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DSTA class 3: High-dimensional data

Slides adapted from from Ch. 7 of M. J. Zaki and W. Meira, CUP, 2012.

http://www.dataminingbook.info/

Download the text from the DSTA class page.
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Dimensionality Reduction

The goal of dimensionality reduction is to find a lower dimensional
representation of the data matrix D to avoid the curse of dimensionality.

Given n × d data matrix, each point xi = (xi1,xi2, . . . ,xid)
T is a vector in the

ambient d-dimensional vector space spanned by the d standard basis vectors
e1,e2, . . . ,ed.

Given any other set of d orthonormal vectors u1,u2, . . . ,ud we can re-express
each point x as

x = a1u1 + a2u2 + ·· ·+ adud

where a = (a1,a2, . . . ,ad)
T represents the coordinates of x in the new basis.

More compactly:

x = Ua

where U is the d × d orthogonal matrix, whose ith column comprises the ith
basis vector ui. Thus U

−1 = U
T, and we have

a = U
T
x
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Optimal Basis: Projection in Lower Dimensional Space

There are potentially infinite choices for the orthonormal basis vectors. Our
goal is to choose an optimal basis that preserves essential information about D.

We are interested in finding the optimal r-dimensional representation of D,
with r ≪ d. Projection of x onto the first r basis vectors is given as

x
′ = a1u1 + a2u2 + ·· · + arur =

r
∑

i=1

aiui = Urar

where Ur and ar comprises the r basis vectors and coordinates, respv. Also,
restricting a = U

T
x to r terms, we have

ar = U
T
r x

The r-dimensional projection of x is thus given as:

x
′ = UrU

T
r x = Prx

where Pr = UrU
T
r =

∑r
i=1

uiu
T
i is the orthogonal projection matrix for the

subspace spanned by the first r basis vectors.
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Optimal Basis: Error Vector

Given the projected vector x
′ = Prx, the corresponding error vector, is the

projection onto the remaining d − r basis vectors

ǫ =
d
∑

i=r+1

aiui = x − x
′

The error vector ǫ is orthogonal to x
′.

The goal of dimensionality reduction is to seek an r-dimensional basis that gives
the best possible approximation x

′
i over all the points xi ∈ D. Alternatively, we

seek to minimize the error ǫ i = xi − x
′
i over all the points.
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Iris Data: Optimal One-dimensional Basis
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Iris Data: 3D Optimal 1D Basis
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Iris Data: Optimal 2D Basis
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Principal Component Analysis

Principal Component Analysis (PCA) is a technique that seeks a r-dimensional
basis that best captures the variance in the data.

The direction with the largest projected variance is called the first principal
component.

The orthogonal direction that captures the second largest projected variance is
called the second principal component, and so on.

The direction that maximizes the variance is also the one that minimizes the
mean squared error.
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Principal Component: Direction of Most Variance

We seek to find the unit vector u that maximizes the projected variance of the
points. Let D be centered, and let 6 be its covariance matrix.

The projection of xi on u is given as

x
′
i =

(

u
T
xi

uTu

)

u = (uT
xi)u = aiu

Across all the points, the projected variance along u is

σ 2

u
=

1

n

n
∑

i=1

(ai −µu)
2 =

1

n

n
∑

i=1

u
T
(

xix
T
i

)

u = u
T

(

1

n

n
∑

i=1

xix
T
i

)

u = u
T6u

We have to find the optimal basis vector u that maximizes the projected
variance σ 2

u
= u

T6u, subject to the constraint that u
T
u = 1. The maximization

objective is given as

max

u

J(u) = u
T6u −α(uT

u − 1)

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 7: Dimensionality Reduction 8 / 33



✐

✐

✐

✐

✐

✐

✐

✐

Principal Component: Direction of Most Variance

Given the objective maxu J(u) = u
T6u −α(uT

u − 1), we solve it by setting the
derivative of J(u) with respect to u to the zero vector, to obtain

∂

∂u

(

u
T6u −α(uT

u − 1)
)

= 0

that is, 26u − 2αu = 0which implies 6u = αu

Thus α is an eigenvalue of the covariance matrix 6, with the associated
eigenvector u.

Taking the dot product with u on both sides, we have

σ 2

u
= u

T6uu
Tαu = αu

T
u = α

To maximize the projected variance σ 2

u
, we thus choose the largest eigenvalue

λ1 of 6, and the dominant eigenvector u1 specifies the direction of most
variance, also called the first principal component.
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Iris Data: First Principal Component
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Minimum Squared Error Approach

The direction that maximizes the projected variance is also the one that
minimizes the average squared error.

The mean squared error (MSE) optimization condition is

MSE(u) =
1

n

n
∑

i=1

‖ǫ i‖2 =
1

n

n
∑

i=1

‖xi − x
′
i‖

2 =
n
∑

i=1

‖xi‖2

n
− u

T6u

Since the first term is fixed for a dataset D, we see that the direction u1 that
maximizes the variance is also the one that minimizes the MSE.

Further, we have

n
∑

i=1

‖xi‖2

n
− u

T6u = var(D) = tr(6) =
d
∑

i=1

σ 2

i

Thus, for the direction u1 that minimizes MSE, we have

MSE(u1) = var(D)− u
T
1
6u1 = var(D)−λ1
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Best 2-dimensional Approximation

The best 2D subspace that captures the most variance in D comprises the
eigenvectors u1 and u2 corresponding to the largest and second largest
eigenvalues λ1 and λ2, respv.

Let U2 =
(

u1 u2

)

be the matrix whose columns correspond to the two
principal components. Given the point xi ∈ D its projected coordinates are
computed as follows:

ai = U
T
2
xi

Let A denote the projected 2D dataset. The total projected variance for A is
given as

var(A) = u
T
1
6u1 + u

T
2
6u2 = u

T
1
λ1u1 + u

T
2
λ2u2 = λ1 +λ2

The first two principal components also minimize the mean square error
objective, since

MSE =
1

n

n
∑

i=1

∥

∥xi − x
′
i

∥

∥

2 = var(D)−
1

n

n
∑

i=1

(

x
T
i P2xi

)

= var(D)− var(A)
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Optimal and Non-optimal 2D Approximations

The optimal subspace maximizes the variance, and minimizes the squared
error, whereas the nonoptimal subspace captures less variance, and has a high
mean squared error value, as seen from the lengths of the error vectors (line
segments).
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Best r-dimensional Approximation

To find the best r-dimensional approximation to D, we compute the eigenvalues of 6.
Because 6 is positive semidefinite, its eigenvalues are non-negative

λ1 ≥ λ2 ≥ ·· ·λr ≥ λr+1 · · · ≥ λd ≥ 0

We select the r largest eigenvalues, and their corresponding eigenvectors to form the
best r-dimensional approximation.

Total Projected Variance: Let Ur =
(

u1 · · · ur

)

be the r-dimensional basis vector
matrix, withe the projection matrix given as Pr = UrU

T
r =

∑r
i=1

uiu
T
i .

Let A denote the dataset formed by the coordinates of the projected points in the
r-dimensional subspace. The projected variance is given as

var(A) =
1

n

n
∑

i=1

x
T
i Prxi =

r
∑

i=1

u
T
i 6ui =

r
∑

i=1

λi

Mean Squared Error: The mean squared error in r dimensions is

MSE =
1

n

n
∑

i=1

∥

∥xi − x
′
i

∥

∥

2 = var(D)−
r
∑

i=1

λi =
d
∑

i=1

λi −
r
∑

i=1

λi
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Choosing the Dimensionality

One criteria for choosing r is to compute the fraction of the total variance
captured by the first r principal components, computed as

f(r) =
λ1 +λ2 + ·· ·+λr

λ1 +λ2 + ·· ·+λd
=
∑r

i=1
λi

∑d
i=1

λi

=
∑r

i=1
λi

var(D)

Given a certain desired variance threshold, say α, starting from the first
principal component, we keep on adding additional components, and stop at
the smallest value r, for which f(r) ≥ α. In other words, we select the fewest
number of dimensions such that the subspace spanned by those r dimensions
captures at least α fraction (say 0.9) of the total variance.
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✐

Principal Component Analysis: Algorithm

PCA (D,α):
1 µ = 1

n

∑n
i=1

xi // ompute mean

2 Z = D − 1 ·µT
// enter the data

3 6 = 1

n

(

Z
T
Z
)

// ompute ovariane matrix

4 (λ1,λ2, . . . ,λd) = eigenvalues(6) // ompute eigenvalues

5 U =
(

u1 u2 · · · ud

)

= eigenvectors(6) // ompute eigenvetors

6 f(r) =
∑r

i=1
λi

∑d
i=1

λi
, for all r = 1,2, . . . ,d // fration of total variane

7 Choose smallest r so that f(r) ≥ α // hoose dimensionality

8 Ur =
(

u1 u2 · · · ur

)

// redued basis

9 A = {ai | ai = U
T
r xi, for i = 1, . . . ,n} // redued dimensionality data
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✐

Iris Principal Components

Covariance matrix:

6 =





0.681 −0.039 1.265

−0.039 0.187 −0.320

1.265 −0.32 3.092





The eigenvalues and eigenvectors of 6

λ1 = 3.662 λ2 = 0.239 λ3 = 0.059

u1 =





−0.390

0.089

−0.916



 u2 =





−0.639

−0.742

0.200



 u3 =





−0.663

0.664

0.346





The total variance is therefore λ1 +λ2 +λ3 = 3.662 + 0.239 + 0.059 = 3.96.
The fraction of total variance for different values of r is given as

r 1 2 3

f(r) 0.925 0.985 1.0

This r = 2 PCs are need to capture α = 0.95 fraction of variance.
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Iris Data: Optimal 3D PC Basis
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Iris Principal Components: Projected Data (2D)
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Geometry of PCA

Geometrically, when r = d, PCA corresponds to a orthogonal change of basis, so that the
total variance is captured by the sum of the variances along each of the principal
directions u1,u2, . . . ,ud, and further, all covariances are zero.

Let U be the d × d orthogonal matrix U =
(

u1 u2 · · · ud

)

, with U
−1 = U

T. Let
3 = diag(λ1, · · · ,λd) be the diagonal matrix of eigenvalues. Each principal component ui

corresponds to an eigenvector of the covariance matrix 6

6ui = λiui for all 1 ≤ i ≤ d

which can be written compactly in matrix notation:

6U = U3 which implies 6 = U3U
T

Thus, 3 represents the covariance matrix in the new PC basis.

In the new PC basis, the equation

x
T6−1

x = 1

defines a d-dimensional ellipsoid (or hyper-ellipse). The eigenvectors ui of 6, that is, the
principal components, are the directions for the principal axes of the ellipsoid. The
square roots of the eigenvalues, that is,

√
λi, give the lengths of the semi-axes.
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Iris: Elliptic Contours in Standard Basis
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Iris: Axis-Parallel Ellipsoid in PC Basis
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Kernel Principal Component Analysis

Principal component analysis can be extended to find nonlinear “directions” in
the data using kernel methods. Kernel PCA finds the directions of most
variance in the feature space instead of the input space. Using the kernel trick,
all PCA operations can be carried out in terms of the kernel function in input
space, without having to transform the data into feature space.

Let φ be a function that maps a point x in input space to its image φ(xi) in
feature space. Let the points in feature space be centered and let 6φ be the
covariance matrix. The first PC in feature space correspond to the dominant
eigenvector

6φu1 = λ1u1

where

6φ =
1

n

n
∑

i=1

φ(xi)φ(xi)
T
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✐

Kernel Principal Component Analysis

It can be shown that u1 =
n
∑

i=1

ciφ(xi). That is, the PC direction in feature space

is a linear combination of the transformed points.

The coefficients are captured in the weight vector

c =
(

c1,c2, · · · ,cn

)T

Substituting into the eigen-decomposition of 6φ and simplifying, we get:

Kc = nλ1c = η1c

Thus, the weight vector c is the eigenvector corresponding to the largest
eigenvalue η1 of the kernel matrix K.
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✐

Kernel Principal Component Analysis

The weight vector c can be used to then find u1 via u1 =
n
∑

i=1

ciφ(xi).

The only constraint we impose is that u1 should be normalized to be a unit vector, which
implies ‖c‖2 = 1

η1
.

We cannot compute directly the principal direction, but we can project any point φ(x)

onto the principal direction u1, as follows:

u
T
1
φ(x) =

n
∑

i=1

ciφ(xi)
Tφ(x) =

n
∑

i=1

ciK(xi,x)

which requires only kernel operations.

We can obtain the additional principal components by solving for the other eigenvalues
and eigenvectors of

Kcj = nλjcj = ηjcj

If we sort the eigenvalues of K in decreasing order η1 ≥ η2 ≥ ·· · ≥ ηn ≥ 0, we can obtain
the jth principal component as the corresponding eigenvector cj. The variance along the

jth principal component is given as λj =
ηj

n
.
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✐

Kernel PCA Algorithm

KERNELPCA (D,K,α):

1 K =
{

K(xi,xj)
}

i,j=1,...,n
// ompute n × n kernel matrix

2 K = (I − 1

n
1n×n)K(I − 1

n
1n×n) // enter the kernel matrix

3 (η1,η2, . . . ,ηd) = eigenvalues(K) // ompute eigenvalues

4
(

c1 c2 · · · cn

)

= eigenvectors(K) // ompute eigenvetors

5 λi = ηi
n

for all i = 1, . . . ,n // ompute variane for eah omponent

6 ci =
√

1

ηi
· ci for all i = 1, . . . ,n // ensure that u

T
i ui = 1

7 f(r) =
∑r

i=1
λi

∑d
i=1

λi
, for all r = 1,2, . . . ,d // fration of total variane

8 Choose smallest r so that f(r) ≥ α // hoose dimensionality

9 Cr =
(

c1 c2 · · · cr

)

// redued basis

10 A = {ai | ai = C
T
r Ki, for i = 1, . . . ,n} // redued dimensionality data
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Nonlinear Iris Data: PCA in Input Space
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Nonlinear Iris Data: Projection onto PCs
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Kernel PCA: 3 PCs (Contours of Constant Projection)
Homogeneous Quadratic Kernel: K(xi,xj) = (xT

i xj)
2
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(a) λ1 = 0.2067
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(b) λ2 = 0.0596
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Kernel PCA: Projected Points onto 2 PCs
Homogeneous Quadratic Kernel: K(xi,xj) = (xT

i xj)
2
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Singular Value Decomposition

Principal components analysis is a special case of a more general matrix decomposition
method called Singular Value Decomposition (SVD). PCA yields the following
decomposition of the covariance matrix:

6 = U3U
T

where the covariance matrix has been factorized into the orthogonal matrix U

containing its eigenvectors, and a diagonal matrix 3 containing its eigenvalues (sorted in
decreasing order).

SVD generalizes the above factorization for any matrix. In particular for an n × d data
matrix D with n points and d columns, SVD factorizes D as follows:

D = L1R
T

where L is a orthogonal n × n matrix, R is an orthogonal d × d matrix, and 1 is an n × d
“diagonal” matrix, defined as 1(i, i) = δi, and 0 otherwise. The columns of L are called
the left singular and the columns of R (or rows of R

T) are called the right singular vectors.
The entries δi are called the singular values of D, and they are all non-negative.
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Reduced SVD

If the rank of D is r ≤ min(n,d), then there are only r nonzero singular values, ordered as
follows: δ1 ≥ δ2 ≥ ·· · ≥ δr > 0.

We discard the left and right singular vectors that correspond to zero singular values, to
obtain the reduced SVD as

D = Lr1rR
T
r

where Lr is the n × r matrix of the left singular vectors, Rr is the d × r matrix of the right
singular vectors, and 1r is the r × r diagonal matrix containing the positive singular
vectors.

The reduced SVD leads directly to the spectral decomposition of D given as

D =
r
∑

i=1

δilir
T
i

The best rank q approximation to the original data D is the matrix Dq =
∑q

i=1
δilir

T
i that

minimizes the expression ‖D − Dq‖F, where ‖A‖F =
√

∑n
i=1

∑d
j=1

A(i, j)2 is called the

Frobenius Norm of A.
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✐

Connection Between SVD and PCA

Assume D has been centered, and let D = L1R
T via SVD. Consider the scatter matrix for

D, given as D
T
D. We have

D
T
D =

(

L1R
T
)T (

L1R
T
)

= R1T
L

T
L1R

T = R(1T1)RT = R12

dR
T

where 12

d is the d × d diagonal matrix defined as 12

d(i, i) = δ2

i , for i = 1, . . . ,d.

The covariance matrix of centered D is given as 6 = 1

n D
T
D; we get

D
T
D = n6

= nU3U
T

= U(n3)UT

The right singular vectors R are the same as the eigenvectors of 6. The singular values
of D are related to the eigenvalues of 6 as

nλi = δ2

i , which implies λi =
δ2

i

n
, for i = 1, . . . ,d

Likewise the left singular vectors in L are the eigenvectors of the matrix n × n matrix
DD

T, and the corresponding eigenvalues are given as δ2

i .
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