
CHAPTER 3 Categorical Attributes

In this chapter we present methods to analyze categorical attributes. Because
categorical attributes have only symbolic values, many of the arithmetic operations
cannot be performed directly on the symbolic values. However, we can compute the
frequencies of these values and use them to analyze the attributes.

3.1 UNIVARIATE ANALYSIS

We assume that the data consists of values for a single categorical attribute, X. Let the
domain of X consist of m symbolic values dom(X)= {a1,a2, . . . ,am}. The data D is thus
an n× 1 symbolic data matrix given as

D=

⎛⎜⎜⎜⎜⎜⎜⎝
X
x1

x2
...

xn

⎞⎟⎟⎟⎟⎟⎟⎠
where each point xi ∈ dom(X).

3.1.1 Bernoulli Variable

Let us first consider the case when the categorical attribute X has domain {a1,a2}, with
m = 2. We can model X as a Bernoulli random variable, which takes on two distinct
values, 1 and 0, according to the mapping

X(v)=
{

1 if v = a1

0 if v = a2

The probability mass function (PMF) of X is given as

P(X= x)= f (x)=
{

p1 if x = 1

p0 if x = 0
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64 Categorical Attributes

where p1 and p0 are the parameters of the distribution, which must satisfy the condition

p1+p0 = 1

Because there is only one free parameter, it is customary to denote p1 =p, from which
it follows that p0= 1−p. The PMF of Bernoulli random variable X can then be written
compactly as

P(X= x)= f (x)= px(1−p)1−x

We can see that P(X = 1) = p1(1− p)0 = p and P(X = 0) = p0(1− p)1 = 1− p, as
desired.

Mean and Variance
The expected value of X is given as

μ=E[X]= 1 ·p+ 0 · (1−p)= p

and the variance of X is given as

σ 2 = var(X)=E[X2]− (E[X])2

= (12 ·p+ 02 · (1−p))−p2 = p−p2 = p(1−p) (3.1)

Sample Mean and Variance
To estimate the parameters of the Bernoulli variable X, we assume that each symbolic
point has been mapped to its binary value. Thus, the set {x1,x2, . . . ,xn} is assumed to
be a random sample drawn from X (i.e., each xi is IID with X).

The sample mean is given as

μ̂= 1
n

n∑
i=1

xi = n1

n
= p̂ (3.2)

where n1 is the number of points with xi = 1 in the random sample (equal to the number
of occurrences of symbol a1).

Let n0= n−n1 denote the number of points with xi = 0 in the random sample. The
sample variance is given as

σ̂ 2 = 1
n

n∑
i=1

(xi − μ̂)2

= n1

n
(1− p̂)2+ n−n1

n
(−p̂)2

= p̂(1− p̂)2+ (1− p̂)p̂2

= p̂(1− p̂)(1− p̂+ p̂)

= p̂(1− p̂)

The sample variance could also have been obtained directly from Eq. (3.1), by
substituting p̂ for p.
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Example 3.1. Consider the sepal length attribute (X1) for the Iris dataset in
Table 1.1. Let us define an Iris flower as Long if its sepal length is in the range [7,∞],
and Short if its sepal length is in the range [−∞,7). Then X1 can be treated as a
categorical attribute with domain {Long,Short}. From the observed sample of size
n= 150, we find 13 long Irises. The sample mean of X1 is

μ̂= p̂= 13/150= 0.087

and its variance is

σ̂ 2 = p̂(1− p̂)= 0.087(1− 0.087)= 0.087 · 0.913= 0.079

Binomial Distribution: Number of Occurrences
Given the Bernoulli variable X, let {x1,x2, . . . ,xn} denote a random sample of size n

drawn from X. Let N be the random variable denoting the number of occurrences
of the symbol a1 (value X = 1) in the sample. N has a binomial distribution,
given as

f (N= n1| n,p)=
(

n

n1

)
pn1(1−p)n−n1 (3.3)

In fact, N is the sum of the n independent Bernoulli random variables xi IID with
X, that is, N =∑n

i=1 xi . By linearity of expectation, the mean or expected number of
occurrences of symbol a1 is given as

μN =E[N]=E

[
n∑

i=1

xi

]
=

n∑
i=1

E[xi]=
n∑

i=1

p = np

Because xi are all independent, the variance of N is given as

σ 2
N = var(N)=

n∑
i=1

var(xi)=
n∑

i=1

p(1−p)= np(1−p)

Example 3.2. Continuing with Example 3.1, we can use the estimated parameter
p̂= 0.087 to compute the expected number of occurrences N of Long sepal length
Irises via the binomial distribution:

E[N]= np̂ = 150 · 0.087= 13

In this case, because p is estimated from the sample via p̂, it is not surprising that the
expected number of occurrences of long Irises coincides with the actual occurrences.
However, what is more interesting is that we can compute the variance in the number
of occurrences:

var(N)= np̂(1− p̂)= 150 · 0.079= 11.9
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As the sample size increases, the binomial distribution given in Eq. 3.3 tends to a
normal distribution with μ = 13 and σ =

√
11.9 = 3.45 for our example. Thus, with

confidence greater than 95% we can claim that the number of occurrences of a1 will
lie in the range μ± 2σ = [9.55,16.45], which follows from the fact that for a normal
distribution 95.45% of the probability mass lies within two standard deviations from
the mean (see Section 2.5.1).

3.1.2 Multivariate Bernoulli Variable

We now consider the general case when X is a categorical attribute with domain
{a1,a2, . . . ,am}. We can model X as an m-dimensional Bernoulli random variable
X = (A1,A2, . . . ,Am)T, where each Ai is a Bernoulli variable with parameter pi

denoting the probability of observing symbol ai . However, because X can assume only
one of the symbolic values at any one time, if X = ai , then Ai = 1, and Aj = 0 for
all j �= i. The range of the random variable X is thus the set {0,1}m, with the further
restriction that if X= ai , then X= ei , where ei is the ith standard basis vector ei ∈R

m

given as

ei = (

i−1︷ ︸︸ ︷
0, . . . ,0,1,

m−i︷ ︸︸ ︷
0, . . . ,0 )T

In ei , only the ith element is 1 (eii = 1), whereas all other elements are zero
(eij = 0,∀j �= i).

This is precisely the definition of a multivariate Bernoulli variable, which is a
generalization of a Bernoulli variable from two outcomes to m outcomes. We thus
model the categorical attribute X as a multivariate Bernoulli variable X defined as

X(v)= ei if v = ai

The range of X consists of m distinct vector values {e1,e2, . . . ,em}, with the PMF of X
given as

P(X= ei)= f (ei )= pi

where pi is the probability of observing value ai . These parameters must satisfy the
condition

m∑
i=1

pi = 1

The PMF can be written compactly as follows:

P(X= ei)= f (ei)=
m∏

j=1

p
eij

j (3.4)

Because eii = 1, and eij = 0 for j �= i, we can see that, as expected, we have

f (ei)=
m∏

j=1

p
eij

j = p
ei0
1 ×·· ·peii

i · · · ×peim
m = p0

1 ×·· ·p1
i · · ·×p0

m = pi
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Table 3.1. Discretized sepal length attribute

Bins Domain Counts

[4.3,5.2] Very Short (a1) n1 = 45
(5.2,6.1] Short (a2) n2 = 50

(6.1,7.0] Long (a3) n3 = 43
(7.0,7.9] Very Long (a4) n4 = 12

Example 3.3. Let us consider the sepal length attribute (X1) for the Iris dataset
shown in Table 1.2. We divide the sepal length into four equal-width intervals, and
give each interval a name as shown in Table 3.1. We consider X1 as a categorical
attribute with domain

{a1 = VeryShort,a2 = Short,a3 = Long,a4 = VeryLong}

We model the categorical attribute X1 as a multivariate Bernoulli variable X,
defined as

X(v)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e1 = (1,0,0,0) if v = a1

e2 = (0,1,0,0) if v = a2

e3 = (0,0,1,0) if v = a3

e4 = (0,0,0,1) if v = a4

For example, the symbolic point x1 = Short = a2 is represented as the vector
(0,1,0,0)T = e2.

Mean
The mean or expected value of X can be obtained as

μ=E[X]=
m∑

i=1

eif (ei)=
m∑

i=1

eipi =

⎛⎜⎜⎜⎝
1
0
...

0

⎞⎟⎟⎟⎠p1+ ·· ·+

⎛⎜⎜⎜⎝
0
0
...

1

⎞⎟⎟⎟⎠pm =

⎛⎜⎜⎜⎝
p1

p2
...

pm

⎞⎟⎟⎟⎠= p (3.5)

Sample Mean
Assume that each symbolic point xi ∈ D is mapped to the variable xi = X(xi). The
mapped dataset x1,x2, . . . ,xn is then assumed to be a random sample IID with X. We
can compute the sample mean by placing a probability mass of 1

n
at each point

μ̂= 1
n

n∑
i=1

xi =
m∑

i=1

ni

n
ei =

⎛⎜⎜⎜⎝
n1/n

n2/n
...

nm/n

⎞⎟⎟⎟⎠=
⎛⎜⎜⎜⎝

p̂1

p̂2
...

p̂m

⎞⎟⎟⎟⎠= p̂ (3.6)

where ni is the number of occurrences of the vector value ei in the sample, which
is equivalent to the number of occurrences of the symbol ai . Furthermore, we have
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Figure 3.1. Probability mass function: sepal length.

∑m

i=1 ni = n, which follows from the fact that X can take on only m distinct values ei ,
and the counts for each value must add up to the sample size n.

Example 3.4 (Sample Mean). Consider the observed counts ni for each of the values
ai (ei) of the discretized sepal length attribute, shown in Table 3.1. Because the
total sample size is n= 150, from these we can obtain the estimates p̂i as follows:

p̂1 = 45/150= 0.3

p̂2 = 50/150= 0.333

p̂3 = 43/150= 0.287

p̂4 = 12/150= 0.08

The PMF for X is plotted in Figure 3.1, and the sample mean for X is given as

μ̂= p̂=

⎛⎜⎜⎝
0.3

0.333
0.287
0.08

⎞⎟⎟⎠

Covariance Matrix
Recall that an m-dimensional multivariate Bernoulli variable is simply a vector of m

Bernoulli variables. For instance, X = (A1,A2, . . . ,Am)T, where Ai is the Bernoulli
variable corresponding to symbol ai . The variance–covariance information between
the constituent Bernoulli variables yields a covariance matrix for X.
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Let us first consider the variance along each Bernoulli variable Ai . By Eq. (3.1),
we immediately have

σ 2
i = var(Ai )= pi(1−pi)

Next consider the covariance between Ai and Aj . Utilizing the identity in
Eq. (2.21), we have

σij =E[AiAj ]−E[Ai] ·E[Aj ]= 0−pipj =−pipj

which follows from the fact that E[AiAj ]= 0, as Ai and Aj cannot both be 1 at the same
time, and thus their product AiAj = 0. This same fact leads to the negative relationship
between Ai and Aj . What is interesting is that the degree of negative association is
proportional to the product of the mean values for Ai and Aj .

From the preceding expressions for variance and covariance, the m×m covariance
matrix for X is given as

� =

⎛⎜⎜⎜⎝
σ 2

1 σ12 . . . σ1m

σ12 σ 2
2 . . . σ2m

...
...

. . .
...

σ1m σ2m . . . σ 2
m

⎞⎟⎟⎟⎠=
⎛⎜⎜⎜⎝

p1(1−p1) −p1p2 · · · −p1pm

−p1p2 p2(1−p2) · · · −p2pm

...
...

. . .
...

−p1pm −p2pm · · · pm(1−pm)

⎞⎟⎟⎟⎠
Notice how each row in � sums to zero. For example, for row i, we have

−pip1−pip2− ·· ·+pi(1−pi)− ·· ·−pipm = pi −pi

m∑
j=1

pj = pi −pi = 0 (3.7)

Because � is symmetric, it follows that each column also sums to zero.
Define P as the m×m diagonal matrix:

P= diag(p)= diag(p1,p2, . . . ,pm)=

⎛⎜⎜⎜⎝
p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...

0 0 · · · pm

⎞⎟⎟⎟⎠
We can compactly write the covariance matrix of X as

� = P−p ·pT (3.8)

Sample Covariance Matrix
The sample covariance matrix can be obtained from Eq. (3.8) in a straightforward
manner:

�̂ = P̂− p̂ · p̂T (3.9)

where P̂= diag(p̂), and p̂= μ̂= (p̂1, p̂2, . . . , p̂m)T denotes the empirical probability mass
function for X.
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Example 3.5. Returning to the discretized sepal length attribute in Example 3.4,
we have μ̂= p̂= (0.3,0.333,0.287,0.08)T. The sample covariance matrix is given as

�̂ = P̂− p̂ · p̂T

=

⎛⎜⎜⎝
0.3 0 0 0
0 0.333 0 0
0 0 0.287 0
0 0 0 0.08

⎞⎟⎟⎠−
⎛⎜⎜⎝

0.3
0.333
0.287
0.08

⎞⎟⎟⎠(
0.3 0.333 0.287 0.08

)

=

⎛⎜⎜⎝
0.3 0 0 0
0 0.333 0 0
0 0 0.287 0
0 0 0 0.08

⎞⎟⎟⎠−
⎛⎜⎜⎝

0.09 0.1 0.086 0.024
0.1 0.111 0.096 0.027

0.086 0.096 0.082 0.023
0.024 0.027 0.023 0.006

⎞⎟⎟⎠

=

⎛⎜⎜⎝
0.21 −0.1 −0.086 −0.024
−0.1 0.222 −0.096 −0.027

−0.086 −0.096 0.204 −0.023
−0.024 −0.027 −0.023 0.074

⎞⎟⎟⎠
One can verify that each row (and column) in �̂ sums to zero.

It is worth emphasizing that whereas the modeling of categorical attribute X as a
multivariate Bernoulli variable, X= (A1,A2, . . . ,Am)T, makes the structure of the mean
and covariance matrix explicit, the same results would be obtained if we simply treat
the mapped values X(xi) as a new n×m binary data matrix, and apply the standard
definitions of the mean and covariance matrix from multivariate numeric attribute
analysis (see Section 2.3). In essence, the mapping from symbols ai to binary vectors ei

is the key idea in categorical attribute analysis.

Example 3.6. Consider the sample D of size n= 5 for the sepal length attribute X1

in the Iris dataset, shown in Table 3.2a. As in Example 3.1, we assume that X1 has
only two categorical values {Long,Short}. We model X1 as the multivariate Bernoulli
variable X1 defined as

X1(v)=
⎧⎨⎩e1 = (1,0)T if v = Long(a1)

e2 = (0,1)T if v = Short(a2)

The sample mean [Eq. (3.6)] is

μ̂= p̂= (2/5,3/5)T = (0.4,0.6)T

and the sample covariance matrix [Eq. (3.9)] is

�̂ = P̂− p̂p̂T =
(

0.4 0
0 0.6

)
−

(
0.4
0.6

)(
0.4 0.6

)
=

(
0.4 0
0 0.6

)
−

(
0.16 0.24
0.24 0.36

)
=

(
0.24 −0.24
−0.24 0.24

)
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Table 3.2. (a) Categorical dataset. (b) Mapped binary dataset. (c) Centered dataset.

(a)

X

x1 Short

x2 Short

x3 Long

x4 Short

x5 Long

(b)

A1 A2

x1 0 1
x2 0 1

x3 1 0
x4 0 1

x5 1 0

(c)

Z1 Z2

z1 −0.4 0.4
z2 −0.4 0.4

z3 0.6 −0.6
z4 −0.4 0.4

z5 0.6 −0.6

To show that the same result would be obtained via standard numeric analysis,
we map the categorical attribute X to the two Bernoulli attributes A1 and A2

corresponding to symbols Long and Short, respectively. The mapped dataset is
shown in Table 3.2b. The sample mean is simply

μ̂= 1
5

5∑
i=1

xi = 1
5
(2,3)T = (0.4,0.6)T

Next, we center the dataset by subtracting the mean value from each attribute. After
centering, the mapped dataset is as shown in Table 3.2c, with attribute Zi as the
centered attribute Ai . We can compute the covariance matrix using the inner-product
form [Eq. (2.30)] on the centered column vectors. We have

σ 2
1 =

1
5

ZT
1 Z1 = 1.2/5= 0.24

σ 2
2 =

1
5

ZT
2 Z2 = 1.2/5= 0.24

σ12 =
1
5

ZT
1 Z2 =−1.2/5=−0.24

Thus, the sample covariance matrix is given as

�̂ =
(

0.24 −0.24
−0.24 0.24

)
which matches the result obtained by using the multivariate Bernoulli modeling
approach.

Multinomial Distribution: Number of Occurrences
Given a multivariate Bernoulli variable X and a random sample {x1,x2, . . . ,xn} drawn
from X. Let Ni be the random variable corresponding to the number of occurrences
of symbol ai in the sample, and let N = (N1,N2, . . . ,Nm)T denote the vector random
variable corresponding to the joint distribution of the number of occurrences over all
the symbols. Then N has a multinomial distribution, given as

f
(
N= (n1,n2, . . . ,nm) | p)= (

n

n1n2 . . .nm

) m∏
i=1

p
ni
i


