
CHAPTER 5 Kernel Methods

Before we can mine data, it is important to first find a suitable data representation
that facilitates data analysis. For example, for complex data such as text, sequences,
images, and so on, we must typically extract or construct a set of attributes or features,
so that we can represent the data instances as multivariate vectors. That is, given a data
instance x (e.g., a sequence), we need to find a mapping φ, so that φ(x) is the vector
representation of x. Even when the input data is a numeric data matrix, if we wish to
discover nonlinear relationships among the attributes, then a nonlinear mapping φ may
be used, so that φ(x) represents a vector in the corresponding high-dimensional space
comprising nonlinear attributes. We use the term input space to refer to the data space
for the input data x and feature space to refer to the space of mapped vectors φ(x).
Thus, given a set of data objects or instances xi , and given a mapping function φ, we
can transform them into feature vectors φ(xi ), which then allows us to analyze complex
data instances via numeric analysis methods.

Example 5.1 (Sequence-based Features). Consider a dataset of DNA sequences
over the alphabet � = {A,C,G,T}. One simple feature space is to represent each
sequence in terms of the probability distribution over symbols in �. That is, given a
sequence x with length |x| =m, the mapping into feature space is given as

φ(x)= {P(A),P (C),P (G),P (T)}

where P(s)= ns

m
is the probability of observing symbol s ∈�, and ns is the number of

times s appears in sequence x. Here the input space is the set of sequences �∗, and
the feature space is R4. For example, if x=ACAGCAGTA, with m= |x| = 9, since A
occurs four times, C and G occur twice, and T occurs once, we have

φ(x)= (4/9,2/9,2/9,1/9)= (0.44,0.22,0.22,0.11)

Likewise, for another sequence y=AGCAAGCGAG, we have

φ(y)= (4/10,2/10,4/10,0)= (0.4,0.2,0.4,0)

The mapping φ now allows one to compute statistics over the data sample to
make inferences about the population. For example, we may compute the mean
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symbol composition. We can also define the distance between any two sequences,
for example,

δ(x,y)=
∥∥φ(x)−φ(y)

∥∥
=
√

(0.44− 0.4)2+ (0.22− 0.2)2+ (0.22− 0.4)2+ (0.11− 0)2= 0.22

We can compute larger feature spaces by considering, for example, the probability
distribution over all substrings or words of size up to k over the alphabet �, and so on.

Example 5.2 (Nonlinear Features). As an example of a nonlinear mapping consider
the mapping φ that takes as input a vector x = (x1,x2)

T ∈ R
2 and maps it to a

“quadratic” feature space via the nonlinear mapping

φ(x)= (x2
1,x

2
2 ,
√

2x1x2)
T ∈R

3

For example, the point x= (5.9,3)T is mapped to the vector

φ(x)= (5.92,32,
√

2 · 5.9 · 3)T= (34.81,9,25.03)T

The main benefit of this transformation is that we may apply well-known linear
analysis methods in the feature space. However, because the features are nonlinear
combinations of the original attributes, this allows us to mine nonlinear patterns and
relationships.

Whereas mapping into feature space allows one to analyze the data via algebraic
and probabilistic modeling, the resulting feature space is usually very high-dimensional;
it may even be infinite dimensional. Thus, transforming all the input points into feature
space can be very expensive, or even impossible. Because the dimensionality is high,
we also run into the curse of dimensionality highlighted later in Chapter 6.

Kernel methods avoid explicitly transforming each point x in the input space into
the mapped point φ(x) in the feature space. Instead, the input objects are represented
via their n× n pairwise similarity values. The similarity function, called a kernel, is
chosen so that it represents a dot product in some high-dimensional feature space, yet
it can be computed without directly constructing φ(x). Let I denote the input space,
which can comprise any arbitrary set of objects, and let D = {xi}ni=1 ⊂ I be a dataset
comprising n objects in the input space. We can represent the pairwise similarity values
between points in D via the n×n kernel matrix, defined as

K=

⎛
⎜⎜⎜⎝

K(x1,x1) K(x1,x2) · · · K(x1,xn)

K(x2,x1) K(x2,x2) · · · K(x2,xn)
...

...
. . .

...

K(xn,x1) K(xn,x2) · · · K(xn,xn)

⎞
⎟⎟⎟⎠

where K : I × I → R is a kernel function on any two points in input space. However,
we require that K corresponds to a dot product in some feature space. That is, for any
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xi ,xj ∈ I, the kernel function should satisfy the condition

K(xi ,xj )= φ(xi)
Tφ(xj ) (5.1)

where φ : I→F is a mapping from the input space I to the feature space F . Intuitively,
this means that we should be able to compute the value of the dot product using
the original input representation x, without having recourse to the mapping φ(x).
Obviously, not just any arbitrary function can be used as a kernel; a valid kernel
function must satisfy certain conditions so that Eq. (5.1) remains valid, as discussed
in Section 5.1.

It is important to remark that the transpose operator for the dot product applies
only when F is a vector space. When F is an abstract vector space with an inner
product, the kernel is written as K(xi,xj ) = 〈φ(xi ),φ(xj )〉. However, for convenience
we use the transpose operator throughout this chapter; when F is an inner product
space it should be understood that

φ(xi)
Tφ(xj )≡ 〈φ(xi ),φ(xj )〉

Example 5.3 (Linear and Quadratic Kernels). Consider the identity mapping,
φ(x)→ x. This naturally leads to the linear kernel, which is simply the dot product
between two input vectors, and thus satisfies Eq. (5.1):

φ(x)Tφ(y)= xTy=K(x,y)

For example, consider the first five points from the two-dimensional Iris dataset
shown in Figure 5.1a:

x1 =
(

5.9
3

)
x2 =

(
6.9
3.1

)
x3 =

(
6.6
2.9

)
x4 =

(
4.6
3.2

)
x5 =

(
6

2.2

)

The kernel matrix for the linear kernel is shown in Figure 5.1b. For example,

K(x1,x2)= xT
1 x2 = 5.9× 6.9+ 3× 3.1= 40.71+ 9.3= 50.01

2

2.5

3.0
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�
x4

�
x5

(a)

K x1 x2 x3 x4 x5

x1 43.81 50.01 47.64 36.74 42.00
x2 50.01 57.22 54.53 41.66 48.22
x3 47.64 54.53 51.97 39.64 45.98
x4 36.74 41.66 39.64 31.40 34.64
x5 42.00 48.22 45.98 34.64 40.84

(b)

Figure 5.1. (a) Example points. (b) Linear kernel matrix.
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Consider the quadratic mapping φ : R2 → R
3 from Example 5.2, that maps

x= (x1,x2)
T as follows:

φ(x)= (x2
1,x

2
2 ,
√

2x1x2)
T

The dot product between the mapping for two input points x,y ∈R
2 is given as

φ(x)Tφ(y)= x2
1y

2
1 + x2

2y
2
2 + 2x1y1x2y2

We can rearrange the preceding to obtain the (homogeneous) quadratic kernel
function as follows:

φ(x)Tφ(y)= x2
1y

2
1 + x2

2y
2
2 + 2x1y1x2y2

= (x1y1+ x2y2)
2

= (xTy)2

=K(x,y)

We can thus see that the dot product in feature space can be computed by evaluating
the kernel in input space, without explicitly mapping the points into feature space.
For example, we have

φ(x1)= (5.92,32,
√

2 · 5.9 · 3)T = (34.81,9,25.03)T

φ(x2)= (6.92,3.12,
√

2 · 6.9 · 3.1)T= (47.61,9.61,30.25)T

φ(x1)
Tφ(x2)= 34.81× 47.61+ 9× 9.61+ 25.03× 30.25= 2501

We can verify that the homogeneous quadratic kernel gives the same value

K(x1,x2)= (xT
1 x2)

2 = (50.01)2= 2501

We shall see that many data mining methods can be kernelized, that is, instead of
mapping the input points into feature space, the data can be represented via the n× n

kernel matrix K, and all relevant analysis can be performed over K. This is usually
done via the so-called kernel trick, that is, show that the analysis task requires only
dot products φ(xi )

Tφ(xj ) in feature space, which can be replaced by the corresponding
kernel K(xi,xj ) = φ(xi)

Tφ(xj ) that can be computed efficiently in input space. Once
the kernel matrix has been computed, we no longer even need the input points xi , as
all operations involving only dot products in the feature space can be performed over
the n × n kernel matrix K. An immediate consequence is that when the input data
is the typical n× d numeric matrix D and we employ the linear kernel, the results
obtained by analyzing K are equivalent to those obtained by analyzing D (as long
as only dot products are involved in the analysis). Of course, kernel methods allow
much more flexibility, as we can just as easily perform non-linear analysis by employing
nonlinear kernels, or we may analyze (non-numeric) complex objects without explicitly
constructing the mapping φ(x).
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Example 5.4. Consider the five points from Example 5.3 along with the linear kernel
matrix shown in Figure 5.1. The mean of the five points in feature space is simply the
mean in input space, as φ is the identity function for the linear kernel:

μφ =
5∑

i=1

φ(xi )=
5∑

i=1

xi = (6.00,2.88)T

Now consider the squared magnitude of the mean in feature space:∥∥μφ

∥∥2 = μT
φμφ = (6.02+ 2.882)= 44.29

Because this involves only a dot product in feature space, the squared magnitude can
be computed directly from K. As we shall see later [see Eq. (5.12)] the squared norm
of the mean vector in feature space is equivalent to the average value of the kernel
matrix K. For the kernel matrix in Figure 5.1b we have

1
52

5∑
i=1

5∑
j=1

K(xi ,xj )=
1107.36

25
= 44.29

which matches the
∥∥μφ

∥∥2
value computed earlier. This example illustrates that

operations involving dot products in feature space can be cast as operations over
the kernel matrix K.

Kernel methods offer a radically different view of the data. Instead of thinking
of the data as vectors in input or feature space, we consider only the kernel values
between pairs of points. The kernel matrix can also be considered as a weighted
adjacency matrix for the complete graph over the n input points, and consequently
there is a strong connection between kernels and graph analysis, in particular algebraic
graph theory.

5.1 KERNEL MATRIX

Let I denote the input space, which can be any arbitrary set of data objects, and let
D = {x1,x2, . . . ,xn} ⊂ I denote a subset of n objects in the input space. Let φ : I→ F

be a mapping from the input space into the feature space F , which is endowed with a
dot product and norm. Let K: I×I→R be a function that maps pairs of input objects
to their dot product value in feature space, that is, K(xi ,xj )= φ(xi )

Tφ(xj ), and let K be
the n×n kernel matrix corresponding to the subset D.

The function K is called a positive semidefinite kernel if and only if it is symmetric:

K(xi ,xj )=K(xj ,xi )

and the corresponding kernel matrix K for any subset D ⊂ I is positive semidefinite,
that is,

aTKa≥ 0, for all vectors a ∈R
n
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which implies that
n∑

i=1

n∑
j=1

aiajK(xi ,xj )≥ 0, for all ai ∈R, i ∈ [1,n] (5.2)

We first verify that if K(xi ,xj ) represents the dot product φ(xi)
Tφ(xj ) in some

feature space, then K is a positive semidefinite kernel. Consider any dataset D, and
let K= {K(xi,xj )} be the corresponding kernel matrix. First, K is symmetric since the
dot product is symmetric, which also implies that K is symmetric. Second, K is positive
semidefinite because

aTKa=
n∑

i=1

n∑
j=1

aiajK(xi ,xj )

=
n∑

i=1

n∑
j=1

aiajφ(xi )
Tφ(xj )

=
(

n∑
i=1

aiφ(xi)

)T
⎛
⎝ n∑

j=1

ajφ(xj )

⎞
⎠

=
∥∥∥∥∥

n∑
i=1

aiφ(xi )

∥∥∥∥∥
2

≥ 0

Thus, K is a positive semidefinite kernel.
We now show that if we are given a positive semidefinite kernel K : I × I → R,

then it corresponds to a dot product in some feature space F .

5.1.1 Reproducing Kernel Map

For the reproducing kernel map φ, we map each point x ∈ I into a function in
a functional space {f : I → R} comprising functions that map points in I into R.
Algebraically this space of functions is an abstract vector space where each point
happens to be a function. In particular, any x ∈ I in the input space is mapped to the
following function:

φ(x)=K(x, ·)
where the · stands for any argument in I. That is, each object x in the input space gets
mapped to a feature point φ(x), which is in fact a function K(x, ·) that represents its
similarity to all other points in the input space I.

Let F be the set of all functions or points that can be obtained as a linear
combination of any subset of feature points, defined as

F = span
{
K(x, ·)| x ∈ I

}
=
{
f= f (·)=

m∑
i=1

αi K(xi , ·)
∣∣∣m ∈N,αi ∈R,{x1, . . . ,xm} ⊆ I

}

We use the dual notation f and f (·) interchangeably to emphasize the fact that each
point f in the feature space is in fact a function f (·). Note that by definition the feature
point φ(x)=K(x, ·) belongs to F .
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Let f,g ∈F be any two points in feature space:

f= f (·)=
ma∑
i=1

αi K(xi , ·) g= g(·)=
mb∑
j=1

βj K(xj , ·)

Define the dot product between two points as

fTg= f (·)Tg(·)=
ma∑
i=1

mb∑
j=1

αiβjK(xi,xj ) (5.3)

We emphasize that the notation fTg is only a convenience; it denotes the inner product
〈f,g〉 because F is an abstract vector space, with an inner product as defined above.

We can verify that the dot product is bilinear, that is, linear in both arguments,
because

fTg=
ma∑
i=1

mb∑
j=1

αi βj K(xi,xj )=
ma∑
i=1

αi g(xi )=
mb∑
j=1

βj f (xj )

The fact that K is positive semidefinite implies that

‖f‖2 = fTf=
ma∑
i=1

ma∑
j=1

αiαjK(xi ,x)≥ 0

Thus, the space F is a pre-Hilbert space, defined as a normed inner product space,
because it is endowed with a symmetric bilinear dot product and a norm. By adding
the limit points of all Cauchy sequences that are convergent, F can be turned into a
Hilbert space, defined as a normed inner product space that is complete. However,
showing this is beyond the scope of this chapter.

The space F has the so-called reproducing property, that is, we can evaluate a
function f (·)= f at a point x ∈ I by taking the dot product of f with φ(x), that is,

fTφ(x)= f (·)TK(x, ·)=
ma∑
i=1

αi K(xi ,x)= f (x)

For this reason, the space F is also called a reproducing kernel Hilbert space.
All we have to do now is to show that K(xi,xj ) corresponds to a dot product in the

feature space F . This is indeed the case, because using Eq. (5.3) for any two feature
points φ(xi),φ(xj ) ∈F their dot product is given as

φ(xi)
Tφ(xj )=K(xi , ·)TK(xj , ·)=K(xi,xj )

The reproducing kernel map shows that any positive semidefinite kernel corre-
sponds to a dot product in some feature space. This means we can apply well known
algebraic and geometric methods to understand and analyze the data in these spaces.

Empirical Kernel Map
The reproducing kernel map φ maps the input space into a potentially infinite
dimensional feature space. However, given a dataset D= {xi}ni=1, we can obtain a finite
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dimensional mapping by evaluating the kernel only on points in D. That is, define the
map φ as follows:

φ(x)=
(
(K(x1,x),K(x2,x), . . . ,K(xn,x)

)T
∈R

n

which maps each point x ∈ I to the n-dimensional vector comprising the kernel values
of x with each of the objects xi ∈D. We can define the dot product in feature space as

φ(xi )
Tφ(xj )=

n∑
k=1

K(xk,xi)K(xk,xj )=KT
i Kj (5.4)

where Ki denotes the ith column of K, which is also the same as the ith row of K
(considered as a column vector), as K is symmetric. However, for φ to be a valid map,
we require that φ(xi)

Tφ(xj )=K(xi ,xj ), which is clearly not satisfied by Eq. (5.4). One
solution is to replace KT

i Kj in Eq. (5.4) with KT
i AKj for some positive semidefinite

matrix A such that
KT

i AKj =K(xi ,xj )

If we can find such an A, it would imply that over all pairs of mapped points we have{
KT

i AKj

}n

i,j=1
=
{
K(xi ,xj )

}n

i,j=1

which can be written compactly as

KAK=K

This immediately suggests that we take A = K−1, the (pseudo) inverse of the kernel
matrix K. The modified map φ, called the empirical kernel map, is then defined as

φ(x)=K−1/2 ·
(
(K(x1,x),K(x2,x), . . . ,K(xn,x)

)T
∈R

n

so that the dot product yields

φ(xi)
Tφ(xj )=

(
K−1/2 Ki

)T(
K−1/2 Kj

)
=KT

i

(
K−1/2K−1/2)Kj

=KT
i K−1 Kj

Over all pairs of mapped points, we have{
KT

i K−1 Kj

}n

i,j=1 =K K−1 K=K

as desired. However, it is important to note that this empirical feature representation
is valid only for the n points in D. If points are added to or removed from D, the kernel
map will have to be updated for all points.

5.1.2 Mercer Kernel Map

In general different feature spaces can be constructed for the same kernel K. We now
describe how to construct the Mercer map.
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Data-specific Kernel Map
The Mercer kernel map is best understood starting from the kernel matrix for the
dataset D in input space. Because K is a symmetric positive semidefinite matrix, it has
real and non-negative eigenvalues, and it can be decomposed as follows:

K=U�UT

where U is the orthonormal matrix of eigenvectors ui = (ui1,ui2, . . . ,uin)
T ∈ R

n

(for i = 1, . . . ,n), and � is the diagonal matrix of eigenvalues, with both arranged in
non-increasing order of the eigenvalues λ1 ≥ λ2 ≥ . . .≥ λn ≥ 0:

U=
⎛
⎝ | | |

u1 u2 · · · un

| | |

⎞
⎠ �=

⎛
⎜⎜⎜⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

⎞
⎟⎟⎟⎠

The kernel matrix K can therefore be rewritten as the spectral sum

K= λ1u1uT
1 +λ2u2uT

2 + ·· ·+λnunuT
n

In particular the kernel function between xi and xj is given as

K(xi ,xj )= λ1 u1i u1j +λ2 u2i u2j · · · +λn uni unj

=
n∑

k=1

λk uki ukj (5.5)

where uki denotes the ith component of eigenvector uk. It follows that if we define the
Mercer map φ as follows:

φ(xi)=
(√

λ1 u1i ,
√

λ2 u2i , . . . ,
√

λn uni

)T
(5.6)

then K(xi ,xj ) is a dot product in feature space between the mapped points φ(xi ) and
φ(xj ) because

φ(xi )
Tφ(xj )=

(√
λ1 u1i , . . . ,

√
λn uni

)(√
λ1 u1j , . . . ,

√
λn unj

)T

= λ1 u1i u1j + ·· ·+λn uni unj =K(xi ,xj )

Noting that Ui = (u1i ,u2i , . . . ,uni )
T is the ith row of U, we can rewrite the Mercer map

φ as

φ(xi )=
√

�Ui (5.7)

Thus, the kernel value is simply the dot product between scaled rows of U:

φ(xi)
Tφ(xj )=

(√
�Ui

)T (√
�Uj

)
=UT

i �Uj

The Mercer map, defined equivalently in Eqs. (5.6) and (5.7), is obviously restricted
to the input dataset D, just like the empirical kernel map, and is therefore called
the data-specific Mercer kernel map. It defines a data-specific feature space of
dimensionality at most n, comprising the eigenvectors of K.
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Example 5.5. Let the input dataset comprise the five points shown in Figure 5.1a,
and let the corresponding kernel matrix be as shown in Figure 5.1b. Computing the
eigen-decomposition of K, we obtain λ1 = 223.95, λ2= 1.29, and λ3= λ4= λ5 = 0. The
effective dimensionality of the feature space is 2, comprising the eigenvectors u1 and
u2. Thus, the matrix U is given as follows:

U=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

u1 u2

U1 −0.442 0.163
U2 −0.505 −0.134
U3 −0.482 −0.181
U4 −0.369 0.813
U5 −0.425 −0.512

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and we have

�=
(

223.95 0
0 1.29

) √
�=

(√
223.95 0

0
√

1.29

)
=
(

14.965 0
0 1.135

)

The kernel map is specified via Eq. (5.7). For example, for x1 = (5.9,3)T and
x2 = (6.9,3.1)T we have

φ(x1)=
√

�U1 =
(

14.965 0
0 1.135

)(−0.442
0.163

)
=
(−6.616

0.185

)

φ(x2)=
√

�U2 =
(

14.965 0
0 1.135

)(−0.505
−0.134

)
=
(−7.563
−0.153

)

Their dot product is given as

φ(x1)
Tφ(x2)= 6.616× 7.563− 0.185× 0.153

= 50.038− 0.028= 50.01

which matches the kernel value K(x1,x2) in Figure 5.1b.

Mercer Kernel Map
For compact continuous spaces, analogous to the discrete case in Eq. (5.5), the kernel
value between any two points can be written as the infinite spectral decomposition

K(xi ,xj )=
∞∑

k=1

λk uk(xi ) uk(xj )

where {λ1,λ2, . . .} is the infinite set of eigenvalues, and
{
u1(·),u2(·), . . .

}
is the

corresponding set of orthogonal and normalized eigenfunctions, that is, each function
ui (·) is a solution to the integral equation

∫
K(x,y) ui(y) dy= λiui (x)
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and K is a continuous positive semidefinite kernel, that is, for all functions a(·) with a
finite square integral (i.e.,

∫
a(x)2 dx < 0) K satisfies the condition∫ ∫

K(x1,x2) a(x1) a(x2) dx1 dx2 ≥ 0

We can see that this positive semidefinite kernel for compact continuous spaces is
analogous to the the discrete kernel in Eq. (5.2). Further, similarly to the data-specific
Mercer map [Eq. (5.6)], the general Mercer kernel map is given as

φ(xi )=
(√

λ1 u1(xi),
√

λ2 u2(xi), . . .
)T

with the kernel value being equivalent to the dot product between two mapped points:

K(xi ,xj )= φ(xi)
Tφ(xj )

5.2 VECTOR KERNELS

We now consider two of the most commonly used vector kernels in practice.
Kernels that map an (input) vector space into another (feature) vector space are
called vector kernels. For multivariate input data, the input vector space will be the
d-dimensional real space R

d . Let D comprise n input points xi ∈ R
d , for i = 1,2, . . . ,n.

Commonly used (nonlinear) kernel functions over vector data include the polynomial
and Gaussian kernels, as described next.

Polynomial Kernel
Polynomial kernels are of two types: homogeneous or inhomogeneous. Let x,y ∈ R

d .
The homogeneous polynomial kernel is defined as

Kq(x,y)= φ(x)Tφ(y)= (xTy)q (5.8)

where q is the degree of the polynomial. This kernel corresponds to a feature space
spanned by all products of exactly q attributes.

The most typical cases are the linear (with q= 1) and quadratic (with q= 2) kernels,
given as

K1(x,y)= xTy

K2(x,y)= (xTy)2

The inhomogeneous polynomial kernel is defined as

Kq(x,y)= φ(x)Tφ(y)= (c+ xTy)q (5.9)

where q is the degree of the polynomial, and c ≥ 0 is some constant. When c = 0 we
obtain the homogeneous kernel. When c > 0, this kernel corresponds to the feature
space spanned by all products of at most q attributes. This can be seen from the
binomial expansion

Kq(x,y)= (c+ xTy)q =
q∑

k=1

(
q

k

)
cq−k

(
xTy

)k
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For example, for the typical value of c = 1, the inhomogeneous kernel is a weighted
sum of the homogeneous polynomial kernels for all powers up to q , that is,

(1+ xTy)q = 1+ qxTy+
(
q

2

)(
xTy

)2+ ·· ·+ q
(
xTy

)q−1+ (xTy
)q

Example 5.6. Consider the points x1 and x2 in Figure 5.1.

x1 =
(

5.9
3

)
x2 =

(
6.9
3.1

)

The homogeneous quadratic kernel is given as

K(x1,x2)= (xT
1 x2)

2 = 50.012= 2501

The inhomogeneous quadratic kernel is given as

K(x1,x2)= (1+ xT
1 x2)

2 = (1+ 50.01)2= 51.012= 2602.02

For the polynomial kernel it is possible to construct a mapping φ from the input to
the feature space. Let n0,n1, . . . ,nd denote non-negative integers, such that

∑d

i=0 ni = q .
Further, let n = (n0,n1, . . . ,nd), and let |n| = ∑d

i=0 ni = q . Also, let
(
q

n

)
denote the

multinomial coefficient (
q

n

)
=
(

q

n0,n1, . . . ,nd

)
= q!

n0!n1! . . .nd!

The multinomial expansion of the inhomogeneous kernel is then given as

Kq(x,y)= (c+ xTy)q =
(

c+
d∑

k=1

xkyk

)q

= (c+ x1y1+ ·· ·+ xdyd)
q

=
∑
|n|=q

(
q

n

)
cn0 (x1y1)

n1 (x2y2)
n2 . . . (xdyd)

nd

=
∑
|n|=q

(
q

n

)
cn0

(
x

n1
1 x

n2
2 . . .x

nd
d

)(
y

n1
1 y

n2
2 . . .y

nd
d

)

=
∑
|n|=q

(
√

an

d∏
k=1

x
nk
k

)(
√

an

d∏
k=1

y
nk
k

)

= φ(x)Tφ(y)

where an =
(
q

n

)
cn0 , and the summation is over all n = (n0,n1, . . . ,nd) such that |n| =

n0 + n1 + ·· · + nd = q . Using the notation xn =∏d

k=1 x
nk
k , the mapping φ : Rd → R

m is
given as the vector

φ(x)= (. . . ,anxn, . . . )T =
(

. . . ,

√(
q

n

)
cn0

d∏
k=1

x
nk
k , . . .

)T
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where the variable n = (n0, . . . ,nd) ranges over all the possible assignments, such that
|n| = q . It can be shown that the dimensionality of the feature space is given as

m=
(

d+ q

q

)

Example 5.7 (Quadratic Polynomial Kernel). Let x,y ∈ R
2 and let c = 1. The

inhomogeneous quadratic polynomial kernel is given as

K(x,y)= (1+ xTy)2 = (1+ x1y1+ x2y2)
2

The set of all assignments n= (n0,n1,n2), such that |n| = q = 2, and the corresponding
terms in the multinomial expansion are shown below.

Assignments Coefficient Variables
n= (n0,n1,n2) an =

(
q

n

)
cn0 xnyn =∏d

k=1(xiyi)
ni

(1,1,0) 2 x1y1

(1,0,1) 2 x2y2

(0,1,1) 2 x1y1x2y2

(2,0,0) 1 1
(0,2,0) 1 (x1y1)

2

(0,0,2) 1 (x2y2)
2

Thus, the kernel can be written as

K(x,y)= 1+ 2x1y1+ 2x2y2+ 2x1y1x2y2+ x2
1y

2
1 + x2

2y
2
2

=
(
1,
√

2x1,
√

2x2,
√

2x1x2,x
2
1 ,x

2
2

)(
1,
√

2y1,
√

2y2,
√

2y1y2,y
2
1 ,y

2
2

)T

= φ(x)Tφ(y)

When the input space is R2, the dimensionality of the feature space is given as

m=
(

d + q

q

)
=
(

2+ 2
2

)
=
(

4
2

)
= 6

In this case the inhomogeneous quadratic kernel with c = 1 corresponds to the
mapping φ : R2 →R

6, given as

φ(x)=
(
1,
√

2x1,
√

2x2,
√

2x1x2, x2
1, x2

2

)T

For example, for x1 = (5.9,3)T and x2 = (6.9,3.1)T, we have

φ(x1)=
(
1,
√

2 · 5.9,
√

2 · 3,
√

2 · 5.9 · 3, 5.92, 32
)T

= (
1,8.34,4.24,25.03,34.81,9

)T
φ(x2)=

(
1,
√

2 · 6.9,
√

2 · 3.1,
√

2 · 6.9 · 3.1, 6.92, 3.12
)T

= (
1,9.76,4.38,30.25,47.61,9.61

)T
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Thus, the inhomogeneous kernel value is

φ(x1)
Tφ(x2)= 1+ 81.40+ 18.57+ 757.16+ 1657.30+86.49= 2601.92

On the other hand, when the input space is R
2, the homogeneous quadratic kernel

corresponds to the mapping φ : R2 →R
3, defined as

φ(x)=
(√

2x1x2, x2
1 , x2

2

)T

because only the degree 2 terms are considered. For example, for x1 and x2, we have

φ(x1)=
(√

2 · 5.9 · 3, 5.92, 32
)T
= (

25.03,34.81,9
)T

φ(x2)=
(√

2 · 6.9 · 3.1, 6.92, 3.12
)T
= (

30.25,47.61,9.61
)T

and thus

K(x1,x2)= φ(x1)
Tφ(x2)= 757.16+ 1657.3+ 86.49= 2500.95

These values essentially match those shown in Example 5.6 up to four significant
digits.

Gaussian Kernel
The Gaussian kernel, also called the Gaussian radial basis function (RBF) kernel, is
defined as

K(x,y)= exp

{
−
∥∥x− y

∥∥2

2σ 2

}
(5.10)

where σ > 0 is the spread parameter that plays the same role as the standard deviation
in a normal density function. Note that K(x,x)= 1, and further that the kernel value is
inversely related to the distance between the two points x and y.

Example 5.8. Consider again the points x1 and x2 in Figure 5.1:

x1 =
(

5.9
3

)
x2 =

(
6.9
3.1

)

The squared distance between them is given as

‖x1− x2‖2 = ∥∥(−1,−0.1)T
∥∥2 = 12+ 0.12 = 1.01

With σ = 1, the Gaussian kernel is

K(x1,x2)= exp
{
−1.012

2

}
= exp{−0.51} = 0.6

It is interesting to note that a feature space for the Gaussian kernel has infinite
dimensionality. To see this, note that the exponential function can be written as the




