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Input and Feature Space

For mining and analysis, it is important to find a suitable data representation.
For example, for complex data such as text, sequences, images, and so on, we
must typically extract or construct a set of attributes or features, so that we can
represent the data instances as multivariate vectors.

Given a data instance x (e.g., a sequence), we need to find a mapping ¢, so that
¢ (x) is the vector representation of x.

Even when the input data is a numeric data matrix a nonlinear mapping ¢ may
be used to discover nonlinear relationships.

The term input space refers to the data space for the input data x and feature
space refers to the space of mapped vectors ¢ (x).
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Sequence-based Features

Consider a dataset of DNA sequences over the alphabet ¥ = {4, C, G, T}.

One simple feature space is to represent each sequence in terms of the
probability distribution over symbols in X. That is, given a sequence x with
length |x| = m, the mapping into feature space is given as

dona(x) = {P(A), P(O), I(G), P(T)}
where P(s) = 2 is the probability of observing symbol s € X, and n; is the
number of times s appears in sequence X.
For example, if x = ACAGCAGTA, with m= |x| =9, since A occurs four times,

Cand G occur twice, and T occurs once, we have

@ona(X) =(4/9,2/9,2/9,1/9) =(0.44,0.22,0.22,0.11)

We can compute larger feature spaces by considering, for example, the
probability distribution over all substrings or words of size up to k over the
alphabet X.
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Nonlinear Features

Consider the mapping ¢ that takes as input a vector x = (x1, x;)" € R? and maps
it to a “quadratic” feature space via the nonlinear mapping

d1(x) = (4, X%, V2x1x)" € R®

For example, the point x = (5.9,3) is mapped to the vector

1 (x) = (5.92,3%,4/2-5.9.3)" = (34.81,9,25.03)"

We can then apply well-known linear analysis methods in the feature space.
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Kernel Method

Let Z denote the input space, which can comprise any arbitrary set of objects, and let
D = {x;}’L; C T be a dataset comprising n objects in the input space. Let ¢: Z — F be an
arbitrary mapping from the input space Z to the feature space F.

Kernel methods avoid explicitly transforming each point x in the input space into the
mapped point ¢ (x) in the feature space. Instead, the input objects are represented via
their pairwise similarity values comprising the n x n kernel matrix, defined as

K(x1,x1)  K(x1,x2) -+ K(x1,Xp)
K(x2,x1)  K(x2,x2) -+ K(x2,Xp)
K(Xp,x1)  K(Xp,x2) -+ K(Xp,Xp)

K:Z x I — Ris a kernel function on any two points in input space, which should satisfy
the condition

Kixi, x;) = ¢ (x) "¢ (x))

Intuitively, we need to be able to compute the value of the dot product using the original
input representation x, without having recourse to the mapping ¢ (x).
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Linear Kernel

Let ¢ (x) — x be the identity kernel. This leads to the linear kernel, which is
simply the dot product between two input vectors:

) P (y) =xy = K(x,y)
For example, if x; = (5.9 3)T and x, = (6.9 3.1)T, then we have

K(x1,%2) =XIX; =5.9 x 6.9+ 3 x 3.1 =40.71+9.3 = 50.01

X2
X4 % K| x X2 X3 X4 X5
4o ° Xy e x; | 4381 5001 47.64 3674 42.00
: o X | 5001 5722 5453 41.66 4822
xs | 47.64 5453 5197 39.64 4598
2.5 Xs X, | 3674 4166 39.64 31.40 34.64
B N X Xs | 4200 4822 4598 34.64 40.84

45 5.0 55 6.0 6.5

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 5: Kernel Methods 6/1



Kernel Trick

Many data mining methods can be kernelized that is, instead of mapping the
input points into feature space, the data can be represented via the n x n kernel
matrix K, and all relevant analysis can be performed over K.

This is done via the kernel trick, that is, show that the analysis task requires
only dot products ¢ (x,) "¢ (x)) in feature space, which can be replaced by the
corresponding kernel K(x;, x;) = ¢ (x;) ) (x)) that can be computed efficiently in
input space.

Once the kernel matrix has been computed, we no longer even need the input
points x;, as all operations involving only dot products in the feature space can
be performed over the n x n kernel matrix K.
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Kernel Matrix

A function Kis called a positive semidefinite kernel if and only if it is
symmetric:

K(xj, x;) = K(x;, x;)
and the corresponding kernel matrix K for any subset D C Z is positive
semidefinite, that is,

a’Ka > 0, for all vectors a € R”
which implies that

n n
ZZa,ajK(x,», xj) >0, foralla;eR,ie[1,n]

=1 j=1
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Dot Products and Positive Semi-definite Kernels

Positive Semidefinite Kernel

If K(x;, x;) represents the dot product ¢ (x;) Tq&(x,») in some feature space, then Kis a
positive semidefinite kernel.

First, Kis symmetric since the dot product is symmetric, which also implies that K is
symmetric.

Second, K is positive semidefinite because

a'Ka= i i a;a;K(x;, x;)

i=1 j=1

=YY aap(x) p(x)

i=1 j=1

n T n
= (Z a,-¢(x,-)> (Z a,¢(x,-))
i=1 j=1

n 2
> ap(x)
i=1

>0

u]
]
I
w
i
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Data-specific Mercer Kernel Map

The Mercer kernel map also corresponds to a dot product in feature space.

Since K is a symmetric positive semidefinite matrix, it has real and non-negative
eigenvalues. It can be decomposed as follows:

K=UAU"
where U is the orthonormal matrix of eigenvectors u; = (up, Up, ..., Uip) T € R”
(fori=1,...,n),and A is the diagonal matrix of eigenvalues, with both arranged in

non-increasing order of the eigenvalues A >4, >...> 1, >0:
The Mercer map ¢ is given as

o (x;) = VAU;

where U; is the jith row of U.
The kernel value is simply the dot product between scaled rows of U:

$(x) P (x) = (\/KU,)T(«/XUj) — U/AU

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 5: Kernel Methods



Polynomial Kernel

Polynomial kernels are of two types: homogeneous or inhomogeneous.

Let x,y € R?. The (inhomogeneous) polynomial kernel is defined as
Kox.y) = (0 ¢ (y) = (c+x"y)

where g is the degree of the polynomial, and ¢ > 0 is some constant. When c=0 we
obtain the homogeneous kernel, comprising only degree g terms. When ¢ > 0, the
feature space is spanned by all products of at most q attributes.

This can be seen from the binomial expansion

q
Ky, y) = (c+xTy) 1= (Z) et (xTy)"
k=1

The most typical cases are the linear (with g= 1) and quadratic (with g = 2) kernels,
given as

Ki(x,y) = c+xTy
Kx(x,y) = (c+x"y)?
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Basic Kernel Operations in Feature Space

Basic data analysis tasks that can be performed solely via kernels, without
instantiating ¢ (x).

Norm of a Point: We can compute the norm of a point ¢ (x) in feature space as
follows:

eI = p(x) p(x) = K(x,x)

which implies that [|¢ (X)|| = VK(x, x).

Distance between Points: The distance between ¢ (x;) and ¢ (x) is

lex) —d )| = 16D 1%+ | e x) |* — 26 x)Td (%))
= K(x;, Xj) + K(Xj, Xj) — 2 K(x;, Xj)

which implies that

|ox)—ox)| = \/ K(xi, ) + K(x;, X)) — 2K(x;, X;)
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Basic Kernel Operations in Feature Space

Kernel Value as Similarity: We can rearrange the terms in

|6 x) — ) |* = K(xi, x)) + K(xj, x,) — 2K(x;, X,)
to obtain
1
> (||¢(Xi)||2 + lpxPII* = llp(x;) — ¢(Xj)||2) = K(x;, xj) = ¢(Xi)T¢(Xj)
The more the distance [|¢(x;) — ¢(x)) || between the two points in feature space,

the less the kernel value, that is, the less the similarity.

Mean in Feature Space: The mean of the points in feature space is given as
my=1/nY_7, ¢(x;). Thus, we cannot compute it explicitly. However, the the
squared norm of the mean is:

1 n n
o lI? = mipy = — 3> Kxi,x) €9)
i=1 j=1

The squared norm of the mean in feature space is simply the average of the
values in the kernel matrix K.
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