 3.02 43.4 37.1 16.9 16.8 0.00256

$quanti$shop.brand
NULL

$quanti$unknown
NULL

$quanti$varies
NULL

3.7.2.3 Description of a Subpopulation (or a Category) by the
Categories of a Categorical Variable

The description of a categorical variable can be refined by studying the rela-
tionships between categories. We thus characterise each of the categories of
the variable we are interested in (variable type) by using the categories of the
categorical variables.

These calculations are illustrated using first the variable place of purchase
and second the contingency table for the variables type and place of purchase
(see Table 3.6).

Let us examine the category luxury and consider the variable place of
purchase which has three categories: supermarket, supermarket+specialist and
specialist shop. We shall look more closely at specialist shop (see Table 3.7.2.3).
The following question is raised: “Is the category luxury characterised by the
category specialist shop?” The objective is to calculate the proportion of
individuals who buy their tea in a specialist shop out of those who buy luxury
tea I

qt

/I
q

from the overall percentage of individuals who buy their tea in
specialist shops I

t

/I.
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TABLE 3.6
Tea Data: Contingency Table for the Variables Type and Place of
Purchase

Supermarket Supermarket and Specialist Specialist Total
Cheapest 6 1 0 7
Luxury 12 20 21 53
Unknown 10 1 1 12
Famous brand 82 11 2 95
Shop brand 20 1 0 21
Varies 62 44 6 112
Total 192 78 30 300

Specialist shop Other Total
Luxury Iqt = 21 32 Iq = 53
Other 9 238 247
Total It = 30 270 I = 300

These two proportions are equal under the null hypothesis of independence:

I
qt

I
q

=
I
t

I
.

I
q

individuals are randomly selected (those with the category we are interested
in luxury) among I (the total population). We shall focus on the random
variable X equal to the number I

qt

of occurrences of individuals which have
the characteristic that is being studied (purchased in a specialist shop), while
it must be remembered that their sample size within the population is I

t

.
Under the null hypothesis, the random variable X follows the hypergeometric
distribution H(I, I

t

, I
q

). The probability of having a more extreme value than
the observed value can therefore be calculated. For each category of the
variable being studied, each of the categories of the characterising categorical
variables can be sorted in ascending order of p-value.

The first row of Table 3.7 indicates that 70% (21/30; see Table 3.6 or the
extract) of the individuals who buy their tea in specialist shops also belong
to the class luxury ; 39.6% (21/53; see Table 3.6) of the individuals from the
class luxury purchase their tea in specialist shops; 10% (30/300; see Table 3.6)
of the participants purchase their tea in specialist shops. The p-value of the
test (1.58e-11) is provided along with the associated v-test (6.64). The v-test
here corresponds to the quantile of the normal distribution which is associated
with p-value; the sign indicates an over- or underrepresentation (Lebart et al.,
2006).

The categories of all the categorical variables are organised from most to
least characteristic when the category is overrepresented in the given class
(i.e., the category in question) compared to the other categories (the v-test is
therefore positive), and from least characteristic to most when the category
is underrepresented in the class (and the v-test is therefore negative). The
individuals who buy luxury tea are most significantly characterised by the
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TABLE 3.7
Tea Data: Description of the Category Luxury of the Variable Type by the
Categories of the Categorical Variables (Object $category$luxury)

Cla/Mod Mod/Cla Global P-value V-test
Place.of.purchase=specialist.shop 70.00 39.6 10.0 3.16e-11 6.64
Format=loose 55.60 37.7 12.0 5.59e-08 5.43
Variety=black 28.40 39.6 24.7 1.15e-02 2.53
Age Q=60 and + 31.60 22.6 12.7 3.76e-02 2.08
No.e↵ect.health=no.e↵ect.health 27.30 34.0 22.0 3.81e-02 2.07
No.e↵ect.health=not.without.e↵ect 15.00 66.0 78.0 3.81e-02 -2.07
Variety=flavoured 12.40 45.3 64.3 2.86e-03 -2.98
Age Q=15-24 7.61 13.2 30.7 2.48e-03 -3.03
Format=sachet 8.24 26.4 56.7 1.90e-06 -4.76
Place.of.purchase=supermarket 6.25 22.6 64.0 2.62e-11 -6.67

fact that they do not buy tea in supermarkets (the v-test for supermarkets is
negative, and has the highest absolute value).

3.7.3 The Burt Table

A Burt table is a square table of K⇥K dimensions, where each row and each
column correspond to one of the categories K of the set of variables. In the
cell (k, k0) we observe the number of individuals who carry both categories k
and k0. This table is an extension of the contingency table where there are
more than two categorical variables: it juxtaposes all of the information from
the contingency table of variables taken as pairs (in rows and columns).

A correspondence analysis of this table is used to represent the categories.
As this table is symmetrical, the representation of the cloud of row profiles
is identical to that of the cloud of column profiles (only one of the two rep-
resentations is therefore retained). This representation is very similar to the
representation of the categories as provided by MCA and demonstrates the
collinearity of the principal components of the same rank. However, the in-
ertias associated with each component di↵er by a coe�cient of �

s

. When �
s

is the inertia of s for the MCA, the inertia of component s for a CA of the
Burt table will be �2

s

. It can be observed that the percentages of inertia asso-
ciated with the first components of the CA of the Burt table are higher than
the percentages of inertia associated with the first components of the MCA
alone. In the example, the percentages of inertia associated with the first two
components of the MCA are worth 9.88% and 8.10% respectively, compared
with 20.73% and 14.11% for those of the CA.

The Burt table is therefore useful in terms of data storage. Rather than
conserving the complete table of individuals ⇥ variables, it is in fact su�-
cient to construct a Burt table containing the same information in terms of
associations between categories, which are considered in pairs with a view to
conducting the principal component method. When dealing with a very large
number of individuals, the individual responses are often ignored in favour of
the associations between categories.
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3.8 Example: The Survey on the Perception of
Genetically Modified Organisms

3.8.1 Data Description — Issues

The French, and indeed many people worldwide, are worried about geneti-
cally modified organisms (GMOs). On 5 February 2008, these worries were
heightened by the announcement by the French agricultural minister, Michel
Barnier, that “from 2008” the testing of GMO would again take place in open
fields, thus going back on the agreements made at the Environmental Confer-
ence. The same year, a trial began against the faucheurs volontaires (GMO
crop saboteurs) who, the previous year, had destroyed a field of GMO corn
grown by Monsanto, a company specialising in agricultural biotechnology.

In light of this situation, two Agrocampus students conducted a study
with 135 participants in order to get an overall impression of people’s views
of GMO. Participants were asked to answer a set of 21 closed questions which
were subdivided into two groups.

The first group was made up of 16 questions directly linked to the partic-
ipants’ opinion of GMO:

1. “Do you feel implicated in the debate about GMO (a lot, to a certain
extent, a little, not at all)?”

2. “What is your view of GMO cultivation in France (very favourable,
favourable, somewhat against, totally opposed)?”

3. “What do you think of the inclusion of GM raw materials in prod-
ucts for human consumption (very favourable, favourable, some-
what against, totally opposed)?”

4. “What do you think of the inclusion of GM raw materials in prod-
ucts to be fed to animals (very favourable, favourable, somewhat
against, totally opposed)?”

5. “Have you ever taken part in an anti-GMO protest (Yes/No)?”
6. “Do you think the media communicate enough information about

GMO (Yes/No)?”
7. “Do you take it upon yourself to find out more information about

GMO (Yes/No)?”
8. “Do you think that GMO might enable us to reduce the use of

fungicides (Yes/No)?”
9. “Do you think that GMO might enable us to reduce the problems

of hunger in the world (Yes/No)?”
10. “Do you think that the use of GMO might help to improve farmers’

lives (Yes/No)?”
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11. “Do you think that GMO might lead to future scientific advances
(Yes/No)?”

12. “Do you think that GMO represent a danger to our health (Yes/No)?”
13. “Do you think that GMO represent a possible danger to the envi-

ronment (Yes/No)?”
14. “Do you think that GMO represent a financial risk for farmers

(Yes/No)?”
15. “Do you think that GMO are a useless scientific practice (Yes/No)?”
16. “Do you think our grandparents’ generation had a healthier diet

than us (Yes/No)?”

The second group was made up of five descriptive variables:

1. Sex (male, female)
2. Professional status (farmer, student, manual labourer, senior man-

agement, civil servant, accredited professional, technician, retailer,
other profession, unemployed, retired)

3. Age (–25 years, 25–40 years, 40–60 years, +60 years)
4. “Is your profession or education in any way linked to agriculture,

the food industry or the pharmaceutical industry (Yes/No)?”
5. “Which political movement do you most adhere to (extreme left,

green, left, liberal, right, extreme right)?”

Using this questionnaire we wanted, on the one hand, to characterise our
participants in terms of their relationship with GMO; and on the other hand,
to see if this characterisation has any relation with the descriptive variables.
The question “Is your profession or education in any way linked to agricul-
ture, the food industry or the pharmaceutical industry?” is important when
interpreting the results as it is probable that those people who answer yes to
this question might have greater scientific knowledge of GMO than the other
participants.

The first thing to do is to construct frequency tables for the questions
to observe how the responses to each question are distributed. To do so, the
following line of code is used to yield the sample sizes for each of the categories
of the first 16 variables:

> gmo <- read.table("http://factominer.free.fr/book/gmo.csv",
header=TRUE,sep=";",dec=".",row.names=1)

> summary(gmo[,1:16])
Implicated Position.Culture Position.Al.H
A little :31 Favourable :45 Favourable :37
A lot :36 Somewhat Against:54 Somewhat Against:47
Certain extent:53 Totally opposed :33 Totally opposed :50
Not at all :15 Very Favourable : 3 Very Favourable : 1

http://factominer.free.fr/book/gmo.csv


Multiple Correspondence Analysis 157

Position.Al.A Protest Media.Passive Info.Active
Favourable :44 No :122 No :78 No :82
Somewhat Against:39 Yes: 13 Yes:57 Yes:53
Totally opposed :44
Very Favourable : 8

Phytosanitary.products Hunger Animal.feed Future.Progress Danger Threat
No :56 No :67 No :93 No :54 No :39 No :48
Yes:79 Yes:68 Yes:42 Yes:81 Yes:96 Yes:87

Finan.risk Useless.practice Grandparents
No :67 No :123 No :49
Yes:68 Yes: 12 Yes:86

The summary of the active dataset led us to group together certain cat-
egories due to their limited number (see Section 3.7.1.2). In answer to the
question “What do you think of the inclusion of GM raw materials in prod-
ucts for human consumption?” for example, only one person responded very
favourable. As a result, this category thus has an extremely small sample size
and therefore it is preferable to group it together with another category. In
this particular case, it is relatively easy to group the category with another
as the variable concerned is made up of sequential categories: it would not be
considered unreasonable to replace very favourable with favourable. To do so,
the following line of code is used to group the categories very favourable and
favourable together to form one category favourable:

> levels(gmo$Position.Al.H)[4] <- levels(gmo$Position.Al.H)[1]

Similarly, for the question “What is your view of GMO cultivation in
France?” we group the categories very favourable and favourable together to
form one category favourable.

> levels(gmo$Position.Culture) <- c("Favourable","Somewhat Against",
"Totally opposed","Favourable")

Once the categories have been recoded, the summary of the dataset is as
follows:

> summary(gmo[,1:16])
Implicated Position.Culture Position.Al.H

A little :31 Favourable :48 Favourable :37
A lot :36 Somewhat Against:54 Somewhat Against:47
Certain extent:53 Totally opposed :33 Totally opposed :50
Not at all :15 Very Favourable : 1

Position.Al.A Protest Media.Passive Info.Active
Favourable :44 No :122 No :78 No :82
Somewhat Against:39 Yes: 13 Yes:57 Yes:53
Totally opposed :44
Very Favourable : 8

Phytosanitary.products Hunger Animal.feed Future.Progress Danger Threat
No :56 No :67 No :93 No :54 No :39 No :48
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Yes:79 Yes:68 Yes:42 Yes:81 Yes:96 Yes:87

Finan.risk Useless.practice Grandparents
No :67 No :123 No :49
Yes:68 Yes: 12 Yes:86

Generally speaking, when the categories of a given question are unremark-
able (if there is no relationship between them), the category that is rarely used
can be replaced by another chosen at random from the remaining, frequently
used categories.

The following line of code yields the frequency tables for the descriptive
variables:

> summary(gmo[,17:21],maxsum=Inf)
Sex Age Profession Relation Political.Party
F:71 [26; 40]:24 Accredited Prof : 3 No :79 Extreme left: 9
H:64 [41; 60]:24 Civil Servant : 9 Yes:56 Greens : 7

< 25 :73 Manual Laborour : 1 Left :47
> 60 :14 Other : 9 Liberal :32

Retailer : 3 Right :40
Retired :14
Senior Management:17
Student :69
Technician : 6
Unemployed : 4

The following section will show that it is not necessary to group together
the categories for these data.

3.8.2 Analysis Parameters and Implementation with
FactoMineR

In light of the objectives outlined in Section 3.1, it is natural to describe the
individuals according to their responses to the first 16 questions; those relating
to their opinion of GMO. The first 16 questions will therefore be considered
active variables, and the next 5 questions as illustrative variables. By design,
the illustrative variables do not contribute to the construction of the princi-
pal components and likewise for their associated categories. Therefore, it is
unnecessary to group together the rarer categories.

The following line of code is used to conduct such an analysis:

> res <- MCA(gmo,ncp=5,quali.sup=17:21,graph=FALSE)
> res
**Results of the Multiple Correspondence Analysis (MCA)**
The analysis was performed on 135 individuals, described by 21 variables
*The results are available in the following objects:

name description
1 "$eig" "eigenvalues"
2 "$var" "results for the variables"
3 "$var$coord" "category coordinates"
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4 "$var$cos2" "cos2 for the categories"
5 "$var$contrib" "contributions of the categories"
6 "$var$v.test" "v-test for the categories"
7 "$ind" "results for the individuals"
8 "$ind$coord" "individuals’ coordinates"
9 "$ind$cos2" "cos2 for the individuals"
10 "$ind$contrib" "contributions of the individuals"
11 "$quali.sup" "results for the supplementary categorical variables"
12 "$quali.sup$coord" "coord. for the supplementary categories"
13 "$quali.sup$cos2" "cos2 for the supplementary categories"
14 "$quali.sup$v.test" "v-test for the supplementary categories"
15 "$call" "intermediate results"
16 "$call$marge.col" "weights of columns"
17 "$call$marge.li" "weights of rows"

It is also possible to group the categories automatically using ventilation,
as described in Section 3.7.1.2. This distribution is random or accounts for
the order of the categories within a variable if the variable is ordered (ordered
in R). To automatically group the categories, the following line of code can be
used:
> res <- MCA(gmo,ncp=5,quali.sup=17:21,graph=FALSE,level.ventil=0.05)

where level.ventil designates the threshold below which a category is ven-
tilated. In the example, if a category is selected by less than 5% of individuals,
they are distributed among the existing categories.

3.8.3 Analysing the First Plane

To visualise the cloud of individuals, the following line of code is used:
> plot.MCA(res,invisible=c("var","quali.sup"),label=FALSE)

The cloud of individuals on the first plane (see left graph, Figure 3.12) is
shaped like a parabola: this is known as the Guttman e↵ect (or horseshoe
e↵ect). This e↵ect illustrates the redundancy of the active variables, or in
other words, a cloud of individuals that is highly structured according to the
first principal component. In the example, this is represented, on the one
hand, by two extreme positions relating to GMO distributed on both sides of
the first principal component; and on the other hand, by a more moderate
position, situated along the length of the second principal component. No
further conclusions can be drawn by simply looking at the cloud of individuals,
which must be interpreted in conjunction with the cloud of categories.

To visualise the cloud of individuals, the following line of code is used:
> plot.MCA(res,invisible=c("ind","quali.sup"),label=FALSE)

In the same way as the cloud of individuals, the shape of the cloud of
categories on the first plane (see right graph, Figure 3.12 or Figure 3.13)
resembles a parabola, and thus still represents a Guttman e↵ect.

To interpret the principal component, it is essential to represent them in
association with their labels, which is done using the following line of code:
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FIGURE 3.12
GMO data: representation of individuals (left) and active categories (right)
on the first plane.

> plot.MCA(res,invisible=c("ind","quali.sup"))

On the positive side of the first principal component (Figure 3.13), we can
observe those people who feel implicated by the debate surrounding GMO and
who are somewhat against their use (through the categories they chose). On
the negative side of the same principal component, we can see those people
who do not feel implicated by the debate surrounding GMO and who are in
favour of their use.

Along the second principal component, we can also observe those peo-
ple with less distinct opinions who feel somewhat implicated by the debate
surrounding GMO and who are somewhat against their use.

3.8.4 Projection of Supplementary Variables

It may now be interesting to examine whether or not the structure observed
for the individuals concerning their position in terms of GMO can be linked
with who they are. In other words, can the relationship to GMO be explained
by the descriptive data? To find out, the cloud of illustrative categories is
visualised on the first plane using the following line of code:

> plot.MCA(res,col.quali.sup="brown",invisible=c("quanti.sup","ind","var"))

This representation of supplementary variables (see Figure 3.14) is partic-
ularly remarkable as it provides two types of information. First, it reveals a
strong structure for both of the variables profession and identification with
a political movement, and second, it fails to identify any particular structure
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FIGURE 3.13
GMO data: representation of active categories and their labels on the first
plane.
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GMO data: representation of illustrative categories and their labels on the
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with the variables of age, sex, or profession in relation to agriculture, the food
industry, and the pharmaceutical industry.

The categories senior management, unemployed, and retired are in opposi-
tion to the categories technician and manual labourer to civil servant between
the two groups. Similarly, the category right is opposed to the categories green
and extreme left, to, in the middle, left.

3.8.5 Conclusion

The relationships between these three clouds of points suggest three very
di↵erent positions in terms of GMO. These positions must be compared with
both the professions in the survey and the political movement with which the
participant identifies himself. These two variables seem to be strongly linked.
However, these three positions do not seem to be explained by sex, age, or
whether or not the participant’s profession has a link with the industry, which
would provide further scientific knowledge of GMO.

3.9 Example: The Sorting Task Dataset

3.9.1 Data Description — Issues

Classification is a cognitive process by which di↵erent objects are grouped
together by a set of subjects according to their similarities. It is sometimes
referred to as a holistic approach because the objects to be categorised are
considered as a whole. Classification is used to collect data, particularly in
sensory analysis, where the aim is to understand a set of products according to
their sensory properties. In this specific context, this task means asking con-
sumers/subjects/a jury to group products together according to their sensory
similarities. This section presents a somewhat unusual application of MCA to
data so unique that each variable may be considered as a section of a set of
objects. This process will be outlined below.

The data which we will be using come from a body of sensory data collected
at Agrocampus. Ninety-eight consumers conducted a categorisation task us-
ing 12 luxury perfumes: Angel, Aromatics Elixir, Chanel 5, Cinéma, Coco
Mademoiselle, J’adore (eau de parfum), J’adore (eau de toilette), L’instant,
Lolita Lempicka, Pleasures, Pure Poison, and Shalimar (the labels for each
perfume were, of course, hidden). The participants were asked to divide the
perfumes into groups according to their sensory similarities, and then to at-
tribute a description to each of the groups.

First, the data are organised into a table with 12 rows and 98 columns,
in which each row i corresponds to a perfume, each column j corresponds
to a consumer, and each cell (i, j) corresponds to the group into which the
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TABLE 3.8
Perfume Data: Categorisation by Judges 18, 31, 40, and 93

Judge 18 Judge 31 Judge 40 Judge 93
Angel 1 1 6 1
Aromatics Elixir 2 2 5 2
Chanel 5 1 3 5 2
Cinéma 1 4 3 3
Coco Mademoiselle 1 5 2 3
J’adore (eau de parfum) 3 5 1 1
J’adore (eau de toilette) 1 5 1 3
L’instant 2 5 2 1
Lolita Lempicka 3 4 3 3
Pleasures 1 5 1 1
Pure Poison 3 2 2 3
Shalimar 2 5 4 4

product i was grouped by the consumer j (see Table 3.8). Each consumer j
can therefore be assimilated with a categorical variable j with K

j

categories,
where K

j

designates the number of groups used by the consumer j when
categorising the data. For example, in Table 3.8, we can see that participant
31 (j = 31) separated the perfumes into 5 categories (K31 = 5) and that s/he
categorised J’adore (eau de parfum) and J’adore (eau de toilette) in the same
group.

Second, in the same way, the index of the group into which product i was
categorised by consumer j can be replaced by the words which categorise that
same group. Similarly, each consumer j can be assimilated with a categorical
variable of K

j

categories (see Table 3.9). We therefore obtain an identical
table, but one which is encoded more explicitly. This second table is analysed
further below.

TABLE 3.9
Perfume Data: Example of Sorting Task Data with Comments

Judge 18 Judge 31 Judge 40 Judge 93
Angel lively strong Gr6 strong flowery
Aromatics Elixir grandmother spicy Gr5 unnatural
Chanel 5 lively soapy Gr5 unnatural
Cinéma lively Gr4 Gr3 weak flowery
Coco Mademoiselle lively soft Gr2 weak flowery
J’adore (eau de parfum) soft, nice, baby soft shower gel strong flowery
J’adore (eau de toilette) lively soft shower gel weak flowery
L’instant grandmother soft Gr2 strong flowery
Lolita Lempicka soft, nice, baby Gr4 Gr3 weak flowery
Pleasures lively soft shower gel strong flowery
Pure Poison soft, nice, baby spicy Gr3 weak flowery
Shalimar grandmother soft lemongrass strong

One of the main aims of this study was to provide an overall image of the 12
luxury perfumes based on the categorisations provided by the 98 consumers.
Once this image was obtained, the image’s sensory data must be linked to
the terms used to categorise the groups to understand the reasons why two
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perfumes are not alike. Finally, to analyse the data in further detail, we
will see how in this specific sensory context, it might be possible to use the
barycentric properties of the MCA to make the most of our data.

3.9.2 Analysis Parameters

In this study, the 12 perfumes are considered as (active) statistical individuals,
and the 98 participants as (active) categorical variables. A data table with
individuals in rows and categorical variables in columns is used and is therefore
suitable for a multiple correspondence analysis. It must be noted that, in the
analysis, the data are accounted for by the indicator matrix which here has
I = 12 rows and K =

P
K

j

columns: participant j is represented by the set
of his/her corresponding K

j

variables, with each variable corresponding to a
group, and having the value 1 when the perfume belongs to group k and 0 if
it does not (see Section 3.4). The distance between two perfumes is such that:

1. Two perfumes i and l are merged if they were grouped together by
all of the participants.

2. Two perfumes i and l are considered close if they were grouped
together by many of the participants.

3. Two products are considered far apart if many of the participants
assigned them to two di↵erent groups.

To conduct the MCA, the following line of code is used, which stores the
results of the MCA in res.perfume:

> perfume <- read.table("http://factominer.free.fr/book/perfume.csv",
header=TRUE,sep=";",row.names=1)

> res.perfume <- MCA(perfume)

By default, this function takes all of the active variables and therefore the
only input setting required is the name of the dataset.

3.9.3 Representation of Individuals on the First Plane

To visualise the cloud of individuals, the following line of code is used:

> plot.MCA(res.perfume,invisible="var",col.ind="black")

The first principal component identifies the perfumes Shalimar, Aromatics
Elixir, and Chanel 5 as being opposed to the other perfumes (see Figure 3.15).
The second principal component opposes Angel, Lolita Lempicka and, to a
lesser extent, Cinéma, with the other perfumes. The distancing of a small
number of perfumes is related to the number of times that these perfumes were
put into groups of their own: this is indeed the case for Shalimar, Chanel 5,
and Angel which were singled out by 24, 17, and 13 participants, respectively.
The proximity of certain perfumes is related to the frequency with which they

http://factominer.free.fr/book/perfume.csv
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FIGURE 3.15
Perfume data: representation of perfumes on the first plane.

were assigned to the same group: this was the case for Aromatics Elixir, which
was associated with Shalimar (Chanel 5) 42 times (and 51 times, respectively);
and for Lolita Lempicka which was associated with Angel 36 times. The two
J’adore perfumes were grouped together 56 times and are therefore also close
to one another.

3.9.4 Representation of Categories

The representation of the perfumes is supplemented by superimposing the
representation of the categories – referred to hereafter as words. By default, a
perfume is located at the barycentre of the words with which it was associated.
To visualise the cloud of categories and to interpret the oppositions between
the perfumes, the following line of code is used:

> plot.MCA(res.perfume,invisible="ind",col.var="black")

Due to the great number of words, the cloud of categories, as provided
by the function plot.MCA, cannot be processed directly. Figure 3.16 is a
simplified representation of this cloud.
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Perfume data: representation of words on the first plane.

The first component opposes the perfumes associated with the words old,
strong, and the perfumes described as flowery, soft. The second component
opposes the perfumes associated with the words warm, sweet, and spicy with
the other perfumes (see Figure 3.16).

3.9.5 Representation of the Variables

The variables can be represented by calculating the correlations between the
individuals’ coordinates on one component and each of the categorical vari-
ables (see Section 3.4.3). In the example, each participant is represented by
a point and two participants are close to one another if they categorised the
perfumes in the same manner.

Figure 3.17 illustrates di↵erent types of categorisations. On the first com-
ponent, participants 93 and 40 have high coordinates compared with partici-
pants 18 and 31. As the participants’ coordinates on a component are equal
to the correlation between their partitioning variables and the component,
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participants 40 and 93 clearly singled out the perfumes Shalimar, Aromatics
Elixir and Chanel 5, unlike participants 18 and 31 (see Table 3.8). According
to the first component, participants 31 and 40, who have high coordinates,
are opposed to participants 18 and 93. On closer inspection of the data, par-
ticipants 31 and 40 did indeed single out Angel, and to a lesser extent Lolita
Lempika and Cinéma, whereas participants 18 and 93 did not (see Table 3.8).
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FIGURE 3.17
Perfume data: representation of participants on the first plane.



4

Clustering

4.1 Data — Issues

Multidimensional data analysis (MDA) methods mainly provide synthetical
representations of objects (most of the time these objects are individuals,
variables, or categories of categorical variables) corresponding to the rows
and columns of a data table. In MDA, the most typical method for repre-
senting a set of objects is a cloud of points (each point is an object), evolving
in a Euclidean space (that can be reduced to a plane representation). The
term “Euclidean” here refers to the fact that the distances between points (re-
spectively the angles for the quantitative variables) are interpreted in terms
of similarities for the individuals or categories (respectively in terms of cor-
relation for the quantitative variables). Principal component methods, such
as principal component analysis (PCA), correspondence analysis (CA), and
multiple correspondence analysis (MCA), all yield Euclidean representations.

Another means of representing a set of objects and illustrating the links
between them (similarities or correlations) is with a hierarchical tree (see
Figure 4.1). This concept is also referred to more simply as a hierarchy, and
more precisely, an indexed hierarchy, which reminds us that the levels at
which the objects are grouped together can be interpreted (we also use the
term “dendrogram”). The way that these trees are used is relatively simple:
two objects are similar to one another if, to go from one to the other, we do
not need to go too far back up the tree. Thus, in Figure 4.1:

• Objects A and B are more similar than objects D and E.

• Object C is more similar to the set of objects D,E than to the set A, B.

It must be noted that the structure of a tree is not modified by conducting
symmetries as shown by the two representations in Figure 4.1. The lateral
proximities (between B and C on the left of Figure 4.1, for example) between
objects should not be interpreted. In this respect, there is some freedom in the
representation of a tree that we can use when a variable plays an important
role and individuals are sorted according to that variable. Wherever possible,
the branches of each node are switched so that this order can be respected.

The best example of a hierarchical tree is undoubtedly that of living be-
ings, with the first node separating the animal kingdom from plant life. This
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A B C D E A BC E D

index index

FIGURE 4.1
Example of a hierarchical tree (summarising the similarities between five ob-
jects: A, B, C, D, E).

hierarchy is used by all naturalists. Other similar hierarchies are those used
to describe the organisation of companies and administrations, which enable
everyone to know where they stand within the organisation. Another example
is that of the family tree describing the relations between ancestors. Finally,
Figure 4.2 is a good example of the synthetical vision provided by a hierar-
chical tree.

In these examples, the trees were constructed by experts according to the
rules usually used to represent that kind of organisation. For example, to
represent living creatures, we refer to evolution. Ideally, the di↵erent nodes of
the tree each represent a stage of evolution, where the most important steps
correspond to the nodes at the top of the tree (which for the animal kingdom
might first separate single-cell organisms from multicellular organisms). The
idea of evolution can therefore be found in the lateral order of individuals:
the branches of each node are organised by placing the least evolved animals
on the left.

As a result, one criterion (at least) is associated with each node and all
of the individuals on a branch coming from this node present the same value
for this (or these) criterion (or criteria). A set of individuals such as this is
said to be monothetic (i.e., single-celled organisms, invertebrates, mammals,
etc.). In this example in particular, but also to a lesser extent in the previous
examples, the hierarchical tree is the result of a great deal of research which
has led to a value attributed to the most important criteria and has thus
enabled researchers to define the nodes at the highest levels.

In this chapter, we will adopt the approach used in principal component
methods, and more explicitly, the analysis of a data table without prior judge-
ments (although assumptions are made when constructing the table in choos-
ing the individuals and variables). The aim is to construct a hierarchical tree
(rather than a principal component map) in order to visualise the links be-
tween the objects, which is a means of studying the variability within the
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table. This raises the same issues as principal component methods: the only
di↵erence between the two approaches is the way they are represented.

Without prior judgements, we shall attempt to construct a hierarchical tree
in which each branch groups together the individuals of a polythetic group
(groups like this are defined by a set of properties such as, first, each element
within the group possesses a great number of these properties, and second,
each property is possessed by a great number of individuals within the group).

The algorithms used to construct trees such as these are known as hier-
archical clustering. There are a great many of these kinds of algorithms: the
most common work in an agglomerative manner (first grouping together the
most similar objects and then the groups of objects) and are grouped together
under the umbrella term Agglomerative Hierarchical Clustering (AHC). Other
algorithms are divisive, i.e., in a touchdown approach. This chapter mainly
describes and illustrates one of the most widely used of these AHCs: Ward’s
algorithm.

A third synthetical representation of the links between objects is the par-
tition obtained by dividing the objects into groups so that each object belongs
to one group and one only. In formal terms, a partition can be assimilated to
a categorical variable (for which the value for each object is the label — or
number — of the group to which it belongs). Thus, in an opinion poll, we will
distinguish between men and women for example, as well as between those
who use a given product and those who do not. However, these monothetic
groups are only of interest if the partition that they belong to is linked to a
great number of variables. In other words, in an opinion poll, the divide be-
tween men and women is only really of interest if the responses to the opinion
poll are di↵erent for men and women, and indeed increases as the number of
di↵erent responses increases.

Again, here, we are approaching the data in an exploratory manner: from
a rectangular data table, we aim to divide up these objects so that, first,
the individuals within each class are similar to one another, and second, the
individuals di↵er from one class to the next. Many algorithms are available,
all grouped together under the term partitioning; in this chapter we shall limit
ourselves to the mostly widely used: K-means algorithm.

In an attempt to keep things general, until now we have referred simply to
objects, be they statistical individuals or quantitative variables or categories
of categorical variables. Indeed, one of the strengths of clustering methods is
that their general principles can be applied to objects with various features.
However, this generality impairs the tangible nature of our presentation. Sim-
ilarly, in the following sections, we shall restrict our presentation to objects
corresponding to statistical individuals, described by a set of quantitative or
categorical variables: in practice, this case is frequently encountered.

Classifying and Classing
Classifying a set of objects means establishing or constructing clusters or a hi-
erarchy. Classing an object means organising this object into one of the groups
of a predefined (and unquestionable) partition. This operation is known as
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Multivariate data analysis

Principal component method Clustering

One-way method Multiway method PartitioningHierarchical

PCA CA MCA … Agglomerative DivisiveMultiple
Factor

Analysis

Parafac … …Fuzzy
c-means

K-means

Single linkage Ward … …

FIGURE 4.2
Hierarchical tree illustrating the links between the principal methods of data
analysis.

clustering. In statistics, the term “discrimination” corresponds to the prob-
lem of finding rules for classification (of individuals into one of the groups of
a predefined partition from a set of available variables). Bearing in mind that
a partition can be considered a categorical variable, the problem with dis-
crimination lies in predicting a categorical variable, from quantitative and/or
categorical variables, in the same way that regression methods aim to predict
quantitative variables. The most widely-known example of discrimination is
that of medical diagnosis: when someone is ill, we have access to a number
of values for di↵erent variables; how do we work out what illness he or she is
su↵ering from? Each illness is a category of the categorical variable: the set
of categories (one category = one illness) is never questioned.

Supervised and Unsupervised Classification
Researchers have introduced the term “unsupervised” classification to desig-
nate that which was, for a long time (including in this work) simply referred
to as clustering. This term is supposed to refer to the exploratory nature of
these methods. This is in contrast to supervised classification, which desig-
nates that which was referred (including in this work) to as discrimination.
The term “supervised” is supposed to refer to the way in which the approach
focuses on a variable (the categorical variable to be predicted).
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4.2 Formalising the Notion of Similarity

4.2.1 Similarity between Individuals

In clustering, be it hierarchical or otherwise, it is essential to specify what is
meant by similarities between two individuals. This requirement also exists
in principal component methods but is less evident as the specification is
included in the method. In contrast, in clustering, one has the choice, which
is an advantage when faced with unusual data.

4.2.1.1 Distances and Euclidean Distances

In the case of standardised PCA, when I individuals are described by K
quantitative variables (an individual can be assimilated to an element of the
vectorial space RK), the similarity between two individuals i and l is obtained
using the usual (Euclidean) distance in RK :
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denotes the value of individual i for variable k, x̄
k

(and s
k

, respec-
tively) the average (and the standard deviation, respectively) of variable k. In
the first more general equation, the data x

ik

were first centred and reduced.
In the other two, the centring and reduction are explicitly detailed, and will
be explained later in this chapter.

When defining the distance d between individuals within a space (here
RK), we say that this space is attributed the distance d (also known as the
“metric space”). The d function from I ⇥ I to R+ possesses all of the desired
mathematical properties of a distance

8
<

:

d(i, l) = 0() i = l,
d(i, l) = d(l, i),
d(i, l)  d(i, j) + d(j, i) (triangle inequality).

Among other things, we are dealing with Euclidean distance, that is to say,
it can be used to define the notion of angle and thus of orthogonal projection
(an axiomatic definition of the concept of Euclidean space goes beyond the
framework of this work). As this notion is central to principal component
methods, all principal component methods use Euclidean distance (this is
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also the case for the �2 distance in CA for example). However, if the notion
of projection is not required, we are not restricted to using Euclidean distance.
This is one of the most important features of these clustering methods in terms
of measuring the similarities between individuals.

4.2.1.2 Example of Non-Euclidean Distance

In usual Euclidean distance, the deviations for each variable are squared. The
influence of these great deviations is therefore intensified, which is why it can
be preferable to instead use the deviations’ absolute values. This yields the
following distance, between individuals i and l:

d(i, l) =
KX

k=1

|x
ik

� x
lk

|.

This distance is known as the Manhattan distance, or even city block distance,
in reference to the American towns where all the streets are either parallel or
orthogonal: in order to move from one point to another, the distance travelled
is equal to the above distance. This distance can be easily interpreted directly
from the data.

Figure 4.3 illustrates the di↵erence between the two distances for a rather
basic case. In this example, individuals a and b only di↵er by one variable,
but the di↵erence is extreme; individuals a and c (or b and c) di↵er on a
number of variables, although only slightly. For usual Euclidean distance, the
distance between a and b is the greatest: d(a, b) = 2 >

p
3 = d(a, c) = d(b, c);

the opposite is true for the city block distance.

 V1 V2 V3   a b c   a b c 
a 1 1 3  a 0    a 0   
b 1 1 1  b 2 0   b 2 0  
c 2 2 2  c 3  3  0  c 3 3 0 

  A     B     C  

FIGURE 4.3
Normal Euclidean distance (B) and city block distance (C) illustrated for three
individuals a, b, c described by three variables V 1, V 2, V 3 (A).

City block distance is not a Euclidean distance. So, which one should
we choose? Unless required by the data (a situation we have not as yet
encountered), we recommend using a Euclidean distance as it means both
clustering and principal component methods can be conducted subsequently.



Clustering 175

4.2.1.3 Other Euclidean Distances

There are an infinite number of Euclidean distances. The most well-known,
and the easiest to interpret, consists of taking the usual distance and attribut-
ing a weight to each dimension (i.e., variable). For instance, in standardised
PCA, we can assume that the data is merely centred, and that the distance
used attributes each variable with a weight opposite to that of its standard
deviation (see the third equation defining d2(i, l), Section 4.2.1.1). Interest-
ingly, these di↵erences illustrate the fact that, when encountering a Euclidean
distance, we can also refer back to the usual distance by transforming the
data.

4.2.1.4 Similarities and Dissimilarities

Among the first tables to have been used for automatic clustering were those
known as presence–absence tables, used in phytosociology. In a given zone,
we define a set of stations representative of the diversity of the environments
found in the zone; for each station, the di↵erent plants present are listed.
These data are brought together in a table confronting the species I and the
stations J , with the general term x

ij

having a value of 1 if the species i is
present in the station j, and 0 if it is not.

One of the general objectives of this type of study is to illustrate the associ-
ations of plants, that is, sets of species present within the same environments.
From this objective stems the idea of species clustering, with two species con-
sidered similar when observed in the same station (the stations themselves
can also be classified; two stations are similar if they have a lot of species in
common). This notion of similarity still remains to be defined.

Phytosociologists quickly became aware that, when evaluating the associ-
ations between species, their combined presence is more valuable (more en-
vironmentally significant) than their combined absence. For this reason, the
decision was made to come up with an ad hoc similarity measurement which
would take this aspect into account. Many di↵erent measurements were sug-
gested. When these measurements do not verify triangle inequality, they are
known as dissimilarities (or similarity indices when the value increases with
the number of similar individuals). The first of these solutions was suggested
by Jaccard (1901)1. By denoting, for a pair of species i and l: n++ the number
of stations where the two species i and l are present and n+� (respectively
n�+) the number of stations where the species i is present and l is not (re-
spectively l is present and i is not), Jaccard’s index (of similarity) is expressed
as: n++

n++ + n�+ + n+�
.

This index fails to account for the stations in which neither species is present.
This type of approach is applied more generally to presence–absence tables

1Jaccard P. (1901). Bulletin de la Société Vaudoise des Sciences Naturelles, 37, 241–272.
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confronting individuals (to be classified) and characters, such that the presence
of a character is more important for the user than its absence. The characters
may also be seen as categorical variables with two categories, and the MCA
framework, and particularly its distance, is appropriate.

There are other cases where the nature of the objects being studied is such
that the assigned measurement of similarity is not a distance but rather a dis-
similarity. One good example is the relationship between genomes. Without
going into too much detail, it means measuring the similarity between se-
quences of letters of the alphabet {a, c, g, t}. One might consider counting
the frequency of each series of n letters in each sequence (which may include
multiple values for n), and using the �2 distance. However, summarising a
sequence for a set of frequencies such as this would not be satisfactory. One
might think that the relationships between two genomes A and B would be
brought closer together by using the lengths of longer sequences of letters com-
mon to both A and B. From these lengths, we can construct an acceptable
indicator for geneticists, but which does not possess the properties of distance
(even without knowing exactly how these lengths are used by the indicator,
which is somewhat technical, we may be led to believe that the triangle in-
equality would not be verified). Clustering methods are extremely valuable in
such cases in order to respect the similarity measure, which is suited to the
objects to be classified.

4.2.2 Similarity between Groups of Individuals

To construct a hierarchical tree, the distance or dissimilarity between groups
of individuals must be defined. There are a number of options in such a case:
we shall only cite those which are the most widely used. Let us consider two
groups of individuals A and B. The single linkage between A and B is the
distance between the two closest elements in the two clusters A and B. The
complete linkage between A and B is the greatest distance between an element
in A and an element in B. Figure 4.4 illustrates these definitions.

Single linkage

Complete linkage

A B C

fig8

fig4FIGURE 4.4
Single linkage and complete linkage between two groups of individuals (repre-
sented by di↵erent symbols).

The major advantage of the above definitions is that they can be applied
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to all distances or dissimilarities. For Euclidean distances, other possibilities
are available. Let us consider G

A

and G
B

the centres of gravity for the sets of
individuals A and B. The first option is to measure the dissimilarity between
A and B by the distance between their centres of gravity. Another, more
satisfactory approach is that of inertia: this means accounting for the groups’
weights. In this chapter, individuals are all considered to have the same
weight, which is the most common case, and a group’s weight is proportional
to its size; it must be noted however, that the inertia approach can simply
take into account weights which di↵er from one individual to another.

Let us apply Huygens’ theorem to both A and B (A [ B with centre of
gravity G). Total inertia (of A [ B with respect to G) = between-clusters
inertia (of {G

A

, G
B

} with respect to G) + within-cluster inertia (inertia of A
with respect to G

A

plus the inertia of B with respect to G
B

). This partition-
ing suggests using between-clusters inertia as a measurement of dissimilarity
between A and B. We shall discuss some of the properties of this approach
in the section on Ward’s method, which is based on this methodology.

4.3 Constructing an Indexed Hierarchy

4.3.1 Classic Agglomerative Algorithm

The starting point in this approach is a dissimilarity matrix D (these dissimi-
larities might be Euclidean distances) with the general term d(i, l) indicating
the dissimilarity between individuals i and l. This matrix is symmetrical, with
zeros on the diagonal.

We agglomerate the most similar, or the “closest” individuals i and l (in
case of ex-aequo, one couple of individuals is chosen at random) which creates a
new element, (i, l). This group of individuals will never be called into question.
Value d(i, l) is the agglomerative criterion between i and l. This value is used
to determine the height at which the branches of the tree corresponding to i
and l are connected.

Matrix D is updated by deleting the rows and columns corresponding to
individuals i and l and creating a new row and a new column for the group
(i, l) in which the dissimilarities between this group and each of the remaining
individuals are noted. We thus obtain matrix D(1) in which we look for the
closest pair of elements. These elements are then agglomerated, and so on.

As an example, we shall apply this algorithm to a small dataset with six
individuals as represented in Figure 4.5. To facilitate the calculations, we
shall use the city block distance and the complete linkage agglomerative rule.
The di↵erent stages of the construction of the tree are shown in Figure 4.5.
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FIGURE 4.5
Stages of construction of a hierarchical tree from six individuals belonging to
a plane.
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4.3.2 Hierarchy and Partitions

The points where the branches corresponding to the elements being grouped
coincide are known as nodes. They are sometimes also known as “forks” when
describing downward movement in the tree. The individuals to be classified
are referred as leaf nodes. With I individuals, there are (I � 1) nodes, often
numbered from I + 1 to 2 ⇥ I � 1 (see Figure 4.6) according to the order
of construction (the first I numbers are reserved for the leaf nodes; however,
in some software, the leaf nodes are not numbered). In tracing a horizontal
line to a given index, a partition is defined (the tree is said to be cut). In
Figure 4.6, the cut at A defines a partition into two clusters {1, 2, 3, 4} and
{5, 6, 7, 8}; the cut at B defines a more precise partition into four clusters
{1, 2}, {3, 4}, {5, 6} and {7, 8}. By construction, these partitions are nested:
each B-level cluster is included in the same cluster at level A.

1

1 2 3 4 5 6 7 8

10 11
12

9

15

14
13

A

B

1

1 2 3 4 5 6 7 8

10 11
12

9

15

14
13

A

B

FIGURE 4.6
Hierarchy and partition.

Therefore, each hierarchical tree can be considered a sequence of nested
partitions from the most precise (in which each individual is a class), to the
most general (in which there is only one class).

4.4 Ward’s Method

The principle of Ward’s method is outlined above. It is applied to individuals
situated in a Euclidean space. This is the most common case as it is that
of a set of individuals described by a set of variables. When the data are
quantitative (or categorical, respectively), we study cloud N

I

evolving in RK

defined in Section 1.3.1 (and Section 3.4.2, respectively). This agglomerative
method consists, at each stage of the process, of regrouping two elements
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(isolated or preclassed individuals) by maximizing the quality of the obtained
partition.

4.4.1 Partition Quality

A partition can be said to be of high quality when:

• The individuals within a cluster are homogeneous (small within-cluster vari-
ability).

• The individuals di↵er from one cluster to the next (high within-cluster vari-
ability).

If the individuals are within a Euclidean space, Huygens’ theorem provides a
framework for the analysis which is well suited to studying partitions. This
theorem decomposes the total inertia (of the cloud of individuals) into two
parts:

• The within-cluster inertia, based on the deviation between each point and
the centre of gravity of the cluster to which it belongs.

• The between-clusters inertia, based on the deviation between each centre of
gravity for a specific cluster and the overall centre of gravity.

Generally, it is expressed as:

Total inertia = Between-clusters inertia + Within-cluster inertia.

If the individuals are described by just one quantitative variable (denoted
y), we are left with the equation for a one-way analysis of variance. With I
individuals (of the same weight, 1) divided into Q clusters, we denote: y

iq

the
value for y of individual i in cluster q; ȳ

q

the average of y for the individuals
in cluster q; I

q

the number of individuals in cluster q; ȳ the overall average of
y. Huygens’ theorem is expressed as:
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qX
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q

(ȳ
q

� ȳ)2 +
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qX
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(y
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� ȳ
q

)2.

Generally speaking, there are K quantitative variables and the cloud of indi-
viduals evolves in RK (see cloud N

I

in PCA Section 1.3.1; Section 4.7.1 will
show how to get back to this case if the variables are categorical). As the di-
mensions of RK are orthogonal, Huygens’ theorem is obtained by adding the
inertias along each dimension. Thus, by denoting, y

iqk

the value for variable
k of individual i in cluster q:
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Total = Between-clusters + Within-cluster
inertia = inertia + inertia.
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If we use this decomposition as a framework for analysis (i.e., if we use inertia
to measure variability) then, when checking for partition quality, the same
is achieved by minimising variability within-cluster or maximising variability
between-clusters, as total variability is defined by the data. This is a great
advantage for the user, who would find it extremely di�cult to choose one of
these two criteria. As a result, partition quality can be measured by:

Between-clusters inertia
Total inertia

.

This ratio indicates what can be imputed to the partition in terms of total
variability. It is often multiplied by 100 in order to express it as a percent-
age. In one-dimensional cases, it coincides with the (square of) correlation
ratio. For the data in Figure 4.5, by using the usual Euclidean distance and
considering the partition into three clusters {A, B}, {C, D} and {E,F}, this
ratio is worth 0.8846. This partition thus expresses 88.46% of the individuals’
variability. In other words, rather than considering the set of six individuals,
we simply consider the three clusters, 88.46% of the variability of the data
is nonetheless represented. When interpreting this percentage, the number of
individuals and the number of clusters have to be taken into consideration.
Indeed, by increasing the number of clusters, we can find partitions with ex-
tremely high percentages. Partitions in which each individual constitutes a
cluster can even be said to have a percentage of 100%, although such a par-
tition would be of no practical use. In our limited example, we can see that
partitioning six individuals into three clusters, which halves the complexity of
the data whilst still expressing 88.46% of it, is more than satisfactory.

4.4.2 Agglomeration According to Inertia

At step n of the agglomerative algorithm, the individuals are distributed in
Q (= I � n + 1) clusters obtained from previous steps. The di�culty is in
choosing the two clusters (among Q) to be agglomerated. When grouping two
clusters together, we move from a partition in Q clusters to a partition in Q�1
clusters; the within-cluster inertia can only increase (a direct consequence of
Huygens’ theorem). Grouping according to inertia means choosing the two
clusters to be agglomerated so as to minimise the increase of within-cluster
inertia. According to Huygens’ theorem, combining two clusters this way leads
to a decrease in between-clusters inertia; a decrease which is minimised.

Let us consider clusters p (with the centre of gravity g
p

and sample size
I
p

) and q (with the centre of gravity g
q

and sample size I
q

). The increase
�(p, q) in within-cluster inertia caused by grouping together clusters p and q
is expressed as:

�(p, q) =
I
p

I
q

I
p

+ I
q

d2(g
p

, g
q

).

Choosing p and q in order to minimise �(p, q) means choosing:
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• Clusters whose centres of gravity are close together (d2(g
p

, g
q

) small).

• Clusters with small sample sizes ( I

p

I

q

I

p

+I

q

small).

The first of these properties is instinctive. The second is less so but has an
interesting consequence: agglomeration according to inertia tends to yield
appropriate trees in the sense that the partitions are made up of clusters with
samples of similar sizes. By applying this algorithm to the data in Figure 4.5,
we obtain the tree in Figure 4.7; the level indices and the details of how they
are calculated are summarised in Table 4.1.

The overall shape of the tree is identical to that obtained in Figure 4.5, with
a di↵erent distance and agglomerative criterion: when a structure is strong, it
is emphasised (almost) whatever the method selected. The major di↵erence
between the two hierarchies lies in level variability: agglomeration by inertia
exacerbates the di↵erences between the higher levels on the one hand, and the
lower levels on the other, and this especially due to the coe�cient I

p

I

q

I

p

+I

q

which
increases (almost) “mechanically” between the first levels (which agglomerates
the elements with small sample sizes) and the last levels (which, in general,
agglomerates clusters with large sample sizes).
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FIGURE 4.7
Tree obtained by applying Ward’s algorithm to the data in Figure 4.5 and
by using the usual Euclidean metric. Above right: bar chart of level indices,
from the root node (node at the highest level) to leaf node (node at the lowest
level). The numbers of the nodes have been added to the tree.

In certain software, it is possible to represent hierarchical trees which use
the square root of the within-cluster inertia, increasing with a node’s level
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index. As a result, the trees are more compact. In this work, we use the
original criterion, that is, the within-cluster inertia increase.

TABLE 4.1
Indices Associated with Figure 4.7
Number of

p q
I
p

I
q

I
p

+I
q

d2(gp, gq) Index in %
Cumulative Within Within

the node % inertia variance
7 2 1 0.5 0.167 0.083 2.88 100 0.083 0.250
8 4 3 0.5 0.167 0.083 2.88 97.12 0.083 0.250
9 6 5 0.5 0.333 0.167 5.77 94.23 0.167 0.500
10 8 7 1 0.750 0.750 25.96 88.46 0.917 1.375
11 9 10 1.33 1.354 1.806 62.50 62.50 2.889 2.889

Sum 2.889 100

Note: The individuals are considered as nodes numbered in the order in which they appear
in the file (here in alphabetical order).

4.4.3 Two Properties of the Agglomeration Criterion

1. In the representation of the tree, the quantity �(p, q) is used as
the index. As might be expected, this index is ever-increasing (by
denoting �

n

the index associated with step n we obtain: �
n

�
�

n�1): first, we agglomerate the similar clusters and those with
small sample sizes, and then go on to agglomerate more distant
clusters and those with larger sample sizes. This first property is
highly important: it guarantees that the tree has no inversions (an
inversion occurs for example when element {c} combines with the
group {a, b} at a lower level than that for the agglomeration between
a and b (see Figure 4.8).

A B CA B C

FIGURE 4.8
Example of a tree featuring an inversion.

2. The sum of all agglomeration criteria (from the same hierarchy) is
equal to the total inertia for all of the individuals (in terms of their
centre of gravity). Thus:

I�1X

n=1

�
n

= total inertia.

This property is obtained easily by referring to the evolution of
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the partition of individuals at each stage of the tree’s construction.
At step 0, each individual represents a cluster and partition within-
cluster inertia is nil. Throughout the algorithm, the number of
clusters decreases and within-cluster inertia increases (from �

n

to
step n); at the end of the algorithm, all of the individuals are in
the same cluster and within-cluster inertia is equal to total inertia.
Thus an indexed hierarchy (obtained using this method) proposes
a decomposition of the the total inertia (i.e., of the variability of
the data) and, fits into the overall approach to principal component
methods. The di↵erence is that this decomposition is conducted by
clusters in one case and by components in the other.

4.4.4 Analysing Hierarchies, Choosing Partitions

Although hierarchies are constructed in an upward direction, they are gen-
erally analysed in a downward direction. Let us remember the aim of such
hierarchies: to provide a visual representation of the variability of data or,
from another point of view, of the overall similarities between individuals. In
addition, the final node in a hierarchy must answer the question: If one had
to summarise variability by dividing the individuals into two clusters, where
would the partition be located? We must also highlight the fact that the term
node evokes the idea of bringing two clusters together (the perspective of the
upward construction) more than the subdivision into two clusters, hence the
term “fork” which is sometimes used when approaching the tree in a downward
manner.

With agglomeration according to inertia, the level of a node, when seen
in a downward direction, quantifies that which is gained (in between-clusters
inertia, or the decrease in within-cluster inertia) by separating the two clus-
ters which it connects. In the example (see Figure 4.7 and Table 4.1), the
separation into two groups expresses 62.50% of variability. If we consider
the partition into three clusters, the separation created by node 10 (consider
{a, b} and {c, d} rather than {a, b, c, d}) represents 25.96% of variability and
thus yields a percentage of 62.50% + 25.96% = 88.46% for the three clusters
partition.

Here, it would appear that a hierarchy is extremely useful for justifying
the choice of a partition; this is indeed its main advantage in applications with
anonymous individuals, such as surveys. Tangibly, we will account for:

• The overall appearance of the tree; in the example in Figure 4.7, it evokes
partitioning into three clusters.

• The levels of the nodes, to quantify the above; these levels can be represented
by a bar chart visualising their decrease (graph represented in the top right-
hand corner of Figure 4.7); each irregularity in this decrease evokes another
division.
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• The number of clusters, which must not be too high so as not to impede the
concise nature of the approach.

• Cluster interpretability: even if it corresponds to a substantial increase in
between-clusters inertia, we do not retain subdivisions that we do not know
how to interpret: in much the same way, we retain those subdivisions which
can be successfully interpreted, even if they correspond to greater increases
in inertia. Luckily, in practice, dilemmas such as these are uncommon.

A visual examination of the hierarchical tree and the bar chart of level in-
dices suggests a division into Q clusters when the increase of between-clusters
inertia when passing from a Q � 1 to a Q clusters partition is much greater
than that from a Q to a Q + 1 clusters partition. By using a downward
approach (i.e., working from the largest partition), the following criterion is
minimised:

min
q

min

qq

max

�(q)
�(q + 1)

where �(q) is the between-clusters inertia increase when moving from q � 1
to q clusters, q

min

(and q
max

, respectively) the minimum (or maximum, re-
spectively) number of clusters chosen by the user. The function HCPC (Hi-
erarchical Clustering on Principal Components) implements this calculation
after having constructed the hierarchy, and suggests an “optimal” level for
division. When studying a tree, this level of division generally corresponds
to that expected merely from looking at it. This level is thus most valuable
when studying a great number of trees automatically.

4.5 Direct Search for Partitions: K-means Algorithm

4.5.1 Data — Issues

The data are the same as for principal component methods: an individuals
⇥ variables table and a Euclidean distance. We consider that the variables
are quantitative, without compromising generalisability as, in the same way
as for hierarchical clustering, Section 4.7.1 will show how to get back to this
status when the variables are categorical. Partitioning algorithms approach
hierarchical clustering primarily in terms of the following two questions.

• In practice, indexed hierarchies are often used as tools for obtaining parti-
tions. In essence, would there not be a number of advantages in searching
for a partition directly?

• When dealing with a great number of individuals, the calculation time re-
quired to construct an indexed hierarchy can become unacceptably long.
Might we not achieve shorter calculation times with algorithms searching
for a partition directly?
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There are a number of partitioning algorithms: here, we shall limit our ex-
planation to just one of them — K-means algorithm — which is in practice
su�cient.

4.5.2 Principle

First, the number of clusters Q is determined. One might consider calculating
all of the possible partitions and retaining only that which optimises a given
criterion. In reality, the number of possible partitions is so high that the
calculation time associated with this approach is unacceptably long when the
number of individuals exceeds a certain number. We therefore use the iterative
algorithm described below.

Let P
n

be the partition of the individuals at step n of the algorithm and
⇢

n

the ratio [(between-clusters)/(total inertia)] of this partition P
n

:

0. We consider a given initial partition P0; we calculate ⇢0.

At step n of the algorithm:

1. We calculate the centre of gravity g
n

(q) for each cluster q of P
n

.

2. We reassign each individual to the cluster q that it is closest to (in terms
of distance to the centres of gravity g

n

(q)); we obtain a new partition P
n+1

for which we calculate the ratio ⇢
n+1.

3. As long as ⇢
n+1� ⇢

n

> threshold (i.e., partition P
n+1 is better than P

n

) we
return to phase 1. Otherwise, P

n+1 is the partition we are looking for.

The convergence of this algorithm is ensured by the fact that, at each step,
⇢

n

decreases. In practice, this convergence is rather quick (generally less than
five iterations even for a large amount of data). Figure 4.9 illustrates this
algorithm on a dataset where individuals belong to plane.

1 2

3 4

FIGURE 4.9
Illustration of the K-means algorithm for a simple case (the data present
a number of well-distinct clusters corresponding to the number of clusters
defined in the algorithm).
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We are looking for a way to divide the 14 individuals into two clusters (a
cluster of circles and a cluster of squares).

1. The individuals are randomly divided into two clusters.
2. The centres of gravity are calculated for each of the clusters (white

circle and square).
3. Each individual is assigned to the cluster it is closest to (the per-

pendicular bisector of the segment linking the two centres of gravity
is represented).

4. The centres of gravity for the new clusters are calculated.

If we reapply step three, nothing changes: the algorithm has converged.

4.5.3 Methodology

The above algorithm converges but not necessarily toward an overall opti-
mum. In practice, the algorithm is conducted many times using di↵erent
initial partitions P0. The most satisfactory solution is retained. The par-
titions obtained by executing the algorithm a number of times can also be
confronted. Sets of individuals which belong to the same cluster whatever
the partition are referred to as “strong shapes”. These strong shapes make
up groups of individuals which are relatively stable compared to the initial
partition: they highlight the denser areas (in space). However, this method-
ology also gives rise to some very small clusters, often of only one individual,
made up of individuals situated between the high-density areas. Such indi-
viduals are empirically managed: the two main options being to assign them
to the closest strong shape (with su�ciently large sample size) or to create a
“residual” cluster grouping together all of the isolated individuals.

4.6 Partitioning and Hierarchical Clustering

When compared to hierarchical methods, partitioning strategies present two
main advantages:

1. They optimise a criterion; in AHC, a criterion is optimised at each
step, but we do not refer back to an optimal criterion concerning
the tree itself.

2. They can deal with much greater numbers of individuals.

However, the groups need to be defined prior to the AHC. This is the
origin of the idea of combining the two approaches to obtain a methodology
that includes the advantages of each.
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4.6.1 Consolidating Partitions

Following an AHC, an inspection of the hierarchy generally leads the user to
focus on one partition in particular. This partition can be introduced as the
initial partition of a partitioning algorithm. The partition resulting from this
algorithm is finally conserved. In practice, the initial partition is never entirely
replaced, but rather improved or “consolidated”, the increase of the [(between
inertia)/(total inertia)] ratio, although generally, rather small ensures that the
clusters are (somewhat) more consistent and more appropriately separated.
The minor inconvenience of this methodology is that the hierarchy produced
by the AHC is not (exactly) consistent with the chosen partition.

4.6.2 Mixed Algorithm

When there are too many individuals to conduct an AHC directly, the follow-
ing two-phase methodology can be implemented.

Phase 1. We partition into a high number of groups (100, for example).
The partition obtained cannot be directly used for interpretation: there are
a great number of groups and many of them are very close together. On the
contrary, they are all homogeneous (low within-cluster inertia) and contain
individuals which we are sure should not be separated.

Phase 2. We implement an AHC by taking the groups of individuals
from phase one as elements to be classified (with each element’s weight being
the number, or rather the sum of the weights, of the individuals which it
represents). In this way we obtain a hierarchy, which is, roughly, the top of
the hierarchy that would be obtained by classifying the individuals themselves.

Another variation of phase 1 is to partition a number of times and to
conserve the strong shapes for phase 2.

4.7 Clustering and Principal Component Methods

We have already mentioned this point: automatic clustering and principal
component methods use similar approaches (exploratory analysis of a same
data table) and di↵er in terms of representation methods (Euclidean clouds,
indexed hierarchy or partition). This is indeed the origin of the idea of com-
bining the two approaches to obtain an even richer methodology, an essential
quality in exploratory statistics, since having many di↵erent perspectives can
only reinforce the reliability of our conclusions and means we can choose that
which is the most suitable for a given user (partitions are complex tools, but
can be used by those with no statistical background). In this case, we use
the same (Euclidean) distance between individuals for each method. First,
because the choice of a distance must be made prior to the analysis as it is
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a sign of the assumptions that we might have about the similarities between
individuals. Second because, if we want to study the influence of the choice
of distance it is better to do so using the same analysis method so as to avoid
misleading comparisons.

4.7.1 Principal Component Methods Prior to AHC

Let us consider table X (of I ⇥ K dimensions) in which we wish to classify
the rows. We perform a principal component method on X (PCA, CA or
MCA depending on the table) and retain all of the principal components
(= coordinated of the rows on the component) with non-null variance (let S
denote the number of such components and F

s

the component of rank s). We
bring these components together to construct table F (of I ⇥ S dimension).
Tables X and F are equivalent in that they define the same distances between
individuals. Among other things, the distance derived from the coordinates
included in F is the usual Euclidean distance, and that even if the distance
between the rows in X is not the usual Euclidean distance (for example that of
�2 when table X is analysed with a CA). In reality, the vectors u

s

(associated
with F

s

) used to represent the individuals are an orthonormal basis, which is
why the principal component maps obtained from a CA can be interpreted
using the usual Euclidean distance even if the initial row space distance is a
�2 distance.

As a result, the situation for programmers is facilitated as they can simply
write one clustering programme with an individuals ⇥ quantitative variables
table, and the usual distance between individuals as input. Di↵erent types of
data can be accounted for by preprocessing the data using the most suitable
principal component method (CA for a contingency table or Burt table; MCA
for a categorical variables ⇥ individuals table). Using the two approaches to-
gether provides another new possible methodology: for AHC, we could simply
retain only some of the principal components. The following two arguments
are given for this:

• Eliminate the only dimensions which we are (practically) sure are only
“noise”, that is to say, the last. The components responsible for a very
high percentage of the inertia (say 80% or 90%) are therefore retained; thus,
the obtained hierarchy is considered to be more stable and clearer.

• Retain only those components which we know how to interpret; the main
use of the hierarchy obtained is therefore simply to help in interpreting the
results of the principal component method.

4.7.2 Simultaneous Analysis of a Principal Component Map
and Hierarchy

This analysis mainly means representing the highest nodes of the hierarchy
on the principal component map as centres of gravity for the individuals they



190 Exploratory Multivariate Analysis by Example Using R

group together. If we choose a partition, we limit our analysis to the centres
of gravity of this sole partition. In a representation such as this, the two
approaches complement one another in two ways:

1. First, we have a continuous view (the tendencies identified by the
principal components) and a discontinuous view (the clusters ob-
tained by the clustering) of the same set of data, all in a unique
framework.

2. Second, the principal component map provides no information about
the position of the points in the other dimensions; the clusters, de-
fined from all of the dimensions, o↵er some information “outside
of the plane”; two points close together on the plane can be in the
same cluster (and therefore not too far from one another along the
other dimensions) or in two di↵erent clusters (since they are far
apart along other dimensions).

4.8 Example: The Temperature Dataset

4.8.1 Data Description — Issues

In this section, we will be using the dataset regarding European capitals pre-
sented in the chapter on PCA (see Section 1.10). The objective here is to
group the capitals together into comprehensive clusters so that the cities in a
given cluster all present similar temperatures all year round. Once the clus-
ters have been defined, it is important to describe them using the variables or
specific individuals. To determine the number of clusters in which to group
the capitals, we first construct an ascending hierarchical clustering.

4.8.2 Analysis Parameters

Clustering requires us to choose an agglomeration criterion (here we use the
Ward’s criterion) along with a distance between individuals. Euclidean dis-
tance is suitable but it is also necessary to define whether or not the variables
need to be standardised. We are again faced with the discussion we had in the
PCA chapter (see Section 1.10.2.2) and we choose to work with standardised
data. Furthermore, the distances between the capitals are defined using only
12 variables of monthly temperature, that is to say, from the active variables
of the PCA.
Remark
The supplementary individuals (in the example, those towns which are not
capital cities) are not used to calculate the distances between individuals and
are therefore not used in the analysis.
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The first two components of the PCA performed on the cities express over
98% of the information. All of the dimensions can therefore be retained as it
does not a↵ect clustering and can be used to decompose the total inertia of
the PCA.

4.8.3 Implementation of the Analysis

The following lines of code first import the data and perform a PCA by
specifying that all the components are retained using the argument ncp=Inf
(Inf for infinite). Then an agglomerative hierarchical clustering is performed
from the object res.pca containing the results of the PCA.

> library(FactoMineR)
> temperature <- read.table("http://factominer.free.fr/book/temperature.csv",

header=TRUE,sep=";",dec=".",row.names=1)
> res.pca <- PCA(temperature[1:23,],scale.unit=TRUE,ncp=Inf,

graph=FALSE,quanti.sup=13:16,quali.sup=17)
> res.hcpc <- HCPC(res.pca)

Remark
It should be noted that it is possible to perform an agglomerative hierarchical
clustering on a raw dataset, by performing a nonstandardised PCA (using
the argument scale.unit=FALSE) and retaining all of the components using
ncp=Inf. This is the option by default when the HCPC function is performed
directly on a dataset (a data frame).

The shape of the dendrogram (see Figure 4.10) suggests partitioning the
capitals into three clusters. The optimal level of division calculated using the
function HCPC also suggests three clusters. For example, in the first class, we
find the coldest capitals (those with the weakest coordinates on the first axis of
the principal component analysis). As indicated in Section 4.1 and represented
in Figure 4.1, it is possible to switch the branches of each node in the tree so
as to arrange the individuals according to the first principal component as far
as possible. This is done using the default argument order=TRUE. If we want
to sort the individuals according to another criterion, the individuals must
first be sorted according to that criterion in the dataset prior to conducting
the PCA, and then classified using the argument order=FALSE in HCPC.

The object call$t contains the results of the agglomerative hierarchical
clustering. Specifically:

• The output of the function agnes (clustering function of the package cluster)
in call$t$tree.

• The number of “optimal” clusters calculated ($call$t$nb.clust): this
number is determined between the minimum and maximum number of clus-
ters defined by the user and such that the ratio $call$t$quot might be as
small as possible.

http://factominer.free.fr/book/temperature.csv
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• The within-cluster inertia ($call$t$within) of the partitioning into n clus-
ters; for n = 1 cluster (most general partition into one class) within-cluster
inertia is worth 12, for 2 clusters 5.237, and so on.

• The increase in between-clusters inertia when moving from n clusters to n+1
($call$t$inert.gain); for 2 clusters (i.e., moving from 1 to 2 clusters) the
increase in between-clusters inertia is worth 6.763, for 3 clusters (i.e., moving
from 2 to 3 clusters) 2.356, and so on.

• The ratio between two successive within-cluster inertias (for example, 0.550 =
2.881/5.237).

$call$t$nb.clust
[1] 3

$call$t$within
[1] 12.000 5.237 2.881 2.119 1.524 1.232 0.960 0.799 0.643 0.493

[11] 0.371 0.255 0.202 0.153 0.118 0.087 0.065 0.048 0.036 0.024
[21] 0.014 0.007 0.000

$call$t$inert.gain
[1] 6.763 2.356 0.762 0.596 0.291 0.272 0.161 0.155 0.151 0.122 0.115 0.054

[13] 0.049 0.034 0.031 0.022 0.017 0.012 0.012 0.010 0.007 0.007

$call$t$quot
[1] 0.550 0.736 0.719 0.809 0.779 0.832 0.806 0.766

In order to draw the entire tree in three dimensions on the first principal
component map (see Figure 4.11), we use the argument t.levels="all":

> res.hcpc <- HCPC(res.pca,t.levels="all")

Defining the Clusters
The clusters are then defined and the results found in object desc.var. All
of the variables from the initial dataset are used, whether the variables are
quantitative, categorical, active or supplementary. In this case, the function
yields the same results as the function catdes (see Section 3.7.2). These results
are brought together in Table 4.2. The capitals from cluster 1 are characterised
by below average temperatures throughout the year, and particularly in March
(–1.14 degrees on average for the capitals in this cluster compared with 4.06
degrees for all of the capitals), October and February. In these cities, the
latitude and thermal amplitude are all above average. None of the variables
characterise the cities in cluster 2. The capitals in cluster 3 are typical as the
average annual temperature (15.7 degrees) is much higher than the average for
the other capitals (9.37 degrees). This cluster is characterised by the category
south of the categorical variable Area: there are more southerly cities in this
cluster than in the others. Indeed, 80% of southerly cities belong to cluster 3,
and 100% of the cities in cluster 3 are southerly cities. These percentages are
high because 21.7% of the cities are southerly.
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FIGURE 4.10
Temperature data: hierarchical tree.
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TABLE 4.2
Temperature Data: catdes Outputs (See Section 3.7.2.3) Applied to the Par-
tition into Three Clusters

> res.hcpc$desc.var
$test.chi2

&p.value df
Area 0.0012 6

$category
$category$‘1‘
NULL
$category$‘2‘
NULL
$category$‘3‘

Cla/Mod Mod/Cla Global p.value v.test
Area=South 80 100 21.739 0.001 3.256

$quanti
$quanti$‘1‘
$‘1‘

v.test Mean in Overall sd in Overall p.value
category mean category sd

Latitude 2.78 56.10 49.900 5.850 6.98 0.00549
Amplitude 2.14 22.00 18.800 4.840 4.61 0.03220
July -1.99 16.80 18.900 2.450 3.33 0.04610
June -2.06 14.70 16.800 2.520 3.07 0.03960
August -2.48 15.50 18.300 2.260 3.53 0.01310
May -2.55 10.80 13.300 2.430 2.96 0.01080
September -3.14 11.00 14.700 1.670 3.68 0.00171
January -3.26 -5.14 0.174 2.630 5.07 0.00113
December -3.27 -2.91 1.840 1.830 4.52 0.00108
November -3.36 0.60 5.080 0.940 4.14 0.00078
Annual -3.37 5.50 9.370 0.767 3.56 0.00074
April -3.39 4.67 8.380 1.550 3.40 0.00071
February -3.44 -4.60 0.957 2.340 5.01 0.00058
October -3.45 5.76 10.100 0.919 3.87 0.00055
March -3.68 -1.14 4.060 1.100 4.39 0.00024

$quanti$‘2‘
NULL
$quanti$‘3‘

v.test Mean in Overall sd in Overall p.value
category mean category sd

Annual 3.85 15.80 9.370 1.39 3.56 0.00012
September 3.81 21.20 14.700 1.54 3.68 0.00014
October 3.72 16.80 10.100 1.91 3.87 0.00020
August 3.71 24.40 18.300 1.88 3.53 0.00021
November 3.69 12.20 5.080 2.26 4.14 0.00022
July 3.60 24.50 18.900 2.09 3.33 0.00031
April 3.53 13.90 8.380 1.18 3.40 0.00041
March 3.45 11.10 4.060 1.27 4.39 0.00056
February 3.43 8.95 0.957 1.74 5.01 0.00059
June 3.39 21.60 16.800 1.86 3.07 0.00070
December 3.39 8.95 1.840 2.34 4.52 0.00071
January 3.29 7.92 0.174 2.08 5.07 0.00099
May 3.18 17.60 13.300 1.55 2.96 0.00146
Latitude -3.23 39.40 49.900 1.52 6.98 0.00126



196 Exploratory Multivariate Analysis by Example Using R

These clusters can also be described by the principal components. To do
so, a description identical to that carried out by the quantitative variables
is conducted from the individuals’ coordinates on the principal components.
Table 4.3 thus shows that the capitals in cluster 1 (and 3, respectively) have
a significantly weaker (or stronger, respectively) coordinate than the others
in the first dimension. The coordinates in the third dimension are weaker for
the capitals in cluster 2. It must be noted that only 1% of inertia is explained
by component 3, and we shall therefore comment no further on this result.

TABLE 4.3
Definition of Clusters (See Section 3.7.2.2) Resulting from the Clustering by
Principal Components

> res.hcpc$desc.axe
$quanti
$quanti$‘1‘

v.test Mean in category Overall mean sd in category Overall sd p.value
Dim.1 -3.32 -3.37 1.69e-16 0.849 3.15 0.0009087
$quanti$‘2‘

v.test Mean in category Overall mean sd in category Overall sd p.value
Dim.3 -2.41 -0.175 -4.05e-16 0.218 0.355 0.0157738
$quanti$‘3‘

v.test Mean in category Overall mean sd in category Overall sd p.value
Dim.1 3.86 5.66 1.69e-16 1.26 3.15 0.00011196

It may be interesting to illustrate the cluster by using individuals specific to
that class. To do so, two di↵erent kinds of specific individuals are suggested:
paragons, that is to say, the individuals which are closest to the centre of
the class; and the specific individuals, that is to say those furthest from the
centres of other clusters. To do so, the object desc.ind$para contains the
individuals sorted into clusters and the distance between each individual and
the centre of its class. The object desc.ind$spec contains the individuals
sorted by cluster and the distance between each individual and the closest
cluster centre (see Table 4.4). Thus, Oslo is the capital which best represents
the cities in cluster 1, whereas Berlin and Rome are the paragons of clusters
2 and 3, respectively. Reykjavik is specific to cluster 1 because it is the city
furthest from the centres of clusters 2 and 3, so we can consider it to be the
most specific to cluster 1. Paris and Athens are specific to clusters 2 and 3.
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TABLE 4.4
Paragons and Specific Individuals

> res.hcpc$desc.ind
$para
cluster: 1

Oslo Helsinki Stockholm Minsk Moscow
0.339 0.884 0.922 0.965 1.770

-------------------------------------------------
cluster: 2

Berlin Sarajevo Brussels Prague Amsterdam
0.576 0.716 1.040 1.060 1.120

-------------------------------------------------
cluster: 3

Rome Lisbon Madrid Athens
0.36 1.74 1.84 2.17

$spec
cluster: 1
Reykjavik Moscow Helsinki Minsk Oslo

5.47 4.34 4.28 3.74 3.48
-------------------------------------------------
cluster: 2

Paris Budapest Brussels Dublin Amsterdam
4.38 4.37 4.35 4.28 4.08

-------------------------------------------------
cluster: 3

Athens Lisbon Rome Madrid
7.67 5.66 5.35 4.22

4.9 Example: The Tea Dataset

4.9.1 Data Description — Issues

Let us return to the tea-drinking data presented in Chapter 3 on MCA in
Section 3.1. The objective here is to propose a clustering of the 300 tea
drinkers into a few clusters corresponding to distinct tea-drinking profiles.
For MCA, only the 19 questions relating to the way in which the participants
drink tea were used as active variables; here again, these variables alone will
be used to construct the clusters.

4.9.2 Constructing the AHC

Since the variables are categorical, the MCA performed prior to the clustering
means the principal component coordinates can be used as quantitative vari-
ables. The last components of the MCA are generally considered as noise that
should be disregarded in order to construct a more stable clustering. The first
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components are thus retained. Here, we choose 20 components which sum-
marize 87% of the total inertia (we would rather keep more components than
getting rid of informative ones). After the MCA, an agglomerative hierarchical
clustering is performed:

> library(FactoMineR)
> tea <- read.table("http://factominer.free.fr/book/tea.csv",header=T,sep=";")
> res.mca<-MCA(tea,ncp=20,quanti.sup=22,quali.sup=c(19:21,23:36),graph=F)
> res.hcpc <- HCPC(res.mca)

The shape of the hierarchical tree, much like the bar chart of the iner-
tias associated with the nodes, suggests partitioning into three clusters (see
Figure 4.12).
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FIGURE 4.12
Tea data: hierarchical tree.

We can then colour-code the individuals on the first two principal compo-
nents map according to the cluster to which they belong (see Figure 4.13).

> plot(res.hcpc,choice="map",ind.names=FALSE)

The between-clusters inertia of partitioning into two clusters, 0.085 (first
part of the following results), is less than the first eigenvalue of the MCA
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�1 = 0.148 (second part of the results below). This is always true and can be
explained by the fact that the principal component gives more nuances than
partitioning into two clusters. Similarly, the map induced by the two main
principal components expresses more inertia (0.148 + 0.122 = 0.270) than
partitioning into three clusters (0.085 + 0.069 = 0.154). This is an advantage
when we wish to summarise the information easily, for example to plot the
results. The MCA will be used to interpret the results in greater detail.

> round(res.hcpc$call$t$inert.gain,3)
[1] 0.085 0.069 0.057 0.056 0.056 0.055 0.050

> round(res.mca$eig[,1],3)
[1] 0.148 0.122 0.090 0.078 0.074 0.071 0.068
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FIGURE 4.13
Tea data: representation of the partition on the principal component map.

4.9.3 Defining the Clusters

To describe the characteristics of the individuals for each of the clusters,
that is, their tea-drinking profiles, we define the clusters using the vari-
ables (object res.hcpc$desc.var, see Table 4.5) and the components (ob-
ject res.hcpc$desc.axe, see Table 4.7). In this instance, it is less pertinent
to describe the clusters from the individuals as they are unknown and thus
cannot be used for reference. Descriptions from categories (see Table 4.6)
are simplified by retaining only the overexpressed categories associated with
a p-value less than 2%.
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TABLE 4.5
Tea Data: Description of the Partition into Three Clusters from the Variables

> res.hcpc$desc.var$test.chi2
p.value df

place.of.purchase 8.47e-79 4
format 3.14e-47 4
type 1.86e-28 10
tearoom 9.62e-19 2
pub 8.54e-10 2
friends 6.14e-08 2
restaurant 3.54e-07 2
how 3.62e-06 6
variety 1.78e-03 4
sex 1.79e-03 2
frequency 1.97e-03 6
work 3.05e-03 2
afternoon.tea 3.68e-03 2
after.lunch 1.05e-02 2
after.dinner 2.23e-02 2
anytime 3.60e-02 2
sugar 3.69e-02 2
refined 4.08e-02 2

The variables place of purchase and format best characterise the parti-
tioning into three clusters (weakest probabilities equal to 8.47 ⇥ 10�79 and
3.14⇥ 10�47, see Table 4.5).

More precisely, each of the clusters is characterised by one category of the
variable place of purchase and one category of the variable format. The first
cluster is characterised by individuals who buy tea in supermarkets in sachets:
85.9% of individuals who buy tea in supermarkets are in cluster 1 and 93.8% of
the individuals in cluster 1 buy their tea in supermarkets. Similarly, cluster 2
is characterised by those who buy loose tea in specialist shops whereas cluster
3 is characterised by those who buy in both types of shop (supermarket and
specialist), in both formats (sachet and loose). Other variables and categories
are used to characterise each of the clusters although less distinctly (with a
higher p-value).

The description of clusters from the principal components (see Table 4.7)
shows that the individuals in cluster 1 have extremely weak coordinates on
axes 1 and 2 (compared to individuals from other clusters). The individuals
from cluster 2 have strong coordinates on component 2 and the individuals
from cluster 3 have strong coordinates on component 1. We here retain the
class-component pairs with a v-test greater than 3 as the components were
used to construct the clusters.
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TABLE 4.6
Tea Data: Description of Partitioning into Three Clusters from the Categories

> res.hcpc$desc.var$category
$category$‘1‘

Cla/Mod Mod/Cla Global p.value v.test
place.of.purchase=supermarket 85.9 93.8 64.0 4.11e-40 13.30
format=sachet 84.1 81.2 56.7 2.78e-25 10.40
tearoom=not.tearoom 70.7 97.2 80.7 2.09e-18 8.75
type=known.brand 83.2 44.9 31.7 2.78e-09 5.94
pub=not.pub 67.1 90.3 79.0 2.13e-08 5.60
friends=not.friends 76.9 45.5 34.7 3.42e-06 4.64
restaurant=not.restaurant 64.7 81.2 73.7 6.66e-04 3.40
type=shop.brand 90.5 10.8 7.0 2.40e-03 3.04
afternoon.tea=Not.afternoon.t 67.9 50.6 43.7 5.69e-03 2.77
how=nothing.added 64.1 71.0 65.0 1.32e-02 2.48
work=not.work 63.4 76.7 71.0 1.41e-02 2.46
sugar=sugar 66.2 54.5 48.3 1.42e-02 2.45
anytime=not.anytime 64.0 71.6 65.7 1.45e-02 2.45
frequency=1 to 2/week 75.0 18.8 14.7 2.39e-02 2.26
frequency=1/day 68.4 36.9 31.7 2.61e-02 2.22
type=unknown 91.7 6.2 4.0 2.84e-02 2.19
age_Q=15-24 68.5 35.8 30.7 2.90e-02 2.18
after.lunch=not.after.lunch 61.3 89.2 85.3 3.76e-02 2.08
type=cheapest 100.0 4.0 2.3 4.55e-02 2.00

$category$‘2‘
Cla/Mod Mod/Cla Global p.value v.test

place.of.purchase=specialist.shop 90.0 84.4 10.0 7.39e-30 11.40
format=loose 66.7 75.0 12.0 1.05e-19 9.08
type=luxury 49.1 81.2 17.7 4.67e-17 8.39
variety=green 27.3 28.1 11.0 7.30e-03 2.68
refined=refined 13.5 90.6 71.7 1.34e-02 2.47
sex=M 16.4 62.5 40.7 1.43e-02 2.45
restaurant=not.restaurant 13.1 90.6 73.7 2.59e-02 2.23
after.dinner=after.dinner 28.6 18.8 7.0 3.10e-02 2.16
exotic=not.exotic 14.6 71.9 52.7 3.23e-02 2.14

$category$‘3‘
Cla/Mod Mod/Cla Global p.value v.test

place.of.purchase=supermarket+specialist 85.9 72.8 26.0 1.12e-33 12.10
format=sachet+loose 67.0 68.5 31.3 2.56e-19 8.99
tearoom=tearoom 77.6 48.9 19.3 2.35e-16 8.20
pub=pub 63.5 43.5 21.0 1.95e-09 6.00
friends=friends 41.8 89.1 65.3 2.50e-09 5.96
type=varies 51.8 63.0 37.3 2.63e-09 5.95
restaurant=restaurant 54.4 46.7 26.3 3.92e-07 5.07
how=other 100.0 9.8 3.0 3.62e-05 4.13
frequency=more than 2/day 41.7 57.6 42.3 6.13e-04 3.43
afternoon.tea=afternoon.tea 38.5 70.7 56.3 1.22e-03 3.23
work=work 44.8 42.4 29.0 1.32e-03 3.21
sex=F 37.1 71.7 59.3 4.90e-03 2.81
after.lunch=after.lunch 50.0 23.9 14.7 5.84e-03 2.76
how=lemon 51.5 18.5 11.0 1.32e-02 2.48
sugar=not.sugar 36.1 60.9 51.7 4.54e-02 2.00

Note: Output from the function catdes (see Section 3.7.2.3).
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TABLE 4.7
Tea Data: Description of the Partition into Three Clusters from the Principal
Components

> res.hcpc$desc.axe
$quanti
$quanti$‘1‘

v.test Mean in category Overall mean sd in category Overall sd p.value
Dim.2 -7.80 -0.1320 4.93e-17 0.181 0.349 6.36e-15
Dim.1 -12.40 -0.2320 -2.00e-17 0.214 0.385 2.31e-35

$quanti$‘2‘
v.test Mean in category Overall mean sd in category Overall sd p.value

Dim.2 13.90 0.8120 4.93e-17 0.234 0.349 4.91e-44
Dim.4 4.35 0.2030 -3.35e-17 0.370 0.279 1.36e-05

$quanti$‘3‘
v.test Mean in category Overall mean sd in category Overall sd p.value

Dim.1 13.50 0.4520 -2.00e-17 0.252 0.385 1.89e-41
Dim.4 -4.73 -0.1150 -3.35e-17 0.292 0.279 2.30e-06

4.10 Dividing Quantitative Variables into Classes

For certain analyses, it is preferable to transform a quantitative variable into
a categorical variable. To do so, the variable must be divided into classes.
The variable age for the tea data (see chapter on MCA) was noted as quanti-
tative in the questionnaire. To highlight the nonlinear relationships with this
variable, it must be recoded as categorical. Let us consider this variable age
and study its transformation into a categorical variable.

One strategy is to use “natural” classes defined prior to the analysis (for
example, under 18 years, 18–30 years, etc.). Another strategy is to construct
likely classes. In this case, we choose a number of classes; generally between
four and seven so as to have enough classes but not too many:

> tea <- read.table("http://factominer.free.fr/book/tea.csv",header=T,sep=";")
> nb.clusters <- 4
> coupure <- quantile(tea[,22],seq(0,1,1/nb.clusters))
> Xqual <- cut(tea[,22],coupure,include.lowest=TRUE)
> summary(Xqual)
[15,23] (23,32] (32,48] (48,90]

86 66 74 74

A third strategy is to choose the number of classes and their limits from
the data. For example, we can use a histogram (see Figure 4.14) representing
the distribution of the variable so as to define levels of division:

> hist(tea$age,col="grey",main="Histogram of the variable age",
freq=FALSE,xlab="age",nclass=15)

http://factominer.free.fr/book/tea.csv
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Tea data: bar chart for the variable age.

In most cases, the choice of this division is not instantaneous as it is il-
lustrated in Figure 4.14. It is convenient to use hierarchical clustering to
determine a number of classes. Clusters can then be defined with the hierar-
chical clustering or by using, for example, the K-means method.

The following lines of code construct the hierarchical tree and consolidate
the results using the K-means method (the K-means method converges very
quickly when implemented on one variable alone):

> vari <- tea[,22]
> res.hcpc <- HCPC(vari,iter.max=10)

By default, the function HCPC constructs a hierarchical tree. The option
indicated here iter.max=10 also conducts a K-means algorithm. The hierar-
chical tree (see Figure 4.15) suggests dividing the variable into four classes.
This tree is constructed according to the values of the variable age on the
abscissa axis.

We can then construct a new categorical variable aaQuali in the following
manner:

> max.cla <- unlist(by(res.hcpc$data.clust[,1],res.hcpc$data.clust[,2],max))
> breaks <- c(min(vari),max.cla)
> aaQuali <- cut(vari,breaks,include.lowest=TRUE)
> summary(aaQuali)
[15,28] (28,42] (42,57] (57,90]

130 68 64 38

This division seems of a better quality than the previous division into likely
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FIGURE 4.15
Tea data: dendrogram for the variable age.

classes, as the hierarchical clustering detects the gaps in the distribution (see
the bar chart in Figure 4.14).

If we wish to divide multiple quantitative variables into classes, it can be
tedious to determine the number of classes to be chosen variable by variable
from the hierarchical tree. In such cases, the function HCPC can be used,
from which we can choose the optimal number of classes as determined by that
function. The following lines of code are used to divide all of the quantitative
variables from the dataset don into classes:

> don.quali <- don
> for (i in 1:ncol(don.quali)){
+ vari <- don.quali[,i]
+ res.hcpc <- HCPC(vari,nb.clust=-1,graph=FALSE)
+ maxi <- unlist(by(res.hcpc$data.clust[,1],res.hcpc$data.clust[,2],max))
+ breaks <- c(min(vari),maxi)
+ aaQuali <- cut(vari,breaks,include.lowest=TRUE)
+ don.quali[,i] <- aaQuali
+ }

The resultant table don.quali contains only categorical variables corre-
sponding to the division into classes of each of the quantitative variables from
the initial table don.



Appendix

A.1 Percentage of Inertia Explained by the First
Component or by the First Plane

Here, we aim to test the percentage of inertia explained by a component, and
then the percentage of inertia expressed by the first plane. To do so, we simu-
lated 10,000 datasets for a number of individuals I and a number of normally
distributed independent variables K. We then conduct a standardised princi-
pal component analysis (PCA) (standardised variables) for each dataset and
then calculate the percentage of inertia explained by one component and the
that expressed by one plane. In Tables A.1 and A.2 (respectively Tables A.3
and A.4) we define the quantile 0.95 of the 10,000 percentages of inertia of the
first component (and the first plane, respectively) obtained for a given table
size (I and K).

Thus, comparing the percentage of inertia of a component or plane with
the associated value in the table amounts to testing the null hypothesis H0:
the percentage of inertia explained by the first component (and the first plane,
respectively) is not significantly greater than that obtained with the (normally
distributed) independent data.
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TABLE A.1
95th percentile of the percentage of inertia explained by the
first component of 10,000 PCAs performed on tables made up
of independent variables (the number of individuals varies
between 5 and 100, and the number of variables from 4 to 16).
For example, for a table with I = 30 individuals and K = 10
variables, 95% of the percentages of inertia explained by the
first component are less than 23.6%.

Number of variables
nbind 4 5 6 7 8 9 10 11 12 13 14 15 16

5 72.6 67.6 63.3 60.4 57.9 55.5 53.9 52.6 51.3 50.1 49.1 48.4 47.5
6 67.6 61.8 57.6 54.7 52.4 50.4 48.7 46.9 45.8 44.6 43.6 42.9 42.0
7 64.0 58.3 54.0 50.9 48.3 46.1 44.5 42.9 41.8 40.4 39.8 38.8 38.1
8 60.7 54.9 50.7 47.7 45.2 43.1 41.3 40.1 38.7 37.4 36.5 35.9 35.0
9 58.6 52.3 48.7 45.0 42.7 40.8 39.1 37.7 36.3 35.2 34.3 33.5 32.5
10 56.8 50.5 46.4 43.5 40.7 38.6 36.9 35.7 34.4 33.4 32.1 31.5 30.7
11 55.0 48.8 44.6 41.6 39.0 37.2 35.4 33.9 32.8 31.7 30.8 29.7 29.1
12 53.3 47.5 43.2 40.1 37.7 35.6 34.1 32.5 31.5 30.3 29.4 28.6 27.9
13 52.0 46.2 41.8 39.0 36.4 34.5 32.9 31.3 30.2 29.1 28.2 27.4 26.7
14 51.0 45.2 40.9 37.8 35.5 33.3 31.7 30.3 29.0 28.1 27.2 26.4 25.6
15 50.1 44.1 40.0 36.8 34.4 32.4 30.8 29.4 28.3 27.3 26.5 25.5 24.7
16 49.3 43.2 39.2 36.0 33.7 31.6 29.9 28.7 27.4 26.5 25.5 24.7 24.0
17 48.4 42.3 38.3 35.2 32.9 31.0 29.2 27.9 26.7 25.7 24.9 24.0 23.3
18 47.6 41.8 37.6 34.5 32.2 30.2 28.7 27.1 26.0 25.1 24.2 23.4 22.7
19 46.9 41.1 36.8 33.9 31.5 29.7 28.0 26.6 25.6 24.5 23.5 22.8 22.1
20 46.1 40.5 36.3 33.5 30.9 29.0 27.4 26.1 25.0 24.0 23.0 22.3 21.6
25 44.0 38.1 33.9 31.0 28.6 26.9 25.2 23.8 22.8 21.9 21.0 20.3 19.6
30 41.9 36.4 32.4 29.4 27.1 25.1 23.6 22.4 21.3 20.3 19.5 18.8 18.1
35 40.7 35.0 31.0 28.1 25.9 23.9 22.5 21.2 20.1 19.2 18.4 17.7 17.0
40 39.7 34.0 30.1 27.1 24.7 23.0 21.6 20.3 19.3 18.3 17.5 16.8 16.2
45 38.8 33.0 29.1 26.3 24.0 22.3 20.8 19.6 18.5 17.6 16.8 16.1 15.5
50 38.0 32.4 28.5 25.6 23.4 21.6 20.1 18.9 17.9 17.0 16.2 15.6 15.0
100 34.1 28.5 24.8 21.9 19.9 18.2 16.9 15.7 14.7 14.0 13.2 12.6 12.0
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TABLE A.2
95th percentile of the percentage of inertia explained by the
first component of 10,000 PCAs performed on tables made up
of independent variables (the number of individuals varies
between 5 and 100, and the number of variables from 17 to
200). For example, for a table with I = 50 individuals and
K = 30 variables, 95% of the percentages of inertia explained
by the first component are less than 10.4%.

Number of variables
nbind 17 18 19 20 25 30 35 40 50 75 100 150 200

5 46.9 46.2 45.5 45.0 42.9 41.3 39.8 39.0 37.3 35.0 33.6 32.0 31.0
6 41.1 40.7 40.1 39.5 37.4 35.6 34.5 33.5 31.8 29.5 28.2 26.6 25.7
7 37.2 36.7 36.0 35.6 33.5 31.8 30.4 29.6 28.1 25.8 24.5 23.0 22.1
8 34.4 33.7 33.1 32.6 30.4 28.8 27.6 26.7 25.2 23.1 21.8 20.4 19.5
9 32.1 31.3 30.8 30.2 28.0 26.5 25.4 24.4 23.0 21.0 19.7 18.3 17.5
10 30.0 29.5 28.8 28.4 26.2 24.6 23.6 22.7 21.4 19.3 18.1 16.7 15.9
11 28.5 27.8 27.3 26.8 24.7 23.3 22.1 21.3 19.9 17.9 16.8 15.4 14.6
12 27.1 26.5 25.9 25.5 23.5 22.0 20.9 20.0 18.7 16.7 15.6 14.3 13.6
13 26.0 25.3 24.9 24.2 22.3 20.9 19.8 19.0 17.7 15.7 14.7 13.4 12.7
14 25.0 24.4 23.9 23.4 21.3 20.0 18.9 18.1 16.8 14.9 13.9 12.6 11.9
15 24.1 23.5 23.0 22.5 20.7 19.2 18.1 17.3 16.1 14.2 13.2 12.0 11.2
16 23.5 22.9 22.3 21.7 19.9 18.5 17.4 16.6 15.4 13.6 12.5 11.3 10.7
17 22.7 22.2 21.6 21.1 19.2 17.8 16.8 16.0 14.8 13.0 12.0 10.8 10.1
18 22.1 21.5 21.0 20.4 18.6 17.2 16.3 15.4 14.2 12.5 11.5 10.3 9.7
19 21.4 20.9 20.4 19.9 18.0 16.7 15.8 14.9 13.8 12.1 11.1 9.9 9.3
20 21.0 20.4 20.0 19.4 17.6 16.3 15.3 14.5 13.3 11.6 10.6 9.5 8.9
25 19.0 18.4 17.9 17.4 15.7 14.5 13.5 12.8 11.7 10.0 9.1 8.1 7.5
30 17.5 17.0 16.6 16.1 14.4 13.2 12.3 11.5 10.5 8.9 8.1 7.1 6.5
35 16.5 16.0 15.5 15.1 13.4 12.2 11.3 10.6 9.6 8.1 7.3 6.4 5.8
40 15.6 15.2 14.7 14.2 12.6 11.5 10.6 10.0 8.9 7.5 6.7 5.8 5.3
45 14.9 14.4 14.0 13.6 12.0 10.9 10.0 9.4 8.4 7.0 6.3 5.4 4.9
50 14.4 13.9 13.5 13.1 11.5 10.4 9.6 9.0 8.0 6.6 5.9 5.0 4.6
100 11.6 11.1 10.7 10.3 8.9 7.9 7.2 6.6 5.8 4.7 4.0 3.3 2.9
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TABLE A.3
95th percentile of the percentage of inertia explained by the
first component of 10,000 PCAs performed on tables made up
of independent variables (the number of individuals varies
between 5 and 100, and the number of variables from 4 to 16).
For example, for a table with I = 30 individuals and K = 10
variables, 95% of the percentages of inertia explained by the
first plane are less than 41.1%.

Number of variables
nbind 4 5 6 7 8 9 10 11 12 13 14 15 16

5 96.5 93.1 90.2 87.6 85.5 83.4 81.9 80.7 79.4 78.1 77.4 76.6 75.5
6 93.3 88.6 84.8 81.5 79.1 76.9 75.1 73.2 72.2 70.8 69.8 68.7 68.0
7 90.5 84.9 80.9 77.4 74.4 72.0 70.1 68.3 67.0 65.3 64.3 63.2 62.2
8 88.1 82.3 77.2 73.8 70.7 68.2 66.1 64.0 62.8 61.2 60.0 59.0 58.0
9 86.1 79.5 74.8 70.7 67.4 65.1 62.9 61.1 59.4 57.9 56.5 55.4 54.3
10 84.5 77.5 72.3 68.2 65.0 62.4 60.1 58.3 56.5 55.1 53.7 52.5 51.5
11 82.8 75.7 70.3 66.3 62.9 60.1 58.0 56.0 54.4 52.7 51.3 50.1 49.2
12 81.5 74.0 68.6 64.4 61.2 58.3 55.8 54.0 52.4 50.9 49.3 48.2 47.2
13 80.0 72.5 67.2 62.9 59.4 56.7 54.4 52.2 50.5 48.9 47.7 46.6 45.4
14 79.0 71.5 65.7 61.5 58.1 55.1 52.8 50.8 49.0 47.5 46.2 45.0 44.0
15 78.1 70.3 64.6 60.3 57.0 53.9 51.5 49.4 47.8 46.1 44.9 43.6 42.5
16 77.3 69.4 63.5 59.2 55.6 52.9 50.3 48.3 46.6 45.2 43.6 42.4 41.4
17 76.5 68.4 62.6 58.2 54.7 51.8 49.3 47.1 45.5 44.0 42.6 41.4 40.3
18 75.5 67.6 61.8 57.1 53.7 50.8 48.4 46.3 44.6 43.0 41.6 40.4 39.3
19 75.1 67.0 60.9 56.5 52.8 49.9 47.4 45.5 43.7 42.1 40.7 39.6 38.4
20 74.1 66.1 60.1 55.6 52.1 49.1 46.6 44.7 42.9 41.3 39.8 38.7 37.5
25 72.0 63.3 57.1 52.5 48.9 46.0 43.4 41.4 39.6 38.1 36.7 35.5 34.5
30 69.8 61.1 55.1 50.3 46.7 43.6 41.1 39.1 37.3 35.7 34.4 33.2 32.1
35 68.5 59.6 53.3 48.6 44.9 41.9 39.5 37.4 35.6 34.0 32.7 31.6 30.4
40 67.5 58.3 52.0 47.3 43.4 40.5 38.0 36.0 34.1 32.7 31.3 30.1 29.1
45 66.4 57.1 50.8 46.1 42.4 39.3 36.9 34.8 33.1 31.5 30.2 29.0 27.9
50 65.6 56.3 49.9 45.2 41.4 38.4 35.9 33.9 32.1 30.5 29.2 28.1 27.0
100 60.9 51.4 44.9 40.0 36.3 33.3 31.0 28.9 27.2 25.8 24.5 23.3 22.3
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TABLE A.4
95th percentile of the percentage of inertia explained by the
first component of 10,000 PCAs performed on tables made up
of independent variables (the number of individuals varies
between 5 and 100, and the number of variables from 17 to
200). For example, for a table with I = 50 individuals and
K = 30 variables, 95% of the percentages of inertia explained
by the first plane are less than 19.1%.

Number of variables
nbind 17 18 19 20 25 30 35 40 50 75 100 150 200

5 74.9 74.2 73.5 72.8 70.7 68.8 67.4 66.4 64.7 62.0 60.5 58.5 57.4
6 67.0 66.3 65.6 64.9 62.3 60.4 58.9 57.6 55.8 52.9 51.0 49.0 47.8
7 61.3 60.7 59.7 59.1 56.4 54.3 52.6 51.4 49.5 46.4 44.6 42.4 41.2
8 57.0 56.2 55.4 54.5 51.8 49.7 47.8 46.7 44.6 41.6 39.8 37.6 36.4
9 53.6 52.5 51.8 51.2 48.1 45.9 44.4 42.9 41.0 38.0 36.1 34.0 32.7
10 50.6 49.8 49.0 48.3 45.2 42.9 41.4 40.1 38.0 35.0 33.2 31.0 29.8
11 48.1 47.2 46.5 45.8 42.8 40.6 39.0 37.7 35.6 32.6 30.8 28.7 27.5
12 46.2 45.2 44.4 43.8 40.7 38.5 36.9 35.5 33.5 30.5 28.8 26.7 25.5
13 44.4 43.4 42.8 41.9 39.0 36.8 35.1 33.9 31.8 28.8 27.1 25.0 23.9
14 42.9 42.0 41.3 40.4 37.4 35.2 33.6 32.3 30.4 27.4 25.7 23.6 22.4
15 41.6 40.7 39.8 39.1 36.2 34.0 32.4 31.1 29.0 26.0 24.3 22.4 21.2
16 40.4 39.5 38.7 37.9 35.0 32.8 31.1 29.8 27.9 24.9 23.2 21.2 20.1
17 39.4 38.5 37.6 36.9 33.8 31.7 30.1 28.8 26.8 23.9 22.2 20.3 19.2
18 38.3 37.4 36.7 35.8 32.9 30.7 29.1 27.8 25.9 22.9 21.3 19.4 18.3
19 37.4 36.5 35.8 34.9 32.0 29.9 28.3 27.0 25.1 22.2 20.5 18.6 17.5
20 36.7 35.8 34.9 34.2 31.3 29.1 27.5 26.2 24.3 21.4 19.8 18.0 16.9
25 33.5 32.5 31.8 31.1 28.1 26.0 24.5 23.3 21.4 18.6 17.0 15.2 14.2
30 31.2 30.3 29.5 28.8 26.0 23.9 22.3 21.1 19.3 16.6 15.1 13.4 12.5
35 29.5 28.6 27.9 27.1 24.3 22.2 20.7 19.6 17.8 15.2 13.7 12.1 11.1
40 28.1 27.3 26.5 25.8 23.0 21.0 19.5 18.4 16.6 14.1 12.7 11.1 10.2
45 27.0 26.1 25.4 24.7 21.9 20.0 18.5 17.4 15.7 13.2 11.8 10.3 9.4
50 26.1 25.3 24.6 23.8 21.1 19.1 17.7 16.6 14.9 12.5 11.1 9.6 8.7
100 21.5 20.7 19.9 19.3 16.7 14.9 13.6 12.5 11.0 8.9 7.7 6.4 5.7
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A.2 R Software

A.2.1 Introduction

The R software is free and can be downloaded at the following address: http:
//cran.r-project.org/. The aim here is not to explain all of the di↵erent
functions of the software, but rather to briefly outline how to conduct the
analyses detailed in this work. For a more detailed presentation of R, please
refer to the R manual:
http://cran.r-project.org/doc/manuals/R-intro.html

We will first describe a detailed example before moving on to list some
of the most useful functions for importing data, constructing graphs, and
so forth. In Section A.2.2, we present the Rcmdr package which is used to
conduct these analyses from a scroll-down menu, and in Section A.2.3, we
present the FactoMineR package in further detail. This package is dedicated
to data analysis and is used throughout this work. To begin, let us refer
back to the example of the PCA on temperature data (see Section 1.10) and
comment on the following lines of code:

1 > library(FactoMineR)
2 > temperature <- read.table("http://factominer.free.fr/book/temperature.csv",

header=TRUE,sep=";",dec=".",row.names=1)
3 > res <- PCA(temperature,ind.sup=24:35,quanti.sup=13:16,quali.sup=17)
4 > plot.PCA(res,choix="ind",habillage=17,cex=0.7,title="My PCA")
5 > graph.var(res,draw=c("var","Annual"),label=c("May","Annual"))
6 > write.infile(res,file="c:/myfile.csv",sep=";")

1. Loading FactoMineR.
2. Importation from the dataset: the data table can be found in the file

http://factominer.free.fr/book/temperature.csv. The first
line of the file contains the names of the variables; sep=";" the
field separator is the character ”;” (standard import format for csv
files), dec="." the decimal separator is ”.”; row.names=1 the first
column contains the names of the individuals.

3. Conducting a PCA using the function PCA: individuals 24 to 35
(24:35) are supplementary, variables 13 to 16 are quantitative sup-
plementary and variable 17 is categorical supplementary. By de-
fault, the function centres and reduces the variables (the argument
scale.unit=TRUE is used by default and does not need to be spec-
ified).

4. The function plot.PCA is vital to improve the default graphs: here,
we colour-code the individuals according to the modalities of vari-
able 17 (categorical supplementary variable), character size is also
reduced (cex=0.7 rather than 1 by default) and a title is given to
the graph.

http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/doc/manuals/R-intro.html
http://factominer.free.fr/book/temperature.csv
http://factominer.free.fr/book/temperature.csv
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5. Construction of a graph of variables: the function graph.var enables
us to choose the variables that we would like to appear on the graph
of variables. Here, all of the active variables feature on the graph,
as does the Average; only the headings for the variables May and
Average are present.

6. Exportation of the results: the function write.infile is used to write
all of the results contained in the object res in a file (here in the
file c:/myfile.csv).

Exporting graphs. The graphs can be exported in di↵erent formats (pdf,
emf, eps, jpg, etc.). To choose the format, click on the graph and select
File then Save as. Another option is to right-click on the graph and select
Copy as vectorial. The graph can then be pasted directly into a word
processing programme (Word or PowerPoint for example). It is therefore
possible to extract the graph and to modify it in order to improve its legibility
(in PowerPoint, using Draw and Ungroup).

Choosing the individuals and/or variables for analysis. It is easy to con-
duct an analysis from part of a dataset. The following lines of code can be used
to conduct a PCA on part of a data table (between the [ , ] the individuals
are specified before the comma and the variables after the comma):

1 > res<-PCA(temperature[,1:12])
2 > res<-PCA(temperature[c(1:10,15:20),1:12])
3 > res<-PCA(temperature[-c(4:6,8,10),1:12])

1. On all the individuals but only with variables 1 to 12.
2. On individuals 1 to 10 and 15 to 20 but only with variables 1 to 12.
3. On all the individuals except 4, 5, 6, 8 and 10 and with variables 1

to 12.

Import and Export Functions

Function Description
read.table Imports a data table from a file and creates a data frame

(table containing quantitative and/or categorical vari-
ables as well as information such as the names of the
rows and columns)

read.csv Imports a data table from a .csv file and creates a data
frame

write.table Writes a table into a file
write.infile Function of the FactoMineR package which writes all of

the elements of a list in a .csv file
save Saves R objects in a .Rdata file
load Finds the objects saved using the save function
history Finds the most recently executed lines of code
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Function Description
save.history Saves the history of the most recently executed lines of

code

Data Management Functions

Function Description
cbind.data.frame Juxtaposes data frames into columns (groups the col-

umns next to one another)
rbind.data.frame Juxtaposes data frames into rows; the names of the

columns from the data frames must be identical (groups
the rows one on top of another, the columns are sorted
in the same order for all of the tables in order to link
the variables prior to merging)

sort Sorts a vector in ascending order (or descending if
decreasing = TRUE)

order Sorts a table into one or more columns (or rows):
x[order(x[,3], -x[,6]), ] sorts the table x in the
(ascending) order of the third column in x then, in the
case of equal values in the third column, in (decreasing)
order of the sixth column of x

dimnames Gives the names of the dimensions of an object (list,
matrix, data frame, etc.)

rownames Gives the names of the rows for a data frame or a matrix
colnames Gives the names of the columns for a data frame or a

matrix
dim Gives the dimensions of an object
nrow Gives the number of rows in a table
ncol Gives the number of columns in a table
factor Defines a vector as a factor, that is, a categorical variable

(if ordered=TRUE the levels of the factors are considered
to be in sequence)

levels Gives the categories for a categorical variable (level of a
factor)

nlevels Gives the number of categories for a categorical variable
which Gives the positions for the actual values of a vector

or a logic table: the setting arr.ind=TRUE is used
to return the numbers of the rows and columns in
a table: which(c(1,4,3,2,5,3)==3) returns 3 and
6; which(matrix(1:12,nrow=4)==3,arr.ind=TRUE) re-
turns (row 3, column 1)

is.na Tests to see if the data is significant
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Basic Statistical Functions

The following statistical functions are used to describe a quantitative variable
x. For all of these functions, the setting na.rm=TRUE is used to eliminate the
missing data prior to calculation. If na.rm=FALSE and the data are missing,
the function will put out an error message.

Function Description
mean(x,
na.rm=TRUE)

Average of x

sd(x) Standard deviation of x
var(x) Variance of x if x is a variance–covariance vector or

matrix if x is a matrix (unbiased variance)
cor(x) Correlation matrix of x
quantile(x,
probs)

Quantiles of x of the type probs

sum(x) Sum of the elements ofx
min(x) Minimum of x
max(x) Maximum of x
scale(x,
center=TRUE,
scale=TRUE)

Centres (center=TRUE) and reduces (scale=TRUE) x

colMeans(x) Calculates the mean for each column in table x
rowMeans(x) Calculates the mean for each row in table x
apply(x,MARGIN,
FUN)

Applies the function FUN to the rows or columns in ta-
ble x: apply(x, 2, mean) calculates the mean for each
column in x; apply(x, 1, sum) calculates the sum for
each row in x

Principal Component Functions

Function Description
PCA Principal component analysis with the possibility of in-

cluding supplementary individuals, as well as quantita-
tive and categorical supplementary variables

CA Correspondence analysis with the possibility of includ-
ing supplementary rows and columns

MCA Multiple correspondence analysis with the possibility of
including supplementary individuals, and quantitative
and categorical supplementary variables

dimdesc Describes the principal components (i.e., the dimen-
sions)

catdes Describes a categorical variable in terms of quantitative
and/or categorical variables
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Function Description
condes Describes a quantitative variable in terms of quantita-

tive and/or categorical variables
HCPC Hierarchical clustering on principal components
graph.var Constructs the graph of variables from a limited number

of variables

Graphic Functions

Function Description
x11() Creates a new, empty graph window
pdf, postscript,
jpeg, png, bmp

Saves a graph in pdf, postscript, jpeg, png, or bmp
format; all of the functions are used in the same way:
pdf("MyGraph.pdf"); graphic orders; dev.o↵()

The Functions print and plot

The functions print and plot are generic functions, they give results that are
unique depending on the class of the object to which they are applied.

Function Description
print Writes the results (all or an extract)
plot Constructs a graph

For example, print.PCA, print.CA, print.MCA, can all be applied using
the generic instruction print. Depending on the class of the object (output
resulting from PCA, CA, MCA), the outputs or graphs will be specific to
these analyses. To access assistance for the function of writing a given object,
use, for example PCA: help("print.PCA").

A.2.2 The Rcmdr Package

The graphic interface R Commander is available in the package Rcmdr. This
interface means that R can be used simply, via a scroll-down menu. The aim
of this package is also to help people to learn to use the software as it also
provides the lines of code for the corresponding analyses. The Rcmdr interface
does not contain all of the functions available in R, nor does it contain all of
the options for the di↵erent functions, but the most common functions are
programmed, and are thus available.

As with any package, it only needs to be installed once, and then loaded
when needed, using:

> library(Rcmdr)

The interface (see Figure A.1) opens automatically. This interface has a
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FIGURE A.1
Main window of Rcmdr.

scroll-down menu, a script window and an output window. When the scroll-
down menu is used, the analysis is launched and the lines of code used to
generate the analysis appear in the script window.

To import data with Rcmdr, the simplest option is to import a .txt or .csv
file:
Data ! Import data ! from text file, clipboard or URL ...
The column separator (field separator) must then be specified, as must the
decimal separator (a ”.” or a ”,”).
To verify that the dataset has been successfully imported:
Statistics ! Summaries ! Active data set

When importing a dataset in csv format which contains the individuals’
logins, it is not possible to specify in Rcmdr’s scroll-down menu that the first
column contains the login. The dataset can be imported considering the login
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as a variable. The line of code is therefore modified in the the script window
by adding the argument row.names=1 and then clicking on Submit.

To change the active dataset, click on the Data set box. If the active
dataset is modified (for example, by converting a variable), this modification
must be validated (=refresh) by:
Data ! Active data set ! Refresh active data set

The output window writes the lines of code in red and the results in blue.
The graphs are constructed in R. At the end of a Rcmdr session, the script
window can be saved, including all of the instructions as well as the output
window and thus the results. Both R and Rmcdr can be closed simultaneously
by going to File ! Exit ! From Commander and R.

Remark
Writing in the Rcmdr script window or the R window amounts to the same
thing. If an instruction is set in motion in Rcmdr, it will also be recognised in
R and vice-versa. Objects created by Rcmdr can therefore be used in R.

A.2.3 The FactoMineR Package

The FactoMineR package (Husson et al., 2009; Lê et al., 2008) is dedicated
to exploratory data analysis. Most of the principal components methods are
programmed within it: principal component analysis (PCA function), corre-
spondence analysis (CA function), multiple correspondence analysis (MCA
function) and hierarchical clustering on principal components (HCPC func-
tion). More advanced methods are also available and can be used to take into
account structures relating to the variables or individuals. These additional
methods are: multiple factor analysis (MFA function), hierarchical multi-
ple factor analysis (HMFA function) or dual multiple factor analysis (DMFA
function). The function catdes is used to define a categorical variable accord-
ing to quantitative and/or categorical variables. The function condes is used
to define a quantitative variable according to quantitative and/or categori-
cal variables. A brief description of these methods can be found in Lê et al.
(2008).

For each method, one can also add supplementary elements: supplemen-
tary individuals, and supplementary quantitative and/or categorical variables.
Many elements for facilitating interpretation are provided for each of these
analyses: quality of representation, and contribution for individuals and vari-
ables. The graphical representations are at the heart of each of the analyses
and there are a variety of available graphs: colour-coding the individuals ac-
cording to a categorical variable, only representing the variables which are
most successfully projected on the principal component map, and so on.

As with any package in R, it only needs to be installed once, and then
loaded when needed, using:

> library(FactoMineR)
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There is a Web site entirely dedicated to the FactoMineR package: http://
factominer.free.fr. It features all of the usage methods along with detailed
examples.

Remark
Many packages for data analysis are available in R; in particular, the ade4

package. There is a Web site dedicated to this package, which provides a great
number of detailed and commented examples: http://pbil.univ-lyon1.
fr/ADE-4. There is another package on R which is entirely dedicated to
clustering, be it hierarchical or otherwise, which is called cluster. It conducts
the algorithms detailed in the work by Kaufman and Rousseuw (1990)1.

The Scroll-Down Menu

A graphic interface is also available and can be installed as a user interface
in the interface for the Rcmdr package (see Section A.2.2). There are two
di↵erent ways of loading the interface in FactoMineR:

• Permanently install the FactoMineR scroll-down menu in Rcmdr. To do so,
one must simply write or paste the following line of code in an R window:

> source("http://factominer.free.fr/install-facto.r")

To use the FactoMineR scroll-down menu at a later date, simply load Rcmdr

using the command library(Rcmdr), and the scroll-down menu appears by
default.

• For the session in progress, install the FactoMineR scroll-down menu in
Rcmdr. To do so, the package RcmdrPlugin.FactoMineR must be installed
once. Then, every time one wishes to use the FactoMineR scroll-down menu,
Rcmdr must be loaded. To do so, click on Tools! Load Rcmdr plug-in(s)
.... Choose the FactoMineR plug-in from the list; Rcmdr must then be
restarted to take the new plug-in into account. This is rather more compli-
cated, which is why we suggest you choose the first option. The use of the
scroll-down menu for PCA is detailed below.

1. Importing Data
The Rcmdr scroll-down menu o↵ers a number of formats for import-
ing data. When the file is in text format (.txt, .csv), it is impossible
to specify that the first column contain the individuals’ identities
(which is often the case in data analysis). It is therefore preferable
to import using the FactoMineR menu
FactoMineR ! Import data from txt file

Click on Row names in the first column (if the names of the

1Kaufman L. and Rousseuw P.J. (1990). Finding Groups in Data. An Introduction to

Cluster Analysis, Wiley, New York, 342 p.

http://factominer.free.fr
http://factominer.free.fr
http://pbil.univ-lyon1.fr/ADE-4
http://pbil.univ-lyon1.fr/ADE-4
http://factominer.free.fr/install-facto.r
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individuals are present in the first column), and then specify the
column separator (field separator) and the decimal separator.

2. PCA with FactoMineR

Click on the FactoMineR tab. Then, select Principal Component
Analysis in order to open the main window of the PCA (see Fig-
ure A.2). It is possible to select supplementary categorical vari-

FIGURE A.2
Main window of PCA in the FactoMineR menu.

ables (Select supplementary factors), supplementary quantita-
tive variables (Select supplementary variables) and supplemen-
tary individuals (Select supplementary individuals). By de-
fault, the results for the first five dimensions are provided in the
object res, the variables are centred and reduced and the graph-
ics are provided for the first plane (components 1 and 2). It is
preferable to choose Apply rather than Submit, since this means
the window remains open whilst the analysis is being performed.
Certain options can therefore be modified without having to enter
all of the settings a second time.
The window for graphical options (see Figure A.3) is separated into
two parts. The left-hand part corresponds to the graph of individu-
als whereas the right-hand side refers to the graph of variables. It is
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possible to represent the supplementary categorical variables alone
(without the individuals, under Hide some elements: select ind);
it is also possible to omit the labels for the individuals (Label for
the active individuals). The individuals can be colour-coded
according to a categorical variable (Colouring for individuals:
choose the categorical variable).

FIGURE A.3
Graphic options window in PCA.

The window for the di↵erent output options is used to choose how
the di↵erent results are visualised (eigenvalues, individuals, vari-
ables, automatic description of the components). All of the results
can also be exported in a .csv file (which can be opened using
Excel).

The dynGraph Package for Interactive Graphs

There is a java interface which is currently in beta. It is used to construct
interactive graphs directly from the FactoMineR outputs. This java interface is
available using the dynGraph package: simply select the dynGraph function.
If the results of a principal component method are contained within a res
object, one must simply type:

> library(dynGraph)
> dynGraph(res)

The graph of individuals opens by default and it is possible to move the
individuals’ labels so that they do not overlap, to colour-code them according
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to categorical variables, to represent the points using a size which is propor-
tional to a quantitative variable, and so forth. The individuals can also be
selected from a list or directly on the screen by using the mouse to hide them.
The graph can then be saved in a number of di↵erent formats: (.emf, .jpeg,
.pdf, etc.). The graph can also be saved in its current state as a ser file, to
be reopened at a later date: this is useful when it takes a long time to perfect
a specific graph.



Bibliography of Software Packages

The following is a bibliography of the main packages that perform exploratory
data analysis or clustering in R. For a more complete list of packages, you can
refer to the following link for exploratory data analysis methods:

http://cran.r-project.org/web/views/Multivariate.html
and the following one for clustering:

http://cran.r-project.org/web/views/Cluster.html

• The ade4 Package proposes data analysis functions to analyse Ecological and
Environmental data in the framework of Euclidean Exploratory methods,
hence the name ade4. The number of functions is very high and many
functions can be used in framework other than the ecological one (functions
dudi.pca, dudi.acm, dudi.fca, dudi.mix, dudi.pco, etc.).
Dray S. & Dufour A.B. (2007). The ade4 package: Implementing the duality
diagram for ecologists. Journal of Statistical Software, 22, 1–20.
A Web site is dedicated to the package: http://pbil.univ-lyon1.fr/
ADE-4

• The ca Package, proposed by Greenacre and Nenadic, deals with simple
(function ca), multiple and joint correspondence analysis (function mjca).
Many new extensions for categorical variables are available in this package.
Greenacre M. & Nenadic O. (2007). ca: Simple, Multiple and Joint Corre-
spondence Analysis. R Package Version 0.21.

• The cluster Package allows to perform basic clustering and particularly hi-
erarchical clustering with the function agnes.
Maechler M., Rousseeuw P., Struyf A., & Hubert M. (2005). Cluster Anal-
ysis Basics and Extensions.

• The dynGraph Package is a visualisation software that has been initially
developed for the FactoMineR package. The main objective of dynGraph

is to allow the user to explore graphical outputs interactively provided by
multidimensional methods by visually integrating numerical indicators.
A Web site is dedicated to the package: http://dyngraph.free.fr

• The FactoMineR Package is the one used in this book. It allows the user to
perform exploratory multivariate data analyses (functions PCA, CA, MCA,

221

http://cran.r-project.org/web/views/Multivariate.html
http://cran.r-project.org/web/views/Cluster.html
http://pbil.univ-lyon1.fr/ADE-4
http://pbil.univ-lyon1.fr/ADE-4
http://dyngraph.free.fr


222 Exploratory Multivariate Analysis by Example Using R

HCPC) easily and provides many graphs (functions plot, plotellipses) and
helps to interpret the results (functions dimdesc, catdes).
Husson F., Josse J., Lê S., & Mazet J. (2009). FactoMineR: Multivariate
Exploratory Data Analysis and Data Mining with R. R Package Version
1.14.
Lê S., Josse J., & Husson F. (2008). FactoMineR: An R Package for multi-
variate analysis. Journal of Statistical Software, 25, 1–18.
A Web site is dedicated to the package: http://factominer.free.fr

• The homals Package deals with homogeneity analysis. This is an alternative
method to MCA for categorical variables. This method is often used in the
psychometric community.
De Leeuw J. & Mair P. (2009). Gifi methods for optimal scaling in R: The
package homals. Journal of Statistical Software, 31(4), 1–20.

• The hopach Package builds (function hopach) a hierarchical tree of clusters
by recursively partitioning a dataset, while ordering and possibly collapsing
clusters at each level.

• The MASS Package allows the user to perform some very basic analyses.
The functions corresp and mca perform correspondence analysis.
Venables W.N. & Ripley B.D. (2002). Modern Applied Statistics with S, 4th
ed., Springer, New York.

• The missMDA Package allows the user to perform imputation for missing
values with multivariate data analysis methods, for example, according to
a PCA model or MCA model. Combined with the FactoMineR package, it
allows users to handle missing values in PCA and MCA.

• The R Software has some functions to perform exploratory data analysis:
princomp or prcomp, hclust, kmeans, biplot. These functions are very basic
and o↵er no help for interpreting the data.
R Foundation for Statistical Computing. (2009). R: A Language and

Environment for Statistical Computing, Vienna, Austria.

• The Rcmdr Package proposes a graphical user interface (GUI) for R. Many
basic methods are available and moreover, several extensions are proposed
for specific methods, for example RcmdrPlugin.FactoMineR.

• Murtagh F. (2005). proposes correspondence analysis and hierarchical clus-
tering code in R. http://www.correspondances.info

http://factominer.free.fr
http://www.correspondances.info
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