
CHAPTER 7 Dimensionality Reduction

We saw in Chapter 6 that high-dimensional data has some peculiar characteristics,
some of which are counterintuitive. For example, in high dimensions the center of
the space is devoid of points, with most of the points being scattered along the
surface of the space or in the corners. There is also an apparent proliferation of
orthogonal axes. As a consequence high-dimensional data can cause problems for
data mining and analysis, although in some cases high-dimensionality can help, for
example, for nonlinear classification. Nevertheless, it is important to check whether
the dimensionality can be reduced while preserving the essential properties of the full
data matrix. This can aid data visualization as well as data mining. In this chapter we
study methods that allow us to obtain optimal lower-dimensional projections of the
data.

7.1 BACKGROUND

Let the data D consist of n points over d attributes, that is, it is an n × d matrix,
given as

D=

⎛
⎜⎜⎜⎜⎜⎜⎝

X1 X2 · · · Xd

x1 x11 x12 · · · x1d

x2 x21 x22 · · · x2d

...
...

...
. . .

...

xn xn1 xn2 · · · xnd

⎞
⎟⎟⎟⎟⎟⎟⎠

Each point xi = (xi1,xi2, . . . ,xid )
T is a vector in the ambient d-dimensional vector space

spanned by the d standard basis vectors e1,e2, . . . ,ed , where ei corresponds to the
ith attribute Xi . Recall that the standard basis is an orthonormal basis for the data
space, that is, the basis vectors are pairwise orthogonal, eT

i ej = 0, and have unit length
‖ei‖ = 1.

As such, given any other set of d orthonormal vectors u1,u2, . . . ,ud , with uT
i uj = 0

and ‖ui‖ = 1 (or uT
i ui = 1), we can re-express each point x as the linear combination

x= a1u1+ a2u2+ ·· ·+ adud (7.1)
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184 Dimensionality Reduction

where the vector a = (a1,a2, . . . ,ad)
T represents the coordinates of x in the new basis.

The above linear combination can also be expressed as a matrix multiplication:

x=Ua (7.2)

where U is the d× d matrix, whose ith column comprises the ith basis vector ui :

U=
⎛
⎝ | | |

u1 u2 · · · ud

| | |

⎞
⎠

The matrix U is an orthogonal matrix, whose columns, the basis vectors, are
orthonormal, that is, they are pairwise orthogonal and have unit length

uT
i uj =

{
1 if i = j

0 if i �= j

Because U is orthogonal, this means that its inverse equals its transpose:

U−1 =UT

which implies that UTU= I, where I is the d× d identity matrix.
Multiplying Eq. (7.2) on both sides by UT yields the expression for computing the

coordinates of x in the new basis

UTx=UTUa

a=UTx (7.3)

Example 7.1. Figure 7.1a shows the centered Iris dataset, with n= 150 points, in the
d = 3 dimensional space comprising the sepal length (X1), sepal width (X2), and
petal length (X3) attributes. The space is spanned by the standard basis vectors

e1 =
⎛
⎝1

0
0

⎞
⎠ e2 =

⎛
⎝0

1
0

⎞
⎠ e3 =

⎛
⎝0

0
1

⎞
⎠

Figure 7.1b shows the same points in the space comprising the new basis vectors

u1 =
⎛
⎝−0.390

0.089
−0.916

⎞
⎠ u2 =

⎛
⎝−0.639
−0.742

0.200

⎞
⎠ u3 =

⎛
⎝−0.663

0.664
0.346

⎞
⎠

For example, the new coordinates of the centered point x = (−0.343,−0.754,

0.241)T can be computed as

a=UTx=
⎛
⎝−0.390 0.089 −0.916
−0.639 −0.742 0.200
−0.663 0.664 0.346

⎞
⎠

⎛
⎝−0.343
−0.754

0.241

⎞
⎠=

⎛
⎝−0.154

0.828
−0.190

⎞
⎠

One can verify that x can be written as the linear combination

x=−0.154u1+ 0.828u2− 0.190u3
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(a) Original Basis
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(b) Optimal Basis

Figure 7.1. Iris data: optimal basis in three dimensions.

Because there are potentially infinite choices for the set of orthonormal basis
vectors, one natural question is whether there exists an optimal basis, for a suitable
notion of optimality. Further, it is often the case that the input dimensionality d is
very large, which can cause various problems owing to the curse of dimensionality (see
Chapter 6). It is natural to ask whether we can find a reduced dimensionality subspace
that still preserves the essential characteristics of the data. That is, we are interested
in finding the optimal r-dimensional representation of D, with r � d . In other words,
given a point x, and assuming that the basis vectors have been sorted in decreasing
order of importance, we can truncate its linear expansion [Eq. (7.1)] to just r terms, to
obtain

x′ = a1u1+ a2u2+ ·· ·+ arur =
r∑

i=1

aiui (7.4)

Here x′ is the projection of x onto the first r basis vectors, which can be written in
matrix notation as follows:

x′ =
⎛
⎝ | | |

u1 u2 · · · ur

| | |

⎞
⎠

⎛
⎜⎜⎜⎝

a1

a2
...

ar

⎞
⎟⎟⎟⎠=Urar (7.5)
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where Ur is the matrix comprising the first r basis vectors, and ar is vector comprising
the first r coordinates. Further, because a=UTx from Eq. (7.3), restricting it to the first
r terms, we get

ar =UT
r x (7.6)

Plugging this into Eq. (7.5), the projection of x onto the first r basis vectors can be
compactly written as

x′ =UrUT
r x= Prx (7.7)

where Pr =UrUT
r is the orthogonal projection matrix for the subspace spanned by the

first r basis vectors. That is, Pr is symmetric and P2
r = Pr . This is easy to verify because

PT
r = (UrUT

r )T =UrUT
r = Pr , and P2

r = (UrUT
r )(UrUT

r )=UrUT
r = Pr , where we use the

observation that UT
r Ur = Ir×r , the r × r identity matrix. The projection matrix Pr can

also be written as the decomposition

Pr =UrUT
r =

r∑
i=1

uiuT
i (7.8)

From Eqs. (7.1) and (7.4), the projection of x onto the remaining dimensions
comprises the error vector

ε =
d∑

i=r+1

aiui = x− x′

It is worth noting that that x′ and ε are orthogonal vectors:

x′Tε =
r∑

i=1

d∑
j=r+1

aiajuT
i uj = 0

This is a consequence of the basis being orthonormal. In fact, we can make an even
stronger statement. The subspace spanned by the first r basis vectors

Sr = span(u1, . . . ,ur )

and the subspace spanned by the remaining basis vectors

Sd−r = span(ur+1, . . . ,ud )

are orthogonal subspaces, that is, all pairs of vectors x ∈ Sr and y ∈ Sd−r must be
orthogonal. The subspace Sd−r is also called the orthogonal complement of Sr .

Example 7.2. Continuing Example 7.1, approximating the centered point x =
(−0.343,−0.754,0.241)T by using only the first basis vector u1 = (−0.390,0.089,

−0.916)T, we have

x′ = a1u1 =−0.154u1=
⎛
⎝ 0.060
−0.014

0.141

⎞
⎠
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The projection of x on u1 could have been obtained directly from the projection
matrix

P1 = u1uT
1 =

⎛
⎝−0.390

0.089
−0.916

⎞
⎠(−0.390 0.089 −0.916

)

=
⎛
⎝ 0.152 −0.035 0.357
−0.035 0.008 −0.082

0.357 −0.082 0.839

⎞
⎠

That is

x′ = P1x=
⎛
⎝ 0.060
−0.014

0.141

⎞
⎠

The error vector is given as

ε = a2u2+ a3u3 = x− x′ =
⎛
⎝−0.40
−0.74

0.10

⎞
⎠

One can verify that x′ and ε are orthogonal, i.e.,

x′Tε = (
0.060 −0.014 0.141

)⎛⎝−0.40
−0.74

0.10

⎞
⎠= 0

The goal of dimensionality reduction is to seek an r-dimensional basis that gives
the best possible approximation x′i over all the points xi ∈ D. Alternatively, we may
seek to minimize the error εi = xi − x′i over all the points.

7.2 PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) is a technique that seeks a r-dimensional basis
that best captures the variance in the data. The direction with the largest projected
variance is called the first principal component. The orthogonal direction that captures
the second largest projected variance is called the second principal component, and
so on. As we shall see, the direction that maximizes the variance is also the one that
minimizes the mean squared error.

7.2.1 Best Line Approximation

We will start with r = 1, that is, the one-dimensional subspace or line u that best
approximates D in terms of the variance of the projected points. This will lead to the
general PCA technique for the best 1≤ r ≤ d dimensional basis for D.

Without loss of generality, we assume that u has magnitude ‖u‖2 = uTu = 1;
otherwise it is possible to keep on increasing the projected variance by simply
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increasing the magnitude of u. We also assume that the data has been centered so
that it has mean μ= 0.

The projection of xi on the vector u is given as

x′i =
(

uTxi

uTu

)
u= (uTxi)u= aiu

where the scalar

ai = uTxi

gives the coordinate of x′i along u. Note that because the mean point is μ = 0, its
coordinate along u is μu = 0.

We have to choose the direction u such that the variance of the projected points is
maximized. The projected variance along u is given as

σ 2
u =

1
n

n∑
i=1

(ai −μu)
2

= 1
n

n∑
i=1

(uTxi )
2

= 1
n

n∑
i=1

uT (
xixT

i

)
u

= uT

(
1
n

n∑
i=1

xixT
i

)
u

= uT�u (7.9)

where � is the covariance matrix for the centered data D.
To maximize the projected variance, we have to solve a constrained optimization

problem, namely to maximize σ 2
u subject to the constraint that uTu = 1. This can

be solved by introducing a Lagrangian multiplier α for the constraint, to obtain the
unconstrained maximization problem

max
u

J(u)= uT�u−α(uTu− 1) (7.10)

Setting the derivative of J(u) with respect to u to the zero vector, we obtain

∂

∂u
J(u)= 0

∂

∂u

(
uT�u−α(uTu− 1)

)= 0

2�u− 2αu= 0

�u= αu (7.11)

This implies that α is an eigenvalue of the covariance matrix �, with the associated
eigenvector u. Further, taking the dot product with u on both sides of Eq. (7.11) yields

uT�u= uTαu
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From Eq. (7.9), we then have

σ 2
u = αuTu

or σ 2
u = α (7.12)

To maximize the projected variance σ 2
u , we should thus choose the largest eigenvalue

of �. In other words, the dominant eigenvector u1 specifies the direction of most
variance, also called the first principal component, that is, u = u1. Further, the largest
eigenvalue λ1 specifies the projected variance, that is, σ 2

u = α = λ1.

Minimum Squared Error Approach
We now show that the direction that maximizes the projected variance is also the one
that minimizes the average squared error. As before, assume that the dataset D has
been centered by subtracting the mean from each point. For a point xi ∈D, let x′i denote
its projection along the direction u, and let εi = xi − x′i denote the error vector. The
mean squared error (MSE) optimization condition is defined as

MSE(u)= 1
n

n∑
i=1

‖εi‖2 (7.13)

= 1
n

n∑
i=1

‖xi − x′i‖2

= 1
n

n∑
i=1

(xi − x′i)
T(xi − x′i)

= 1
n

n∑
i=1

(
‖xi‖2− 2xT

i x′i + (x′i)
Tx′i

)
(7.14)

Noting that x′i = (uTxi)u, we have

= 1
n

n∑
i=1

(
‖xi‖2− 2xT

i (uTxi)u+
(
(uTxi)u

)T
(uTxi)u

)

= 1
n

n∑
i=1

(
‖xi‖2− 2(uTxi )(xT

i u)+ (uTxi )(xT
i u)uTu

)

= 1
n

n∑
i=1

(
‖xi‖2− (uTxi)(xT

i u)

)

= 1
n

n∑
i=1

‖xi‖2− 1
n

n∑
i=1

uT(xixT
i )u

= 1
n

n∑
i=1

‖xi‖2−uT

(
1
n

n∑
i=1

xixT
i

)
u

=
n∑

i=1

‖xi‖2

n
−uT�u (7.15)
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Note that by Eq. (1.4) the total variance of the centered data (i.e., with μ = 0) is
given as

var(D)= 1
n

n∑
i=1

‖xi − 0‖2 = 1
n

n∑
i=1

‖xi‖2

Further, by Eq. (2.28), we have

var(D)= tr(�)=
d∑

i=1

σ 2
i

Thus, we may rewrite Eq. (7.15) as

MSE(u)= var(D)−uT�u=
d∑

i=1

σ 2
i −uT�u

Because the first term, var(D), is a constant for a given dataset D, the vector u that
minimizes MSE(u) is thus the same one that maximizes the second term, the projected
variance uT�u. Because we know that u1, the dominant eigenvector of �, maximizes
the projected variance, we have

MSE(u1)= var(D)−uT
1 �u1 = var(D)−uT

1 λ1u1 = var(D)−λ1 (7.16)

Thus, the principal component u1, which is the direction that maximizes the projected
variance, is also the direction that minimizes the mean squared error.

Example 7.3. Figure 7.2 shows the first principal component, that is, the best
one-dimensional approximation, for the three dimensional Iris dataset shown in
Figure 7.1a. The covariance matrix for this dataset is given as

� =
⎛
⎝ 0.681 −0.039 1.265
−0.039 0.187 −0.320

1.265 −0.320 3.092

⎞
⎠

The variance values σ 2
i for each of the original dimensions are given along the

main diagonal of �. For example, σ 2
1 = 0.681, σ 2

2 = 0.187, and σ 2
3 = 3.092. The

largest eigenvalue of � is λ1 = 3.662, and the corresponding dominant eigenvector
is u1 = (−0.390,0.089,−0.916)T. The unit vector u1 thus maximizes the projected
variance, which is given as J(u1) = α = λ1 = 3.662. Figure 7.2 plots the principal
component u1. It also shows the error vectors εi , as thin gray line segments.

The total variance of the data is given as

var(D)= 1
n

n∑
i=1

‖x‖2 = 1
150

· 594.04= 3.96
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Figure 7.2. Best one-dimensional or line approximation.

We can also directly obtain the total variance as the trace of the covariance matrix:

var(D)= tr(�)= σ 2
1 +σ 2

2 +σ 2
3 = 0.681+ 0.187+ 3.092= 3.96

Thus, using Eq. (7.16), the minimum value of the mean squared error is given as

MSE(u1)= var(D)−λ1 = 3.96− 3.662= 0.298

7.2.2 Best 2-dimensional Approximation

We are now interested in the best two-dimensional approximation to D. As before,
assume that D has already been centered, so that μ = 0. We already computed the
direction with the most variance, namely u1, which is the eigenvector corresponding to
the largest eigenvalue λ1 of �. We now want to find another direction v, which also
maximizes the projected variance, but is orthogonal to u1. According to Eq. (7.9) the
projected variance along v is given as

σ 2
v = vT�v

We further require that v be a unit vector orthogonal to u1, that is,

vTu1 = 0

vTv= 1
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The optimization condition then becomes

max
v

J(v)= vT�v−α(vTv− 1)−β(vTu1− 0) (7.17)

Taking the derivative of J(v) with respect to v, and setting it to the zero vector, gives

2�v− 2αv−βu1= 0 (7.18)

If we multiply on the left by uT
1 we get

2uT
1 �v− 2αuT

1 v−βuT
1 u1 = 0

2vT�u1−β = 0,which implies that

β = 2vTλ1u1 = 2λ1vTu1 = 0

In the derivation above we used the fact that uT
1 �v= vT�u1, and that v is orthogonal

to u1. Plugging β = 0 into Eq. (7.18) gives us

2�v− 2αv= 0

�v= αv

This means that v is another eigenvector of �. Also, as in Eq. (7.12), we have σ 2
v =

α. To maximize the variance along v, we should choose α = λ2, the second largest
eigenvalue of �, with the second principal component being given by the corresponding
eigenvector, that is, v= u2.

Total Projected Variance
Let U2 be the matrix whose columns correspond to the two principal components,
given as

U2 =
⎛
⎝ | |

u1 u2

| |

⎞
⎠

Given the point xi ∈D its coordinates in the two-dimensional subspace spanned by u1

and u2 can be computed via Eq. (7.6), as follows:

ai =UT
2 xi

Assume that each point xi ∈ R
d in D has been projected to obtain its coordinates

ai ∈R2, yielding the new dataset A. Further, because D is assumed to be centered, with
μ = 0, the coordinates of the projected mean are also zero because UT

2 μ = UT
2 0 = 0.
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The total variance for A is given as

var(A)= 1
n

n∑
i=1

‖ai − 0‖2

= 1
n

n∑
i=1

(
UT

2 xi

)T (
UT

2 xi

)

= 1
n

n∑
i=1

xT
i

(
U2UT

2

)
xi

= 1
n

n∑
i=1

xT
i P2xi (7.19)

where P2 is the orthogonal projection matrix [Eq. (7.8)] given as

P2 =U2UT
2 = u1uT

1 +u2uT
2

Substituting this into Eq. (7.19), the projected total variance is given as

var(A)= 1
n

n∑
i=1

xT
i P2xi (7.20)

= 1
n

n∑
i=1

xT
i

(
u1uT

1 +u2uT
2

)
xi

= 1
n

n∑
i=1

(uT
1 xi)(xT

i u1)+ 1
n

n∑
i=1

(uT
2 xi)(xT

i u2)

= uT
1 �u1+uT

2 �u2 (7.21)

Because u1 and u2 are eigenvectors of �, we have �u1 = λ1u1 and �u2 = λ2u2, so that

var(A)= uT
1 �u1+uT

2 �u2 = uT
1 λ1u1+uT

2 λ2u2 = λ1+λ2 (7.22)

Thus, the sum of the eigenvalues is the total variance of the projected points, and the
first two principal components maximize this variance.

Mean Squared Error
We now show that the first two principal components also minimize the mean square
error objective. The mean square error objective is given as

MSE= 1
n

n∑
i=1

∥∥xi − x′i
∥∥2

= 1
n

n∑
i=1

(
‖xi‖2− 2xT

i x′i + (x′i)
Tx′i

)
, using Eq. (7.14)

= var(D)+ 1
n

n∑
i=1

(−2xT
i P2xi + (P2xi)

TP2xi

)
, using Eq. (7.7) that x′i = P2xi
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= var(D)− 1
n

n∑
i=1

(
xT

i P2xi

)
= var(D)− var(A), using Eq. (7.20) (7.23)

Thus, the MSE objective is minimized precisely when the total projected variance
var(A) is maximized. From Eq. (7.22), we have

MSE= var(D)−λ1−λ2

Example 7.4. For the Iris dataset from Example 7.1, the two largest eigenvalues are
λ1 = 3.662, and λ2 = 0.239, with the corresponding eigenvectors:

u1 =
⎛
⎝−0.390

0.089
−0.916

⎞
⎠ u2 =

⎛
⎝−0.639
−0.742

0.200

⎞
⎠

The projection matrix is given as

P2 =U2UT
2 =

⎛
⎝ | |

u1 u2

| |

⎞
⎠(

— uT
1 —

— uT
2 —

)
= u1uT

1 +u2uT
2

=
⎛
⎝ 0.152 −0.035 0.357
−0.035 0.008 −0.082

0.357 −0.082 0.839

⎞
⎠+

⎛
⎝ 0.408 0.474 −0.128

0.474 0.551 −0.148
−0.128 −0.148 0.04

⎞
⎠

=
⎛
⎝0.560 0.439 0.229

0.439 0.558 −0.230
0.229 −0.230 0.879

⎞
⎠

Thus, each point xi can be approximated by its projection onto the first two principal
components x′i =P2xi . Figure 7.3a plots this optimal 2-dimensional subspace spanned
by u1 and u2. The error vector εi for each point is shown as a thin line segment. The
gray points are behind the 2-dimensional subspace, whereas the white points are in
front of it. The total variance captured by the subspace is given as

λ1+λ2 = 3.662+ 0.239= 3.901

The mean squared error is given as

MSE= var(D)−λ1−λ2 = 3.96− 3.662− 0.239= 0.059

Figure 7.3b plots a nonoptimal 2-dimensional subspace. As one can see the optimal
subspace maximizes the variance, and minimizes the squared error, whereas the
nonoptimal subspace captures less variance, and has a high mean squared error value,
which can be pictorially seen from the lengths of the error vectors (line segments). In
fact, this is the worst possible 2-dimensional subspace; its MSE is 3.662.



7.2 Principal Component Analysis 195

��

��

��

��

��

��
��
��

��

����

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��
��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

����

��

��

��

��

��

��

��

��

��

��

��

��

��

X1

X2

X3

u1

u2

��

��

��

��

��

�� ��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��
��

��

��

��

��

��

��

��

��

��

��

��

��
��

��

��

��
��

��

��

��

��

��

��

��

��
��

��

��

��

��

��

��

��

��

��

��

����

��

��

��

��

��

��

��

��

��

��

��

(a) Optimal basis
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(b) Nonoptimal basis

Figure 7.3. Best two-dimensional approximation.

7.2.3 Best r-dimensional Approximation

We are now interested in the best r-dimensional approximation to D, where 2 < r ≤ d .
Assume that we have already computed the first j − 1 principal components or
eigenvectors, u1,u2, . . . ,uj−1, corresponding to the j − 1 largest eigenvalues of �,
for 1≤ j ≤ r . To compute the j th new basis vector v, we have to ensure that it is
normalized to unit length, that is, vTv= 1, and is orthogonal to all previous components
ui , i.e., uT

i v= 0, for 1≤ i < j . As before, the projected variance along v is given as

σ 2
v = vT�v

Combined with the constraints on v, this leads to the following maximization problem
with Lagrange multipliers:

max
v

J(v)= vT�v−α(vTv− 1)−
j−1∑
i=1

βi(uT
i v− 0)

Taking the derivative of J(v) with respect to v and setting it to the zero vector gives

2�v− 2αv−
j−1∑
i=1

βiui = 0 (7.24)
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If we multiply on the left by uT
k , for 1≤ k < j , we get

2uT
k �v− 2αuT

k v−βkuT
k uk −

j−1∑
i=1
i �=k

βiuT
k ui = 0

2vT�uk−βk = 0

βk = 2vTλkuk = 2λkvTuk = 0

where we used the fact that �uk = λkuk, as uk is the eigenvector corresponding to the
kth largest eigenvalue λk of �. Thus, we find that βi = 0 for all i < j in Eq. (7.24), which
implies that

�v= αv

To maximize the variance along v, we set α = λj , the j th largest eigenvalue of �, with
v= uj giving the j th principal component.

In summary, to find the best r-dimensional approximation to D, we compute
the eigenvalues of �. Because � is positive semidefinite, its eigenvalues must all be
non-negative, and we can thus sort them in decreasing order as follows:

λ1 ≥ λ2 ≥ ·· ·λr ≥ λr+1 · · · ≥ λd ≥ 0

We then select the r largest eigenvalues, and their corresponding eigenvectors to form
the best r-dimensional approximation.

Total Projected Variance
Let Ur be the r-dimensional basis vector matrix

Ur =
⎛
⎝ | | |

u1 u2 · · · ur

| | |

⎞
⎠

with the projection matrix given as

Pr =UrUT
r =

r∑
i=1

uiuT
i

Let A denote the dataset formed by the coordinates of the projected points in the
r-dimensional subspace, that is, ai =UT

r xi , and let x′i =Prxi denote the projected point
in the original d-dimensional space. Following the derivation for Eqs. (7.19), (7.21),
and (7.22), the projected variance is given as

var(A)= 1
n

n∑
i=1

xT
i Prxi =

r∑
i=1

uT
i �ui =

r∑
i=1

λi

Thus, the total projected variance is simply the sum of the r largest eigenvalues of �.
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Mean Squared Error
Based on the derivation for Eq. (7.23), the mean squared error objective in r dimen-
sions can be written as

MSE= 1
n

n∑
i=1

∥∥xi − x′i
∥∥2

= var(D)− var(A)

= var(D)−
r∑

i=1

uT
i �ui

= var(D)−
r∑

i=1

λi

The first r-principal components maximize the projected variance var(A), and thus
they also minimize the MSE.

Total Variance
Note that the total variance of D is invariant to a change in basis vectors. Therefore,
we have the following identity:

var(D)=
d∑

i=1

σ 2
i =

d∑
i=1

λi

Choosing the Dimensionality
Often we may not know how many dimensions, r , to use for a good approximation.
One criteria for choosing r is to compute the fraction of the total variance captured by
the first r principal components, computed as

f (r)= λ1+λ2+ ·· ·+λr

λ1+λ2+ ·· ·+λd

=
∑r

i=1 λi∑d

i=1 λi

=
∑r

i=1 λi

var(D)
(7.25)

Given a certain desired variance threshold, say α, starting from the first principal
component, we keep on adding additional components, and stop at the smallest value
r , for which f (r)≥ α. In other words, we select the fewest number of dimensions such
that the subspace spanned by those r dimensions captures at least α fraction of the
total variance. In practice, α is usually set to 0.9 or higher, so that the reduced dataset
captures at least 90% of the total variance.

Algorithm 7.1 gives the pseudo-code for the principal component analysis
algorithm. Given the input data D ∈ R

n×d , it first centers it by subtracting the mean
from each point. Next, it computes the eigenvectors and eigenvalues of the covariance
matrix �. Given the desired variance threshold α, it selects the smallest set of
dimensions r that capture at least α fraction of the total variance. Finally, it computes
the coordinates of each point in the new r-dimensional principal component subspace,
to yield the new data matrix A ∈R

n×r .
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ALGORITHM 7.1. Principal Component Analysis

PCA (D,α):
μ= 1

n

∑n

i=1 xi // compute mean1

Z=D− 1 ·μT // center the data2

� = 1
n

(
ZTZ

)
// compute covariance matrix3

(λ1,λ2, . . . ,λd )= eigenvalues(�) // compute eigenvalues4

U= (
u1 u2 · · · ud

)= eigenvectors(�) // compute eigenvectors5

f (r)=
∑r

i=1 λi∑d
i=1 λi

, for all r = 1,2, . . . ,d // fraction of total variance6

Choose smallest r so that f (r)≥ α // choose dimensionality7

Ur =
(
u1 u2 · · · ur

)
// reduced basis8

A= {ai | ai =UT
r xi , for i = 1, . . . ,n} // reduced dimensionality data9

Example 7.5. Given the 3-dimensional Iris dataset in Figure 7.1a, its covariance
matrix is

� =
⎛
⎝ 0.681 −0.039 1.265
−0.039 0.187 −0.320

1.265 −0.32 3.092

⎞
⎠

The eigenvalues and eigenvectors of � are given as

λ1 = 3.662 λ2 = 0.239 λ3 = 0.059

u1 =
⎛
⎝−0.390

0.089
−0.916

⎞
⎠ u2 =

⎛
⎝−0.639
−0.742

0.200

⎞
⎠ u3 =

⎛
⎝−0.663

0.664
0.346

⎞
⎠

The total variance is therefore λ1+λ2+λ3= 3.662+0.239+0.059= 3.96. The optimal
3-dimensional basis is shown in Figure 7.1b.

To find a lower dimensional approximation, let α = 0.95. The fraction of total
variance for different values of r is given as

r 1 2 3

f (r) 0.925 0.985 1.0

For example, for r = 1, the fraction of total variance is given as f (1)= 3.662
3.96 = 0.925.

Thus, we need at least r = 2 dimensions to capture 95% of the total variance.
This optimal 2-dimensional subspace is shown as the shaded plane in Figure 7.3a.
The reduced dimensionality dataset A is shown in Figure 7.4. It consists of the
point coordinates ai = UT

2 xi in the new 2-dimensional principal components basis
comprising u1 and u2.
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Figure 7.4. Reduced dimensionality dataset: Iris principal components.

7.2.4 Geometry of PCA

Geometrically, when r = d , PCA corresponds to a orthogonal change of basis, so that
the total variance is captured by the sum of the variances along each of the principal
directions u1,u2, . . . ,ud , and further, all covariances are zero. This can be seen by
looking at the collective action of the full set of principal components, which can be
arranged in the d× d orthogonal matrix

U=
⎛
⎝ | | |

u1 u2 · · · ud

| | |

⎞
⎠

with U−1 =UT.
Each principal component ui corresponds to an eigenvector of the covariance

matrix �, that is,

�ui = λiui for all 1≤ i ≤ d

which can be written compactly in matrix notation as follows:

�

⎛
⎝ | | |

u1 u2 · · · ud

| | |

⎞
⎠=

⎛
⎝ | | |

λ1u1 λ2u2 · · · λdud

| | |

⎞
⎠

�U=U

⎛
⎜⎜⎜⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λd

⎞
⎟⎟⎟⎠

�U=U� (7.26)


