
CHAPTER 2 Numeric Attributes

In this chapter, we discuss basic statistical methods for exploratory data analysis of
numeric attributes. We look at measures of central tendency or location, measures of
dispersion, and measures of linear dependence or association between attributes. We
emphasize the connection between the probabilistic and the geometric and algebraic
views of the data matrix.

2.1 UNIVARIATE ANALYSIS

Univariate analysis focuses on a single attribute at a time; thus the data matrix D can
be thought of as an n× 1 matrix, or simply a column vector, given as

D=

⎛⎜⎜⎜⎜⎜⎜⎝
X
x1

x2
...

xn

⎞⎟⎟⎟⎟⎟⎟⎠
where X is the numeric attribute of interest, with xi ∈R. X is assumed to be a random
variable, with each point xi (1 ≤ i ≤ n) itself treated as an identity random variable.
We assume that the observed data is a random sample drawn from X, that is, each
variable xi is independent and identically distributed as X. In the vector view, we treat
the sample as an n-dimensional vector, and write X ∈R

n.
In general, the probability density or mass function f (x) and the cumulative

distribution function F(x), for attribute X, are both unknown. However, we can
estimate these distributions directly from the data sample, which also allow us to
compute statistics to estimate several important population parameters.

Empirical Cumulative Distribution Function
The empirical cumulative distribution function (CDF) of X is given as

F̂ (x)= 1
n

n∑
i=1

I(xi ≤ x) (2.1)
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34 Numeric Attributes

where

I(xi ≤ x)=
{

1 if xi ≤ x

0 if xi > x

is a binary indicator variable that indicates whether the given condition is satisfied
or not. Intuitively, to obtain the empirical CDF we compute, for each value x ∈ R,
how many points in the sample are less than or equal to x. The empirical CDF puts a
probability mass of 1

n
at each point xi . Note that we use the notation F̂ to denote the

fact that the empirical CDF is an estimate for the unknown population CDF F .

Inverse Cumulative Distribution Function
Define the inverse cumulative distribution function or quantile function for a random
variable X as follows:

F−1(q)=min{x | F̂ (x)≥ q} for q ∈ [0,1] (2.2)

That is, the inverse CDF gives the least value of X, for which q fraction of the values
are higher, and 1−q fraction of the values are lower. The empirical inverse cumulative
distribution function F̂−1 can be obtained from Eq. (2.1).

Empirical Probability Mass Function
The empirical probability mass function (PMF) of X is given as

f̂ (x)= P(X= x)= 1
n

n∑
i=1

I(xi = x) (2.3)

where

I(xi = x)=
{

1 if xi = x

0 if xi �= x

The empirical PMF also puts a probability mass of 1
n

at each point xi .

2.1.1 Measures of Central Tendency

These measures given an indication about the concentration of the probability mass,
the “middle” values, and so on.

Mean
The mean, also called the expected value, of a random variable X is the arithmetic
average of the values of X. It provides a one-number summary of the location or central
tendency for the distribution of X.

The mean or expected value of a discrete random variable X is defined as

μ=E[X]=
∑

x

xf (x) (2.4)

where f (x) is the probability mass function of X.
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The expected value of a continuous random variable X is defined as

μ=E[X]=
∞∫

−∞

xf (x) dx

where f (x) is the probability density function of X.

Sample Mean The sample mean is a statistic, that is, a function μ̂ : {x1,x2, . . . ,xn}→R,
defined as the average value of xi’s:

μ̂= 1
n

n∑
i=1

xi (2.5)

It serves as an estimator for the unknown mean value μ of X. It can be derived by
plugging in the empirical PMF f̂ (x) in Eq. (2.4):

μ̂=
∑

x

xf̂ (x)=
∑

x

x

(
1
n

n∑
i=1

I(xi = x)

)
= 1

n

n∑
i=1

xi

Sample Mean Is Unbiased An estimator θ̂ is called an unbiased estimator for
parameter θ if E[θ̂]= θ for every possible value of θ . The sample mean μ̂ is an unbiased
estimator for the population mean μ, as

E[μ̂]=E

[
1
n

n∑
i=1

xi

]
= 1

n

n∑
i=1

E[xi]= 1
n

n∑
i=1

μ= μ (2.6)

where we use the fact that the random variables xi are IID according to X, which
implies that they have the same mean μ as X, that is, E[xi]= μ for all xi . We also used
the fact that the expectation function E is a linear operator, that is, for any two random
variables X and Y, and real numbers a and b, we have E [aX+ bY]= aE[X]+ bE[Y].

Robustness We say that a statistic is robust if it is not affected by extreme values (such
as outliers) in the data. The sample mean is unfortunately not robust because a single
large value (an outlier) can skew the average. A more robust measure is the trimmed
mean obtained after discarding a small fraction of extreme values on one or both ends.
Furthermore, the mean can be somewhat misleading in that it is typically not a value
that occurs in the sample, and it may not even be a value that the random variable
can actually assume (for a discrete random variable). For example, the number of cars
per capita is an integer-valued random variable, but according to the US Bureau of
Transportation Studies, the average number of passenger cars in the United States was
0.45 in 2008 (137.1 million cars, with a population size of 304.4 million). Obviously, one
cannot own 0.45 cars; it can be interpreted as saying that on average there are 45 cars
per 100 people.

Median
The median of a random variable is defined as the value m such that

P(X≤m)≥ 1
2

and P(X≥m)≥ 1
2



36 Numeric Attributes

In other words, the median m is the “middle-most” value; half of the values of X are
less and half of the values of X are more than m. In terms of the (inverse) cumulative
distribution function, the median is therefore the value m for which

F(m)= 0.5 or m= F−1(0.5)

The sample median can be obtained from the empirical CDF [Eq. (2.1)] or the
empirical inverse CDF [Eq. (2.2)] by computing

F̂ (m)= 0.5 or m= F̂−1(0.5)

A simpler approach to compute the sample median is to first sort all the values xi

(i ∈ [1,n]) in increasing order. If n is odd, the median is the value at position n+1
2 . If n

is even, the values at positions n

2 and n

2 + 1 are both medians.
Unlike the mean, median is robust, as it is not affected very much by extreme

values. Also, it is a value that occurs in the sample and a value the random variable can
actually assume.

Mode
The mode of a random variable X is the value at which the probability mass function
or the probability density function attains its maximum value, depending on whether
X is discrete or continuous, respectively.

The sample mode is a value for which the empirical probability mass function
[Eq. (2.3)] attains its maximum, given as

mode(X)= argmax
x

f̂ (x)

The mode may not be a very useful measure of central tendency for a sample
because by chance an unrepresentative element may be the most frequent element.
Furthermore, if all values in the sample are distinct, each of them will be the mode.

Example 2.1 (Sample Mean, Median, and Mode). Consider the attribute sepal

length (X1) in the Iris dataset, whose values are shown in Table 1.2. The sample
mean is given as follows:

μ̂= 1
150

(5.9+ 6.9+ ·· ·+ 7.7+ 5.1)= 876.5
150

= 5.843

Figure 2.1 shows all 150 values of sepal length, and the sample mean. Figure 2.2a
shows the empirical CDF and Figure 2.2b shows the empirical inverse CDF for sepal
length.

Because n= 150 is even, the sample median is the value at positions n

2 = 75 and
n

2 + 1 = 76 in sorted order. For sepal length both these values are 5.8; thus the
sample median is 5.8. From the inverse CDF in Figure 2.2b, we can see that

F̂ (5.8)= 0.5 or 5.8= F̂−1(0.5)

The sample mode for sepal length is 5, which can be observed from the
frequency of 5 in Figure 2.1. The empirical probability mass at x = 5 is

f̂ (5)= 10
150

= 0.067
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μ̂= 5.843

Figure 2.1. Sample mean for sepal length. Multiple occurrences of the same value are shown stacked.
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Figure 2.2. Empirical CDF and inverse CDF: sepal length.
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2.1.2 Measures of Dispersion

The measures of dispersion give an indication about the spread or variation in the
values of a random variable.

Range
The value range or simply range of a random variable X is the difference between the
maximum and minimum values of X, given as

r =max{X}−min{X}

The (value) range of X is a population parameter, not to be confused with the range
of the function X, which is the set of all the values X can assume. Which range is being
used should be clear from the context.

The sample range is a statistic, given as

r̂ = n
max
i=1
{xi}−

n

min
i=1
{xi}

By definition, range is sensitive to extreme values, and thus is not robust.

Interquartile Range
Quartiles are special values of the quantile function [Eq. (2.2)] that divide the data into
four equal parts. That is, quartiles correspond to the quantile values of 0.25, 0.5, 0.75,
and 1.0. The first quartile is the value q1 = F−1(0.25), to the left of which 25% of the
points lie; the second quartile is the same as the median value q2 = F−1(0.5), to the left
of which 50% of the points lie; the third quartile q3 = F−1(0.75) is the value to the left
of which 75% of the points lie; and the fourth quartile is the maximum value of X, to
the left of which 100% of the points lie.

A more robust measure of the dispersion of X is the interquartile range (IQR),
defined as

IQR= q3− q1 = F−1(0.75)−F−1(0.25) (2.7)

IQR can also be thought of as a trimmed range, where we discard 25% of the low and
high values of X. Or put differently, it is the range for the middle 50% of the values of
X. IQR is robust by definition.

The sample IQR can be obtained by plugging in the empirical inverse
CDF in Eq. (2.7):

ÎQR= q̂3− q̂1 = F̂−1(0.75)− F̂−1(0.25)

Variance and Standard Deviation
The variance of a random variable X provides a measure of how much the values of X
deviate from the mean or expected value of X. More formally, variance is the expected
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value of the squared deviation from the mean, defined as

σ 2 = var(X)=E[(X−μ)2]=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
x

(x−μ)2 f (x) if X is discrete

∞∫
−∞

(x−μ)2 f (x) dx if X is continuous

(2.8)

The standard deviation, σ , is defined as the positive square root of the variance, σ 2.
We can also write the variance as the difference between the expectation of X2 and

the square of the expectation of X:

σ 2 = var(X)=E[(X−μ)2]=E[X2− 2μX+μ2]

=E[X2]− 2μE[X]+μ2=E[X2]− 2μ2+μ2

=E[X2]− (E[X])2 (2.9)

It is worth noting that variance is in fact the second moment about the mean,
corresponding to r = 2, which is a special case of the rth moment about the mean for a
random variable X, defined as E [(x−μ)r].

Sample Variance The sample variance is defined as

σ̂ 2 = 1
n

n∑
i=1

(xi − μ̂)2 (2.10)

It is the average squared deviation of the data values xi from the sample mean μ̂, and
can be derived by plugging in the empirical probability function f̂ from Eq. (2.3) into
Eq. (2.8), as

σ̂ 2 =
∑

x

(x− μ̂)2f̂ (x)=
∑

x

(x− μ̂)2

(
1
n

n∑
i=1

I(xi = x)

)
= 1

n

n∑
i=1

(xi − μ̂)2

The sample standard deviation is given as the positive square root of the sample
variance:

σ̂ =
√√√√1

n

n∑
i=1

(xi − μ̂)2

The standard score, also called the z-score, of a sample value xi is the number of
standard deviations the value is away from the mean:

zi =
xi − μ̂

σ̂

Put differently, the z-score of xi measures the deviation of xi from the mean value μ̂,
in units of σ̂ .
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Geometric Interpretation of Sample Variance We can treat the data sample for
attribute X as a vector in n-dimensional space, where n is the sample size. That is,
we write X= (x1,x2, . . . ,xn)

T ∈R
n. Further, let

Z=X− 1 · μ̂=

⎛⎜⎜⎜⎝
x1− μ̂

x2− μ̂
...

xn− μ̂

⎞⎟⎟⎟⎠
denote the mean subtracted attribute vector, where 1 ∈R

n is the n-dimensional vector
all of whose elements have value 1. We can rewrite Eq. (2.10) in terms of the magnitude
of Z, that is, the dot product of Z with itself:

σ̂ 2 = 1
n
‖Z‖2 = 1

n
ZTZ= 1

n

n∑
i=1

(xi − μ̂)2 (2.11)

The sample variance can thus be interpreted as the squared magnitude of the centered
attribute vector, or the dot product of the centered attribute vector with itself,
normalized by the sample size.

Example 2.2. Consider the data sample for sepal length shown in Figure 2.1. We
can see that the sample range is given as

max
i
{xi}−min

i
{xi} = 7.9− 4.3= 3.6

From the inverse CDF for sepal length in Figure 2.2b, we can find the sample
IQR as follows:

q̂1 = F̂−1(0.25)= 5.1

q̂3 = F̂−1(0.75)= 6.4

ÎQR= q̂3− q̂1 = 6.4− 5.1= 1.3

The sample variance can be computed from the centered data vector via
Eq. (2.11):

σ̂ 2 = 1
n
(X− 1 · μ̂)T(X− 1 · μ̂)= 102.168/150= 0.681

The sample standard deviation is then

σ̂ =
√

0.681= 0.825

Variance of the Sample Mean Because the sample mean μ̂ is itself a statistic, we can
compute its mean value and variance. The expected value of the sample mean is simply
μ, as we saw in Eq. (2.6). To derive an expression for the variance of the sample mean,
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we utilize the fact that the random variables xi are all independent, and thus

var

(
n∑

i=1

xi

)
=

n∑
i=1

var(xi)

Further, because all the xi’s are identically distributed as X, they have the same
variance as X, that is,

var(xi)= σ 2 for all i

Combining the above two facts, we get

var

(
n∑

i=1

xi

)
=

n∑
i=1

var(xi)=
n∑

i=1

σ 2 = nσ 2 (2.12)

Further, note that

E

[
n∑

i=1

xi

]
= nμ (2.13)

Using Eqs. (2.9), (2.12), and (2.13), the variance of the sample mean μ̂ can be
computed as

var(μ̂)=E[(μ̂−μ)2]=E[μ̂2]−μ2 =E

⎡⎣(1
n

n∑
i=1

xi

)2
⎤⎦− 1

n2
E

[
n∑

i=1

xi

]2

= 1
n2

⎛⎝E

⎡⎣( n∑
i=1

xi

)2
⎤⎦−E

[
n∑

i=1

xi

]2
⎞⎠= 1

n2
var

(
n∑

i=1

xi

)

= σ 2

n
(2.14)

In other words, the sample mean μ̂ varies or deviates from the mean μ in proportion
to the population variance σ 2. However, the deviation can be made smaller by
considering larger sample size n.

Sample Variance Is Biased, but Is Asymptotically Unbiased The sample variance in
Eq. (2.10) is a biased estimator for the true population variance, σ 2, that is, E[σ̂ 2] �= σ 2.
To show this we make use of the identity

n∑
i=1

(xi −μ)2 = n(μ̂−μ)2+
n∑

i=1

(xi − μ̂)2 (2.15)

Computing the expectation of σ̂ 2 by using Eq. (2.15) in the first step, we get

E[σ̂ 2]=E

[
1
n

n∑
i=1

(xi − μ̂)2

]
=E

[
1
n

n∑
i=1

(xi −μ)2

]
−E[(μ̂−μ)2] (2.16)
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Recall that the random variables xi are IID according to X, which means that they have
the same mean μ and variance σ 2 as X. This means that

E[(xi −μ)2]= σ 2

Further, from Eq. (2.14) the sample mean μ̂ has variance E[(μ̂−μ)2] = σ2

n
. Plugging

these into the Eq. (2.16) we get

E[σ̂ 2]= 1
n

nσ 2− σ 2

n

=
(

n− 1
n

)
σ 2

The sample variance σ̂ 2 is a biased estimator of σ 2, as its expected value differs from
the population variance by a factor of n−1

n
. However, it is asymptotically unbiased, that

is, the bias vanishes as n→∞ because

lim
n→∞

n− 1
n

= lim
n→∞

1− 1
n
= 1

Put differently, as the sample size increases, we have

E[σ̂ 2]→ σ 2 as n→∞

2.2 BIVARIATE ANALYSIS

In bivariate analysis, we consider two attributes at the same time. We are specifically
interested in understanding the association or dependence between them, if any. We
thus restrict our attention to the two numeric attributes of interest, say X1 and X2, with
the data D represented as an n× 2 matrix:

D=

⎛⎜⎜⎜⎜⎜⎜⎝
X1 X2

x11 x12

x21 x22
...

...

xn1 xn2

⎞⎟⎟⎟⎟⎟⎟⎠
Geometrically, we can think of D in two ways. It can be viewed as n points or vectors
in 2-dimensional space over the attributes X1 and X2, that is, xi = (xi1,xi2)

T ∈ R
2.

Alternatively, it can be viewed as two points or vectors in an n-dimensional space
comprising the points, that is, each column is a vector in R

n, as follows:

X1 = (x11,x21, . . . ,xn1)
T

X2 = (x12,x22, . . . ,xn2)
T

In the probabilistic view, the column vector X= (X1,X2)
T is considered a bivariate

vector random variable, and the points xi (1 ≤ i ≤ n) are treated as a random sample
drawn from X, that is, xi’s are considered independent and identically distributed as X.
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Empirical Joint Probability Mass Function
The empirical joint probability mass function for X is given as

f̂ (x)= P(X= x)= 1
n

n∑
i=1

I(xi = x) (2.17)

f̂ (x1,x2)= P(X1 = x1,X2 = x2)= 1
n

n∑
i=1

I(xi1 = x1,xi2 = x2)

where x= (x1,x2)
T and I is a indicator variable that takes on the value 1 only when its

argument is true:

I(xi = x)=
{

1 if xi1 = x1 and xi2 = x2

0 otherwise

As in the univariate case, the probability function puts a probability mass of 1
n

at each
point in the data sample.

2.2.1 Measures of Location and Dispersion

Mean
The bivariate mean is defined as the expected value of the vector random variable X,
defined as follows:

μ=E[X]=E
[(

X1

X2

)]
=
(

E[X1]

E[X2]

)
=
(

μ1

μ2

)
(2.18)

In other words, the bivariate mean vector is simply the vector of expected values along
each attribute.

The sample mean vector can be obtained from f̂X1
and f̂X2

, the empirical
probability mass functions of X1 and X2, respectively, using Eq. (2.5). It can also be
computed from the joint empirical PMF in Eq. (2.17)

μ̂=
∑

x

xf̂ (x)=
∑

x

x

(
1
n

n∑
i=1

I(xi = x)

)
= 1

n

n∑
i=1

xi (2.19)

Variance
We can compute the variance along each attribute, namely σ 2

1 for X1 and σ 2
2 for X2

using Eq. (2.8). The total variance [Eq. (1.4)] is given as

var(D)= σ 2
1 +σ 2

2

The sample variances σ̂ 2
1 and σ̂ 2

2 can be estimated using Eq. (2.10), and the sample
total variance is simply σ̂ 2

1 + σ̂ 2
2 .

2.2.2 Measures of Association

Covariance
The covariance between two attributes X1 and X2 provides a measure of the association
or linear dependence between them, and is defined as

σ12 =E[(X1−μ1)(X2−μ2)] (2.20)
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By linearity of expectation, we have

σ12 =E[(X1−μ1)(X2−μ2)]

=E[X1X2−X1μ2−X2μ1+μ1μ2]

=E[X1X2]−μ2E[X1]−μ1E[X2]+μ1μ2

=E[X1X2]−μ1μ2

=E[X1X2]−E[X1]E[X2] (2.21)

Eq. (2.21) can be seen as a generalization of the univariate variance [Eq. (2.9)] to the
bivariate case.

If X1 and X2 are independent random variables, then we conclude that their
covariance is zero. This is because if X1 and X2 are independent, then we have

E[X1X2]=E[X1] ·E[X2]

which in turn implies that
σ12 = 0

However, the converse is not true. That is, if σ12 = 0, one cannot claim that X1 and X2

are independent. All we can say is that there is no linear dependence between them,
but we cannot rule out that there might be a higher order relationship or dependence
between the two attributes.

The sample covariance between X1 and X2 is given as

σ̂12 = 1
n

n∑
i=1

(xi1− μ̂1)(xi2− μ̂2) (2.22)

It can be derived by substituting the empirical joint probability mass function f̂ (x1,x2)

from Eq. (2.17) into Eq. (2.20), as follows:

σ̂12 =E[(X1− μ̂1)(X2− μ̂2)]

=
∑

x=(x1,x2)T

(x1− μ̂1)(x2− μ̂2)f̂ (x1,x2)

= 1
n

∑
x=(x1,x2)T

n∑
i=1

(x1− μ̂1) · (x2− μ̂2) · I(xi1 = x1,xi2 = x2)

= 1
n

n∑
i=1

(xi1− μ̂1)(xi2− μ̂2)

Notice that sample covariance is a generalization of the sample variance
[Eq. (2.10)] because

σ̂11 = 1
n

n∑
i=1

(xi −μ1)(xi −μ1)= 1
n

n∑
i=1

(xi −μ1)
2 = σ̂ 2

1

and similarly, σ̂22 = σ̂ 2
2 .
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Correlation
The correlation between variables X1 and X2 is the standardized covariance, obtained
by normalizing the covariance with the standard deviation of each variable, given as

ρ12 = σ12

σ1σ2
= σ12√

σ 2
1 σ 2

2

(2.23)

The sample correlation for attributes X1 and X2 is given as

ρ̂12 =
σ̂12

σ̂1σ̂2
=

∑n

i=1(xi1− μ̂1)(xi2− μ̂2)√∑n

i=1(xi1− μ̂1)2
∑n

i=1(xi2− μ̂2)2
(2.24)

Geometric Interpretation of Sample Covariance and Correlation
Let Z1 and Z2 denote the centered attribute vectors in R

n, given as follows:

Z1 =X1− 1 · μ̂1 =

⎛⎜⎜⎜⎝
x11− μ̂1

x21− μ̂1
...

xn1− μ̂1

⎞⎟⎟⎟⎠ Z2 =X2− 1 · μ̂2 =

⎛⎜⎜⎜⎝
x12− μ̂2

x22− μ̂2
...

xn2− μ̂2

⎞⎟⎟⎟⎠
The sample covariance [Eq. (2.22)] can then be written as

σ̂12 =
ZT

1 Z2

n

In other words, the covariance between the two attributes is simply the dot product
between the two centered attribute vectors, normalized by the sample size. The above
can be seen as a generalization of the univariate sample variance given in Eq. (2.11).

xn

x2

x1

�

�

θ

Z2

Z1

Figure 2.3. Geometric interpretation of covariance and correlation. The two centered attribute vectors are
shown in the (conceptual) n-dimensional space R

n spanned by the n points.
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The sample correlation [Eq. (2.24)] can be written as

ρ̂12 = ZT
1 Z2√

ZT
1 Z1

√
ZT

2 Z2

= ZT
1 Z2

‖Z1‖ ‖Z2‖
=
(

Z1

‖Z1‖
)T( Z2

‖Z2‖
)
= cosθ (2.25)

Thus, the correlation coefficient is simply the cosine of the angle [Eq. (1.3)] between
the two centered attribute vectors, as illustrated in Figure 2.3.

Covariance Matrix
The variance–covariance information for the two attributes X1 and X2 can be
summarized in the square 2× 2 covariance matrix, given as

� =E[(X−μ)(X−μ)T]

=E
[(

X1−μ1

X2−μ2

)(
X1−μ1 X2−μ2

)]

=
(

E[(X1−μ1)(X1−μ1)] E[(X1−μ1)(X2−μ2)]

E[(X2−μ2)(X1−μ1)] E[(X2−μ2)(X2−μ2)]

)

=
(

σ 2
1 σ12

σ21 σ 2
2

)
(2.26)

Because σ12= σ21, � is a symmetric matrix. The covariance matrix records the attribute
specific variances on the main diagonal, and the covariance information on the
off-diagonal elements.

The total variance of the two attributes is given as the sum of the diagonal elements
of �, which is also called the trace of �, given as

var(D)= tr(�)= σ 2
1 +σ 2

2

We immediately have tr(�)≥ 0.
The generalized variance of the two attributes also considers the covariance, in

addition to the attribute variances, and is given as the determinant of the covariance
matrix �, denoted as |�| or det(�). The generalized covariance is non-negative,
because

|�| = det(�)= σ 2
1 σ 2

2 −σ 2
12 = σ 2

1 σ 2
2 −ρ2

12σ
2
1 σ 2

2 = (1−ρ2
12)σ

2
1 σ 2

2

where we used Eq. (2.23), that is, σ12 = ρ12σ1σ2. Note that |ρ12| ≤ 1 implies that ρ2
12 ≤ 1,

which in turn implies that det(�)≥ 0, that is, the determinant is non-negative.
The sample covariance matrix is given as

�̂ =
(

σ̂ 2
1 σ̂12

σ̂12 σ̂ 2
2

)

The sample covariance matrix �̂ shares the same properties as �, that is, it is symmetric
and |�̂| ≥ 0, and it can be used to easily obtain the sample total and generalized
variance.
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Figure 2.4. Correlation between sepal length and sepal width.

Example 2.3 (Sample Mean and Covariance). Consider the sepal length and
sepal width attributes for the Iris dataset, plotted in Figure 2.4. There are n= 150
points in the d = 2 dimensional attribute space. The sample mean vector is given as

μ̂=
(

5.843
3.054

)
The sample covariance matrix is given as

�̂ =
(

0.681 −0.039
−0.039 0.187

)
The variance for sepal length is σ̂ 2

1 = 0.681, and that for sepal width is σ̂ 2
2 = 0.187.

The covariance between the two attributes is σ̂12 = −0.039, and the correlation
between them is

ρ̂12 = −0.039√
0.681 · 0.187

=−0.109

Thus, there is a very weak negative correlation between these two attributes, as
evidenced by the best linear fit line in Figure 2.4. Alternatively, we can consider
the attributes sepal length and sepal width as two points in R

n. The correlation
is then the cosine of the angle between them; we have

ρ̂12 = cosθ =−0.109, which implies that θ = cos−1(−0.109)= 96.26◦

The angle is close to 90◦, that is, the two attribute vectors are almost orthogonal,
indicating weak correlation. Further, the angle being greater than 90◦ indicates
negative correlation.
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The sample total variance is given as

tr(�̂)= 0.681+ 0.187= 0.868

and the sample generalized variance is given as

|�̂| = det(�̂)= 0.681 · 0.187− (−0.039)2= 0.126

2.3 MULTIVARIATE ANALYSIS

In multivariate analysis, we consider all the d numeric attributes X1,X2, . . . ,Xd . The
full data is an n× d matrix, given as

D=

⎛⎜⎜⎜⎜⎜⎜⎝
X1 X2 · · · Xd

x11 x12 · · · x1d

x21 x22 · · · x2d

...
...

. . .
...

xn1 xn2 · · · xnd

⎞⎟⎟⎟⎟⎟⎟⎠
In the row view, the data can be considered as a set of n points or vectors in the
d-dimensional attribute space

xi = (xi1,xi2, . . . ,xid )
T ∈R

d

In the column view, the data can be considered as a set of d points or vectors in the
n-dimensional space spanned by the data points

Xj = (x1j ,x2j , . . . ,xnj )
T ∈R

n

In the probabilistic view, the d attributes are modeled as a vector random variable,
X= (X1,X2, . . . ,Xd)

T, and the points xi are considered to be a random sample drawn
from X, that is, they are independent and identically distributed as X.

Mean
Generalizing Eq. (2.18), the multivariate mean vector is obtained by taking the mean of
each attribute, given as

μ=E[X]=

⎛⎜⎜⎜⎝
E[X1]
E[X2]

...

E[Xd]

⎞⎟⎟⎟⎠=
⎛⎜⎜⎜⎝

μ1

μ2
...

μd

⎞⎟⎟⎟⎠
Generalizing Eq. (2.19), the sample mean is given as

μ̂= 1
n

n∑
i=1

xi
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Covariance Matrix
Generalizing Eq. (2.26) to d dimensions, the multivariate covariance information is
captured by the d × d (square) symmetric covariance matrix that gives the covariance
for each pair of attributes:

� =E[(X−μ)(X−μ)T]=

⎛⎜⎜⎜⎝
σ 2

1 σ12 · · · σ1d

σ21 σ 2
2 · · · σ2d

· · · · · · · · · · · ·
σd1 σd2 · · · σ 2

d

⎞⎟⎟⎟⎠
The diagonal element σ 2

i specifies the attribute variance for Xi , whereas the
off-diagonal elements σij = σji represent the covariance between attribute pairs Xi

and Xj .

Covariance Matrix Is Positive Semidefinite
It is worth noting that � is a positive semidefinite matrix, that is,

aT�a≥ 0 for any d-dimensional vector a

To see this, observe that

aT�a= aTE[(X−μ)(X−μ)T]a

=E[aT(X−μ)(X−μ)Ta]

=E[Y2]

≥ 0

where Y is the random variable Y= aT(X−μ)=∑d

i=1 ai(Xi −μi), and we use the fact
that the expectation of a squared random variable is non-negative.

Because � is also symmetric, this implies that all the eigenvalues of � are real and
non-negative. In other words the d eigenvalues of � can be arranged from the largest
to the smallest as follows: λ1 ≥ λ2 ≥ ·· · ≥ λd ≥ 0. A consequence is that the determinant
of � is non-negative:

det(�)=
d∏

i=1

λi ≥ 0 (2.27)

Total and Generalized Variance
The total variance is given as the trace of the covariance matrix:

var(D)= tr(�)= σ 2
1 +σ 2

2 + ·· ·+σ 2
d (2.28)

Being a sum of squares, the total variance must be non-negative.
The generalized variance is defined as the determinant of the covariance matrix,

det(�), also denoted as |�|. It gives a single value for the overall multivariate scatter.
From Eq. (2.27) we have det(�)≥ 0.


