
CHAPTER 6 High-dimensional Data

In data mining typically the data is very high dimensional, as the number of
attributes can easily be in the hundreds or thousands. Understanding the nature
of high-dimensional space, or hyperspace, is very important, especially because
hyperspace does not behave like the more familiar geometry in two or three
dimensions.

6.1 HIGH-DIMENSIONAL OBJECTS

Consider the n× d data matrix

D=

⎛
⎜⎜⎜⎜⎜⎜⎝

X1 X2 · · · Xd

x1 x11 x12 · · · x1d

x2 x21 x22 · · · x2d

...
...

...
. . .

...

xn xn1 xn2 · · · xnd

⎞
⎟⎟⎟⎟⎟⎟⎠

where each point xi ∈R
d and each attribute Xj ∈R

n.

Hypercube
Let the minimum and maximum values for each attribute Xj be given as

min(Xj )=min
i

{
xij

}
max(Xj )=max

i

{
xij

}
The data hyperspace can be considered as a d-dimensional hyper-rectangle, defined as

Rd =
d∏

j=1

[
min(Xj ),max(Xj )

]

=
{
x= (x1,x2, . . . ,xd)

T
∣∣ xj ∈ [min(Xj ),max(Xj )] , for j = 1, . . . ,d

}
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164 High-dimensional Data

Assume the data is centered to have mean μ = 0. Let m denote the largest absolute
value in D, given as

m= d
max
j=1

n
max
i=1

{
|xij |

}

The data hyperspace can be represented as a hypercube, centered at 0, with all sides of
length l = 2m, given as

Hd(l)=
{
x= (x1,x2, . . . ,xd)

T
∣∣ ∀i, xi ∈ [−l/2, l/2]

}
The hypercube in one dimension, H1(l), represents an interval, which in two dimen-
sions, H2(l), represents a square, and which in three dimensions, H3(l), represents a
cube, and so on. The unit hypercube has all sides of length l = 1, and is denoted as
Hd(1).

Hypersphere
Assume that the data has been centered, so that μ = 0. Let r denote the largest
magnitude among all points:

r =max
i

{
‖xi‖

}

The data hyperspace can also be represented as a d-dimensional hyperball centered at
0 with radius r , defined as

Bd(r)=
{
x | ‖x‖ ≤ r

}
or Bd(r)=

{
x= (x1,x2, . . . ,xd)

∣∣ d∑
j=1

x2
j ≤ r2

}

The surface of the hyperball is called a hypersphere, and it consists of all the points
exactly at distance r from the center of the hyperball, defined as

Sd(r)=
{
x | ‖x‖ = r

}
or Sd(r)=

{
x= (x1,x2, . . . ,xd)

∣∣ d∑
j=1

(xj )
2 = r2

}

Because the hyperball consists of all the surface and interior points, it is also called a
closed hypersphere.

Example 6.1. Consider the 2-dimensional, centered, Iris dataset, plotted in
Figure 6.1. The largest absolute value along any dimension is m = 2.06, and the
point with the largest magnitude is (2.06,0.75), with r = 2.19. In two dimensions, the
hypercube representing the data space is a square with sides of length l = 2m= 4.12.
The hypersphere marking the extent of the space is a circle (shown dashed) with
radius r = 2.19.
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Figure 6.1. Iris data hyperspace: hypercube (solid; with l= 4.12) and hypersphere (dashed; with r= 2.19).

6.2 HIGH-DIMENSIONAL VOLUMES

Hypercube
The volume of a hypercube with edge length l is given as

vol(Hd (l))= ld

Hypersphere
The volume of a hyperball and its corresponding hypersphere is identical because the
volume measures the total content of the object, including all internal space. Consider
the well known equations for the volume of a hypersphere in lower dimensions

vol(S1(r))= 2r (6.1)

vol(S2(r))= πr2 (6.2)

vol(S3(r))= 4
3
πr3 (6.3)

As per the derivation in Appendix 6.7, the general equation for the volume of a
d-dimensional hypersphere is given as

vol(Sd(r))=Kdr
d =

(
π

d
2

�
(

d

2 + 1
)
)

rd (6.4)
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where

Kd = πd/2

�(d

2 + 1)
(6.5)

is a scalar that depends on the dimensionality d , and � is the gamma function
[Eq. (3.17)], defined as (for α > 0)

�(α)=
∞∫

0

xα−1e−xdx (6.6)

By direct integration of Eq. (6.6), we have

�(1)= 1 and �

(
1
2

)
=√π (6.7)

The gamma function also has the following property for any α > 1:

�(α)= (α− 1)�(α− 1) (6.8)

For any integer n≥ 1, we immediately have

�(n)= (n− 1)! (6.9)

Turning our attention back to Eq. (6.4), when d is even, then d

2 + 1 is an integer,
and by Eq. (6.9) we have

�

(
d

2
+ 1

)
=
(

d

2

)
!

and when d is odd, then by Eqs. (6.8) and (6.7), we have

�

(
d

2
+ 1

)
=
(

d

2

)(
d − 2

2

)(
d − 4

2

)
· · ·
(

d − (d− 1)

2

)
�

(
1
2

)
=
(

d!!
2(d+1)/2

)√
π

where d!! denotes the double factorial (or multifactorial), given as

d!!=
{

1 if d = 0 or d = 1

d · (d− 2)!! if d ≥ 2

Putting it all together we have

�

(
d

2
+ 1

)
=
⎧⎨
⎩
(

d

2

)
! if d is even

√
π
(

d!!
2(d+1)/2

)
if d is odd

(6.10)

Plugging in values of �(d/2+ 1) in Eq. (6.4) gives us the equations for the volume
of the hypersphere in different dimensions.
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Example 6.2. By Eq. (6.10), we have for d = 1, d = 2 and d = 3:

�(1/2+ 1)= 1
2

√
π

�(2/2+ 1)= 1!= 1

�(3/2+ 1)= 3
4

√
π

Thus, we can verify that the volume of a hypersphere in one, two, and three
dimensions is given as

vol(S1(r))=
√

π
1
2

√
π

r = 2r

vol(S2(r))= π

1
r2 = πr2

vol(S3(r))= π3/2

3
4

√
π

r3 = 4
3
πr3

which match the expressions in Eqs. (6.1), (6.2), and (6.3), respectively.

Surface Area The surface area of the hypersphere can be obtained by differentiating
its volume with respect to r , given as

area(Sd(r))=
d

dr
vol(Sd (r))=

(
π

d
2

�
(

d

2 + 1
)
)

drd−1 =
(

2π
d
2

�
(

d

2

)
)

rd−1

We can quickly verify that for two dimensions the surface area of a circle is given as
2πr , and for three dimensions the surface area of sphere is given as 4πr2.

Asymptotic Volume An interesting observation about the hypersphere volume is
that as dimensionality increases, the volume first increases up to a point, and then
starts to decrease, and ultimately vanishes. In particular, for the unit hypersphere
with r = 1,

lim
d→∞

vol(Sd(1))= lim
d→∞

π
d
2

�(d

2 + 1)
→ 0

Example 6.3. Figure 6.2 plots the volume of the unit hypersphere in Eq. (6.4) with
increasing dimensionality. We see that initially the volume increases, and achieves
the highest volume for d = 5 with vol(S5(1)) = 5.263. Thereafter, the volume drops
rapidly and essentially becomes zero by d = 30.
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Figure 6.2. Volume of a unit hypersphere.

6.3 HYPERSPHERE INSCRIBED WITHIN HYPERCUBE

We next look at the space enclosed within the largest hypersphere that can be
accommodated within a hypercube (which represents the dataspace). Consider a
hypersphere of radius r inscribed in a hypercube with sides of length 2r . When we
take the ratio of the volume of the hypersphere of radius r to the hypercube with side
length l = 2r , we observe the following trends.

In two dimensions, we have

vol(S2(r))

vol(H2(2r))
= πr2

4r2
= π

4
= 78.5%

Thus, an inscribed circle occupies π

4 of the volume of its enclosing square, as illustrated
in Figure 6.3a.

In three dimensions, the ratio is given as

vol(S3(r))

vol(H3(2r))
=

4
3πr3

8r3
= π

6
= 52.4%

An inscribed sphere takes up only π

6 of the volume of its enclosing cube, as shown in
Figure 6.3b, which is quite a sharp decrease over the 2-dimensional case.

For the general case, as the dimensionality d increases asymptotically, we get

lim
d→∞

vol(Sd(r))

vol(Hd (2r))
= lim

d→∞
πd/2

2d�( d

2 + 1)
→ 0

This means that as the dimensionality increases, most of the volume of the hypercube
is in the “corners,” whereas the center is essentially empty. The mental picture that
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Figure 6.3. Hypersphere inscribed inside a hypercube: in (a) two and (b) three dimensions.

(a) (b) (c) (d)

Figure 6.4. Conceptual view of high-dimensional space: (a) two, (b) three, (c) four, and (d) higher
dimensions. In d dimensions there are 2d “corners” and 2d−1 diagonals. The radius of the inscribed circle
accurately reflects the difference between the volume of the hypercube and the inscribed hypersphere in d
dimensions.

emerges is that high-dimensional space looks like a rolled-up porcupine, as illustrated
in Figure 6.4.

6.4 VOLUME OF THIN HYPERSPHERE SHELL

Let us now consider the volume of a thin hypersphere shell of width ε bounded by an
outer hypersphere of radius r , and an inner hypersphere of radius r − ε. The volume
of the thin shell is given as the difference between the volumes of the two bounding
hyperspheres, as illustrated in Figure 6.5.

Let Sd(r,ε) denote the thin hypershell of width ε. Its volume is given as

vol(Sd(r,ε))= vol(Sd(r))− vol(Sd (r − ε))=Kdr
d −Kd(r − ε)d.
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ε

Figure 6.5. Volume of a thin shell (for ε > 0).

Let us consider the ratio of the volume of the thin shell to the volume of the outer
sphere:

vol(Sd(r,ε))

vol(Sd(r))
= Kdr

d −Kd(r − ε)d

Kdrd
= 1−

(
1− ε

r

)d

Example 6.4. For example, for a circle in two dimensions, with r = 1 and ε = 0.01 the
volume of the thin shell is 1−(0.99)2= 0.0199
 2%. As expected, in two-dimensions,
the thin shell encloses only a small fraction of the volume of the original hypersphere.
For three dimensions this fraction becomes 1− (0.99)3= 0.0297
 3%, which is still a
relatively small fraction.

Asymptotic Volume
As d increases, in the limit we obtain

lim
d→∞

vol(Sd(r,ε))

vol(Sd(r))
= lim

d→∞
1−

(
1− ε

r

)d

→ 1

That is, almost all of the volume of the hypersphere is contained in the thin shell as
d →∞. This means that in high-dimensional spaces, unlike in lower dimensions, most
of the volume is concentrated around the surface (within ε) of the hypersphere, and
the center is essentially void. In other words, if the data is distributed uniformly in
the d-dimensional space, then all of the points essentially lie on the boundary of the
space (which is a d − 1 dimensional object). Combined with the fact that most of the
hypercube volume is in the corners, we can observe that in high dimensions, data tends
to get scattered on the boundary and corners of the space.
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6.5 DIAGONALS IN HYPERSPACE

Another counterintuitive behavior of high-dimensional spaces deals with the diag-
onals. Let us assume that we have a d-dimensional hypercube, with origin 0d =
(01,02, . . . ,0d ), and bounded in each dimension in the range [−1,1]. Then each “corner”
of the hyperspace is a d-dimensional vector of the form (±11,±12, . . . ,±1d)

T. Let
ei = (01, . . . ,1i , . . . ,0d )

T denote the d-dimensional canonical unit vector in dimension
i, and let 1 denote the d-dimensional diagonal vector (11,12, . . . ,1d)

T.
Consider the angle θd between the diagonal vector 1 and the first axis e1, in d

dimensions:

cosθd =
eT

1 1
‖e1‖ ‖1‖

= eT
1 1√

eT
1 e1

√
1T1

= 1√
1
√

d
= 1√

d

Example 6.5. Figure 6.6 illustrates the angle between the diagonal vector 1 and e1,
for d = 2 and d = 3. In two dimensions, we have cosθ2 = 1√

2
whereas in three

dimensions, we have cosθ3 = 1√
3
.

Asymptotic Angle
As d increases, the angle between the d-dimensional diagonal vector 1 and the first
axis vector e1 is given as

lim
d→∞

cosθd = lim
d→∞

1√
d
→ 0

which implies that

lim
d→∞

θd → π

2
= 90◦
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Figure 6.6. Angle between diagonal vector 1 and e1: in (a) two and (b) three dimensions.
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This analysis holds for the angle between the diagonal vector 1d and any of the d

principal axis vectors ei (i.e., for all i ∈ [1,d]). In fact, the same result holds for any
diagonal vector and any principal axis vector (in both directions). This implies that in
high dimensions all of the diagonal vectors are perpendicular (or orthogonal) to all
the coordinates axes! Because there are 2d corners in a d-dimensional hyperspace,
there are 2d diagonal vectors from the origin to each of the corners. Because the
diagonal vectors in opposite directions define a new axis, we obtain 2d−1 new axes,
each of which is essentially orthogonal to all of the d principal coordinate axes! Thus,
in effect, high-dimensional space has an exponential number of orthogonal “axes.” A
consequence of this strange property of high-dimensional space is that if there is a
point or a group of points, say a cluster of interest, near a diagonal, these points will
get projected into the origin and will not be visible in lower dimensional projections.

6.6 DENSITY OF THE MULTIVARIATE NORMAL

Let us consider how, for the standard multivariate normal distribution, the density of
points around the mean changes in d dimensions. In particular, consider the probability
of a point being within a fraction α > 0, of the peak density at the mean.

For a multivariate normal distribution [Eq. (2.33)], with μ= 0d (the d-dimensional
zero vector), and � = Id (the d× d identity matrix), we have

f (x)= 1

(
√

2π)d
exp

{
−xTx

2

}
(6.11)

At the mean μ= 0d , the peak density is f (0d) = 1
(
√

2π)d
. Thus, the set of points x with

density at least α fraction of the density at the mean, with 0 < α < 1, is given as

f (x)

f (0)
≥ α

which implies that

exp
{
−xTx

2

}
≥ α

or xTx≤−2ln(α)

and thus
d∑

i=1

(xi)
2 ≤−2ln(α) (6.12)

It is known that if the random variables X1, X2, . . ., Xk are independent and
identically distributed, and if each variable has a standard normal distribution, then
their squared sum X2+X2

2+·· ·+X2
k follows a χ2 distribution with k degrees of freedom,

denoted as χ2
k . Because the projection of the standard multivariate normal onto any

attribute Xj is a standard univariate normal, we conclude that xTx=∑d

i=1(xi)
2 has a χ2

distribution with d degrees of freedom. The probability that a point x is within α times
the density at the mean can be computed from the χ2

d density function using Eq. (6.12),


