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High-dimensional Space

Let D be a n x d data matrix. In data mining typically the data is very high dimensional.
Understanding the nature of high-dimensional space, or hyperspace, is very important,
especially because it does not behave like the more familiar geometry in two or three
dimensions.

Hyper-rectangle: The data space is a d-dimensional hyper-rectangle

d

Ry= H[min(Xj), maX(Xj)]

j=1
where min(X;) and max(X;) specify the range of X;.

Hypercube: Assume the data is centered, and let m denote the maximum attribute value

d n
m= maxmax[|x,7|]
=1 =1

The data hyperspace can be represented as a hypercube, centered at 0, with all sides of
length /=2m, given as

Hy(h = [x: X1, %0, xa) | Vi, xi € [—//2,//2]]

The unit hypercube has all sides of length /=1, and is denoted as Hy(1).
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Hypersphere

Assume that the data has been centered, so that u = 0. Let r denote the largest
magnitude among all points:

r=max{lixil}
1

The data hyperspace can be represented as a d-dimensional hyperball centered
at 0 with radius r, defined as

By(n = x| IIx|l <1}

d
or By ={x=(x1.%.....x) | Y_x <P

j=1

The surface of the hyperball is called a hypersphere, and it consists of all the
points exactly at distance r from the center of the hyperball

San = {x| x| =r}

d
or Sy(N = {x= (X1, X2, ... Xd) | 2:()(/-)2 =7
=
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Iris Data Hyperspace: Hypercube and Hypersphere

[=4.12andr=2.19

Xy: sepal width
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High-dimensional Volumes

Hypercube: The volume of a hypercube with edge length /is given as

vol(Ha(h) = I

HypersphereThe volume of a hyperball and its corresponding hypersphere is
identical The volume of a hypersphere is given as

In 1 dimension: vol(S; () =2r

In 2 dimensions: vol(S,(r) =77

4
In 3 dimensions: vol(S3(r) = 57113

d
In d-dimensions: vol(S¢(n) = Kgr¥ = (#_ZH)) I

where
d (9! if dis even
r (5“) T VA (5h) it dis odd
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Volume of Unit Hypersphere

With increasing dimensionality the hypersphere volume first increases up to a point, and
then starts to decrease, and ultimately vanishes. In particular, for the unit hypersphere

with r=1,

—0

T
lim vol(S4(1)) = lim ————
d—o0 (1)) d-oe (4 +1)

vol(Sq(1))
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Hypersphere Inscribed within Hypercube

Consider the space enclosed within the largest hypersphere that can be
accommodated within a hypercube (which represents the dataspace).

The ratio of the volume of the hypersphere of radius r to the hypercube with
side length /= 2ris given as

In 2 dimensions: M = ﬁ I 78.5%
vol(H,(2r)) 472 4

vol(S3(n) _ 57° 7w _ o e
vol(H3(21)) 8r 6
vol(S4(r) . 2

In d dimensions: lim = lim i -0
d—»oco VOI(Hy(2P))  d-oo zdr(z +1)

In 3 dimensions:

As the dimensionality increases, most of the volume of the hypercube is in the
“corners,” whereas the center is essentially empty.
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Hypersphere Inscribed inside a Hypercube
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Conceptual View of High-dimensional Space

Two, three, four, and higher dimensions

All the volume of the hyperspace is in the corners, with the center being
essentially empty.

High-dimensional space looks like a rolled-up porcupine!

A

(a) 2D (b) 3D (c) 4D (d) dD
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Volume of a Thin Shell

The volume of a thin hypershell of
width € is given as

vol(Sq(r, €)) = vol(S4(r) — vol(Sy(r—€))
= Kdld— Kd(r— E)d.

The ratio of volume of the thin shell to
the volume of the outer sphere:

vo|(5d(l‘,€))_Kd’d_Kd(r_e)d—1 1-¢ ’ '
vol(Su(n) Kar! - _( _7)

As dincreases, we have

vol(Sa(r,€)) . e\
A% Vol(Sy(n) _JL";'O1_<1_7) ad
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Diagonals in Hyperspace

Consider a d-dimensional hypercube, with origin 04 = (04,05, ...,0,), and
bounded in each dimension in the range [—1, 1]. Each “corner” of the
hyperspace is a d-dimensional vector of the form (£14,£1,,...,+1,) T
Lete;=(04,...,1;...,04)" denote the d-dimensional canonical unit vector in
dimension j, and let 1 denote the d-dimensional diagonal vector
(1]7127"'91d)T‘

Consider the angle 6, between the diagonal vector 1 and the first axis e;, in d
dimensions:

e/l _ el 1 1

Il 1™ fore,viTi Y1V Vd

cosby =

As dincreases, we have

lim cosfy= I|m — =0

d— o0 d— o0 [

which implies that

T
lim 80— — =90°
2

d— o0
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Angle between Diagonal Vector 1 and ey

(a) In2D (b) In 3D

In high dimensions all of the diagonal vectors are perpendicular (or orthogonal) to all
the coordinates axes! Each of the 29-" new axes connecting pairs of 29 corners are
essentially orthogonal to all of the d principal coordinate axes! Thus, in effect,
high-dimensional space has an exponential number of orthogonal “axes.”
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