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DSTA class 3: High-dimensional data

Slides adapted from from Ch. 6 of M. J. Zaki and W. Meira, CUP, 2012.

http://www.dataminingbook.info/

Download the text from the DSTA class page.
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High-dimensional Space

Let D be a n × d data matrix. In data mining typically the data is very high dimensional.
Understanding the nature of high-dimensional space, or hyperspace, is very important,
especially because it does not behave like the more familiar geometry in two or three
dimensions.

Hyper-rectangle: The data space is a d-dimensional hyper-rectangle

Rd =
d
∏

j=1

[

min(Xj),max(Xj)

]

where min(Xj) and max(Xj) specify the range of Xj.

Hypercube: Assume the data is centered, and let m denote the maximum attribute value

m = d
max
j=1

n
max
i=1

{

|xij|
}

The data hyperspace can be represented as a hypercube, centered at 0, with all sides of
length l = 2m, given as

Hd(l) =
{

x = (x1,x2, . . . ,xd)
T
∣

∣ ∀i, xi ∈ [−l/2, l/2]
}

The unit hypercube has all sides of length l = 1, and is denoted as Hd(1).
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Hypersphere

Assume that the data has been centered, so that µ = 0. Let r denote the largest
magnitude among all points:

r =max
i

{

‖xi‖
}

The data hyperspace can be represented as a d-dimensional hyperball centered
at 0 with radius r, defined as

Bd(r) =
{

x | ‖x‖ ≤ r
}

or Bd(r) =







x = (x1,x2, . . . ,xd)
∣

∣

d
∑

j=1

x2

j ≤ r2







The surface of the hyperball is called a hypersphere, and it consists of all the
points exactly at distance r from the center of the hyperball

Sd(r) =
{

x | ‖x‖ = r
}

or Sd(r) =







x = (x1,x2, . . . ,xd)
∣

∣

d
∑

j=1

(xj)
2 = r2






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Iris Data Hyperspace: Hypercube and Hypersphere
l = 4.12 and r = 2.19
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High-dimensional Volumes

Hypercube: The volume of a hypercube with edge length l is given as

vol(Hd(l)) = ld

HypersphereThe volume of a hyperball and its corresponding hypersphere is
identical The volume of a hypersphere is given as

In 1 dimension: vol(S1(r)) = 2r

In 2 dimensions: vol(S2(r)) = πr2

In 3 dimensions: vol(S3(r)) =
4

3
πr3

In d-dimensions: vol(Sd(r)) = Kdrd =

(

π
d
2

Ŵ
(

d
2
+ 1

)

)

rd

where

Ŵ

(

d

2
+ 1

)

=

{
(

d
2

)

! if d is even
√

π

(

d!!

2(d+1)/2

)

if d is odd

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 6: High-dimensional Data 5 / 1



✐

✐

✐

✐

✐

✐

✐

✐

Volume of Unit Hypersphere

With increasing dimensionality the hypersphere volume first increases up to a point, and
then starts to decrease, and ultimately vanishes. In particular, for the unit hypersphere
with r = 1,

lim
d→∞

vol(Sd(1)) = lim
d→∞

π
d
2

Ŵ( d
2

+ 1)
→ 0
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Hypersphere Inscribed within Hypercube

Consider the space enclosed within the largest hypersphere that can be
accommodated within a hypercube (which represents the dataspace).

The ratio of the volume of the hypersphere of radius r to the hypercube with
side length l = 2r is given as

In 2 dimensions:
vol(S2(r))

vol(H2(2r))
=

πr2

4r2
=

π

4
= 78.5%

In 3 dimensions:
vol(S3(r))

vol(H3(2r))
=

4

3
πr3

8r3
=

π

6
= 52.4%

In d dimensions: lim
d→∞

vol(Sd(r))

vol(Hd(2r))
= lim

d→∞

πd/2

2dŴ( d
2
+ 1)

→ 0

As the dimensionality increases, most of the volume of the hypercube is in the
“corners,” whereas the center is essentially empty.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 6: High-dimensional Data 7 / 1



✐

✐

✐

✐

✐

✐

✐

✐

Hypersphere Inscribed inside a Hypercube
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Conceptual View of High-dimensional Space
Two, three, four, and higher dimensions

All the volume of the hyperspace is in the corners, with the center being
essentially empty.

High-dimensional space looks like a rolled-up porcupine!

(a) 2D (b) 3D (c) 4D (d) dD

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 6: High-dimensional Data 9 / 1



✐

✐

✐

✐

✐

✐

✐

✐

Volume of a Thin Shell

The volume of a thin hypershell of
width ǫ is given as

vol(Sd(r,ǫ)) = vol(Sd(r))− vol(Sd(r − ǫ))

= Kdrd − Kd(r − ǫ)d.

The ratio of volume of the thin shell to
the volume of the outer sphere:

vol(Sd(r,ǫ))

vol(Sd(r))
=

Kdrd − Kd(r − ǫ)d

Kdrd
= 1 −

(

1 −
ǫ

r

)d

As d increases, we have

lim
d→∞

vol(Sd(r,ǫ))

vol(Sd(r))
= lim

d→∞
1 −

(

1 −
ǫ

r

)d

→ 1

r

r−
ǫ

ǫ
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Diagonals in Hyperspace

Consider a d-dimensional hypercube, with origin 000d = (01,02, . . . ,0d), and
bounded in each dimension in the range [−1,1]. Each “corner” of the
hyperspace is a d-dimensional vector of the form (±11,±12, . . . ,±1d)

T.

Let ei = (01, . . . ,1i, . . . ,0d)
T denote the d-dimensional canonical unit vector in

dimension i, and let 1 denote the d-dimensional diagonal vector
(11,12, . . . ,1d)

T.

Consider the angle θd between the diagonal vector 1 and the first axis e1, in d
dimensions:

cosθd =
e

T
1
1

‖e1‖ ‖1‖
=

e
T
1
1

√

e
T
1
e1

√
1T1

=
1

√
1

√
d

=
1

√
d

As d increases, we have

lim
d→∞

cosθd = lim
d→∞

1
√

d
→ 0

which implies that

lim
d→∞

θd →
π

2
= 90

◦
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Angle between Diagonal Vector 1 and e1
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(a) In 2D (b) In 3D

In high dimensions all of the diagonal vectors are perpendicular (or orthogonal) to all
the coordinates axes! Each of the 2

d−1 new axes connecting pairs of 2
d corners are

essentially orthogonal to all of the d principal coordinate axes! Thus, in effect,
high-dimensional space has an exponential number of orthogonal “axes.”

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 6: High-dimensional Data 12 / 1


