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DSTA class 1: The Geometric view of data

Slides adapted from from Ch. 1 of M. J. Zaki and W. Meira, CUP, 2012.

http://www.dataminingbook.info/

Download the text from the DSTA class page.
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Iris setosa?

Figure: Iris setosa
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Or perhaps versicolor?

Figure: Iris versicolor
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Premise: Data Points

In CS/DS, a single observation/specimen is normally represented by a tuple of
numbers and labels 〈x11x2 · · ·xd〉
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xi1

xi2

...

xid











=
(

xi1 xi2 · · · xid

)T ∈ R
d

D =
(

X1 X2 · · · Xd

xT
1

x11 x12 · · · x1d

)
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Data Matrix (with T’s)

Data can often be represented or abstracted as an n × d data matrix, with n
rows and d columns, given as

D =















X1 X2 · · · Xd

xT
1

x11 x12 · · · x1d

xT
2

x21 x22 · · · x2d

...
...

...
. . .

...

xT
n xn1 xn2 · · · xnd















Rows: Also called instances, examples, records, transactions, objects,
points, feature-vectors, etc. Given as a d-tuple

xT
i = (xi1,xi2, . . . ,xid)

Columns: Also called attributes, properties, features, dimensions, variables,
fields, etc. Given as an n-tuple

XT
j = (x1j,x2j, . . . ,xnj)
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Iris Dataset Extract (with T’s)



















































Sepal Sepal Petal Petal
Class

length width length width
X1 X2 X3 X4 X5

xT
1

5.9 3.0 4.2 1.5 Iris-versicolor
xT

2
6.9 3.1 4.9 1.5 Iris-versicolor

xT
3

6.6 2.9 4.6 1.3 Iris-versicolor
xT

4
4.6 3.2 1.4 0.2 Iris-setosa

xT
5

6.0 2.2 4.0 1.0 Iris-versicolor
xT

6
4.7 3.2 1.3 0.2 Iris-setosa

xT
7

6.5 3.0 5.8 2.2 Iris-virginica
xT

8
5.8 2.7 5.1 1.9 Iris-virginica

...
...

...
...

...
...

xT
149

7.7 3.8 6.7 2.2 Iris-virginica
xT

150
5.1 3.4 1.5 0.2 Iris-setosa


















































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Attributes

Attributes may be classified into two main types

Numeric Attributes: real-valued or integer-valued domain

Interval-scaled: only differences are meaningful
e.g., temperature
Ratio-scaled: differences and ratios are meaningful
e..g, Age

Categorical Attributes: set-valued domain composed of a set of symbols

Nominal: only equality is meaningful
e.g., domain(Sex) = { M, F}
Ordinal: both equality (are two values the same?) and inequality (is one value
less than another?) are meaningful
e.g., domain(Edu
ation) = { High S
hool, BS, MS, PhD}
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Data: Algebraic and Geometric View

For numeric data matrix D, each row or point is a d-dimensional column vector:

xi =











xT
i1

xT
i2
.
.
.

xT
id











=
(

xi1 xi2 · · · xid

)T ∈R
d

whereas each column or attribute is a n-dimensional column vector:

Xj =
(

x1j x2j · · · xnj

)T ∈R
n

0 1 2 3 4 5 6

0

1

2

3

4

X1

X2

bcx1 = (5.9,3.0)T

(a) R
2

X1

X2

X3

1

2

3

4

5

6

1 2 3

1

2

3

4

bC
x1 = (5.9,3.0,4.2)T

(b) R
3

Figure: Projections of x1 = (5.9,3.0,4.2,1.5)T in 2D and 3D
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Scatterplot: 2D Iris Dataset

sepal length versus sepal width.

Visualizing Iris dataset as points/vectors in 2D
Solid circle shows the mean point
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✐
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✐

Numeric Data Matrix

If all attributes are numeric, then the data matrix D is an n × d matrix, or equivalently a
set of n row vectors xT

i ∈ R
d or a set of d column vectors Xj ∈R

n

D =











x11 x12 · · · x1d

x21 x22 · · · x2d

.

.

.
.
.
.

. . .
.
.
.

xn1 xn2 · · · xnd











=













— xT
1

—

— xT
2

—

.

.

.

— xT
n —













=





| | |
X1 X2 · · · Xd

| | |





The mean of the data matrix D is the average of all the points: mean(D) = µ = 1

n

n
∑

i=1

xi

The centered data matrix is obtained by subtracting the mean from all the points:

Z = D − 1 ·µT =













xT
1

xT
2

.

.

.

xT
n













−













µT

µT

.

.

.

µT













=













xT
1
−µT

xT
2
−µT

.

.

.

xT
n −µT













=













zT
1

zT
2

.

.

.

zT
n













(1)

where zi = xi −µ is a centered point, and 1 ∈R
n is the vector of ones.
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✐

Norm, Distance and Angle

Given two points a,b ∈ R
m, their dot

product is defined as the scalar

aTb = a1b1 + a2b2 +·· ·+ ambm

=
m
∑

i=1

aibi

The Euclidean norm or length of a
vector a is defined as

‖a‖ =
√

aTa =

√

√

√

√

m
∑

i=1

a2

i

The unit vector in the direction of a is
u = a

‖a‖ with ‖a‖ = 1.

Distance between a and b is given as

∥

∥a − b
∥

∥=

√

√

√

√

m
∑

i=1

(ai − bi)2

Angle between a and b is given as

cosθ = aTb

‖a‖
∥

∥b
∥

∥

=
(

a

‖a‖

)T
(

b
∥

∥b
∥

∥

)

0 1 2 3 4 5

0

1

2

3

4

X1

X2

bc (5,3)

bc(1,4)

a

b

a−b

θ
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✐

✐

✐

✐

✐

✐

✐

✐

Orthogonal Projection

Two vectors a and b are orthogonal iff aTb = 0, i.e., the angle between them is
90

◦. Orthogonal projection of b on a comprises the vector p = b‖ parallel to a,
and r = b⊥ perpendicular or orthogonal to a, given as

b = b‖ + b⊥ = p + r

where

p = b‖ =
(

aTb

aTa

)

a

0 1 2 3 4 5

0

1

2

3

4

X1

X2

a

b

r = b⊥

p = b‖
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Projection of Centered Iris Data Onto a Line ℓ.
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✐

✐

✐

✐

✐

✐

✐

✐

Data: Probabilistic View

A random variable X is a function X :O →R, where O is the set of all possible
outcomes of the experiment, also called the sample space.

A discrete random variable takes on only a finite or countably infinite number
of values, whereas a continuous random variable if it can take on any value in R.

By default, a numeric attribute Xj is considered as the identity random variable
given as

X(v) = v

for all v ∈O. Here O =R.

Discrete Variable: Long Sepal Length

Define random variable A, denoting long sepal length (7cm or more) as follows:

A(v) =
{

0 if v < 7

1 if v ≥ 7

The sample space of A is O = [4.3,7.9], and its range is {0,1}. Thus, A is
discrete.
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✐

✐

✐

✐

✐

✐

✐

✐

Probability Mass Function

If X is discrete, the probability mass function of X is defined as

f(x) = P(X = x) for all x ∈ R

f must obey the basic rules of probability. That is, f must be non-negative:

f(x) ≥ 0

and the sum of all probabilities should add to 1:

∑

x

f(x) = 1

Intuitively, for a discrete variable X, the probability is concentrated or massed
at only discrete values in the range of X, and is zero for all other values.
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✐

✐

✐

✐

✐

✐

✐

✐

Sepal Length: Bernoulli Distribution

Iris Dataset Extract: sepal length (in centimeters)
5.9 6.9 6.6 4.6 6.0 4.7 6.5 5.8 6.7 6.7 5.1 5.1 5.7 6.1 4.9
5.0 5.0 5.7 5.0 7.2 5.9 6.5 5.7 5.5 4.9 5.0 5.5 4.6 7.2 6.8
5.4 5.0 5.7 5.8 5.1 5.6 5.8 5.1 6.3 6.3 5.6 6.1 6.8 7.3 5.6
4.8 7.1 5.7 5.3 5.7 5.7 5.6 4.4 6.3 5.4 6.3 6.9 7.7 6.1 5.6
6.1 6.4 5.0 5.1 5.6 5.4 5.8 4.9 4.6 5.2 7.9 7.7 6.1 5.5 4.6
4.7 4.4 6.2 4.8 6.0 6.2 5.0 6.4 6.3 6.7 5.0 5.9 6.7 5.4 6.3
4.8 4.4 6.4 6.2 6.0 7.4 4.9 7.0 5.5 6.3 6.8 6.1 6.5 6.7 6.7
4.8 4.9 6.9 4.5 4.3 5.2 5.0 6.4 5.2 5.8 5.5 7.6 6.3 6.4 6.3
5.8 5.0 6.7 6.0 5.1 4.8 5.7 5.1 6.6 6.4 5.2 6.4 7.7 5.8 4.9
5.4 5.1 6.0 6.5 5.5 7.2 6.9 6.2 6.5 6.0 5.4 5.5 6.7 7.7 5.1

Define random variable A as follows: A(v) =
{

0 if v < 7

1 if v ≥ 7

We find that only 13 Irises have sepal length of at least 7 cm. Thus, the probability mass
function of A can be estimated as:

f(1) = P(A = 1) = 13

150
= 0.087 = p

and

f(0) = P(A = 0) = 137

150
= 0.913 = 1 − p

A has a Bernoulli distribution with parameter p ∈ [0,1], which denotes the probability of
a success, that is, the probability of picking an Iris with a long sepal length at random
from the set of all points.
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✐

✐

✐

✐

✐

✐

✐

✐

Sepal Length: Binomial Distribution

Define discrete random variable B, denoting the number of Irises with long
sepal length in m independent Bernoulli trials with probability of success p. In
this case, B takes on the discrete values [0,m], and its probability mass function
is given by the Binomial distribution

f(k) = P(B = k) =
(

m

k

)

pk(1 − p)m−k

Binomial distribution for long sepal length (p = 0.087) for m = 10 trials

0 1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

k

P(B=k)
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✐

✐

✐

✐

✐

✐

✐

✐

Probability Density Function

If X is continuous, the probability density function of X is defined as

P
(

X ∈ [a,b]
)

=
∫ b

a

f(x) dx

f must obey the basic rules of probability. That is, f must be non-negative:

f(x) ≥ 0

and the sum of all probabilities should add to 1:

∫ ∞

−∞
f(x) dx = 1

Note that P(X = v) = 0 for all v ∈R since there are infinite possible values in the
sample space. What it means is that the probability mass is spread so thinly
over the range of values that it can be measured only over intervals [a,b] ⊂R,
rather than at specific points.
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✐

✐

✐

✐

✐

✐

✐

✐

Sepal Length: Normal Distribution

We model sepal length via the Gaussian or normal density function, given as

f(x) = 1√
2πσ 2

exp

{−(x −µ)2

2σ 2

}

where µ = 1

n

∑n
i=1

xi is the mean value, and σ 2 = 1

n

∑n
i=1

(xi −µ)2 is the variance.

Normal distribution for sepal length: µ = 5.84, σ 2 = 0.681

2 3 4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

0.5

x

f(x)

µ± ǫ
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✐

✐

✐

✐

✐

✐

✐

✐

Cumulative Distribution Function

For random variable X, its cumulative

distribution function (CDF)

F :R→ [0,1], gives the probability of
observing a value at most some given
value x:

F(x) = P(X ≤ x) for all −∞ < x < ∞

When X is discrete, F is given as

F(x) = P(X ≤ x) =
∑

u≤x

f(u)

When X is continuous, F is given as

F(x) = P(X ≤ x) =
∫ x

−∞
f(u) du

CDF for binomial distribution
(p = 0.087,m = 10)
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Bivariate Random Variable: Joint Probability Mass

Function

Define discrete random variables

long sepal length:X1(v) =
{

1 ifv ≥ 7

0 otherwise

long sepal width:X2(v) =
{

1 ifv ≥ 3.5

0 otherwise

The bivariate random variable

X =
(

X1

X2

)

has the joint probability mass function

f(x) = P(X = x)

i.e., f(x1,x2) = P(X1 = x1,X2 = x2)

Iris: joint PMF for long sepal length and
sepal width

f(0,0) = P(X1 = 0,X2 = 0) = 116/150 = 0.773

f(0,1) = P(X1 = 0,X2 = 1) = 21/150 = 0.140

f(1,0) = P(X1 = 1,X2 = 0) = 10/150 = 0.067

f(1,1) = P(X1 = 1,X2 = 1) = 3/150 = 0.020

X1

X2

f(x)

b

b

b

b

0.773

0.14

0.067

0.02

0

11
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Bivariate Random Variable: Probability Density

Function

Bivariate Normal: modeling joint
distribution for long sepal length (X1) and
sepal width (X2)

f(x|µ,6) = 1

2π
√|6|

exp

{

− (x−µ)T 6−1 (x−µ)

2

}

where µ and 6 specify the 2D mean and
covariance matrix:

µ = (µ1,µ2)
T 6 =

(

σ 2

1
σ12

σ21 σ 2

2

)

with mean µi = 1

n

∑n
k=1

xki and covariance

σij = 1

n

∑

k=1
(xki −µi)(xkj −µj). Also,

σ 2

i = σii.

Bivariate Normal

µ = (5.843,3.054)T

6 =
(

0.681 −0.039

−0.039 0.187

)
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Random Sample and Statistics

Given a random variable X, a random sample of size n from X is defined as a set
of n independent and identically distributed (IID) random variables

S1,S2, . . . ,Sn

The Si’s have the same probability distribution as X, and are statistically
independent.
Two random variables X1 and X2 are (statistically) independent if, for every
W1 ⊂R and W2 ⊂R, we have

P(X1 ∈ W1 and X2 ∈ W2) = P(X1 ∈ W1) · P(X2 ∈ W2)

which also implies that

F(x) = F(x1,x2) = F1(x1) · F2(x2)

f(x) = f(x1,x2) = f1(x1) · f2(x2)

where Fi is the cumulative distribution function, and fi is the probability mass or
density function for random variable Xi.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis January 22, 2019 23 / 27



✐

✐

✐

✐

✐

✐

✐

✐

Multivariate Sample

Given dataset D, the n data points xi (with 1 ≤ i ≤ n) constitute a d-dimensional
multivariate random sample drawn from the vector random variable
X = (X1,X2, . . . ,Xd).

Since the xi are assumed to be independent and identically distributed, their
joint distribution is given as

f(x1,x2, . . . ,xn) =
n
∏

i=1

fX(xi)

where fX is the probability mass or density function for X.

Assuming that the d attributes X1,X2, . . . ,Xd are statistically independent, the
joint distribution for the entire dataset is given as:

f(x1,x2, . . . ,xn) =
n
∏

i=1

f(xi) =
n
∏

i=1

d
∏

j=1

fXj
(xij)
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Sample Statistics

Let {Si}m
i=1

be a random sample of size m drawn from a (multivariate) random variable X.

A statistic θ̂ is a function
θ̂ : (S1,S2, . . . ,Sm) →R

The statistic is an estimate of the corresponding population parameter θ , where the
population refers to the entire universe of entities under study. The statistic is itself a
random variable.

The sample mean is a statistic, defined as the average

µ̂ = 1

n

n
∑

i=1

xi

For sepal length, we have µ̂ = 5.84, which is an estimator for the (unknown) true
population mean sepal length.
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Sample Statistics: Variance

The sample variance is a statistic

σ̂ 2 = 1

n

n
∑

i=1

(xi −µ)2

For sepal length, we have σ̂ 2 = 0.681.

The total variance is a multivariate statistic

var(D) = 1

n

n
∑

i=1

‖xi −µ‖2

For the Iris data (with 4 attributes: sepal length and width, petal length and
width), we have var(D) = 0.868.
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