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DSTA class 2: Excerpts on Kernelization

Slides adapted from from Ch. 5 of M. J. Zaki and W. Meira, CUP, 2012.

http://www.dataminingbook.info/

Download the text from the DSTA class page.
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Input and Feature Space

For mining and analysis, it is important to find a suitable data representation.
For example, for complex data such as text, sequences, images, and so on, we
must typically extract or construct a set of attributes or features, so that we can
represent the data instances as multivariate vectors.

Given a data instance x (e.g., a sequence), we need to find a mapping φ, so that
φ(x) is the vector representation of x.

Even when the input data is a numeric data matrix a nonlinear mapping φ may
be used to discover nonlinear relationships.

The term input space refers to the data space for the input data x and feature

space refers to the space of mapped vectors φ(x).
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Sequence-based Features

Consider a dataset of DNA sequences over the alphabet 6 = {A,C,G,T}.

One simple feature space is to represent each sequence in terms of the
probability distribution over symbols in 6. That is, given a sequence x with
length |x| = m, the mapping into feature space is given as

φDNA(x) = {P(A),P(C),P(G),P(T)}

where P(s) = ns
m

is the probability of observing symbol s ∈ 6, and ns is the
number of times s appears in sequence x.

For example, if x = ACAGCAGTA, with m = |x| = 9, since A occurs four times,
C and G occur twice, and T occurs once, we have

φDNA(x) = (4/9,2/9,2/9,1/9) = (0.44,0.22,0.22,0.11)

We can compute larger feature spaces by considering, for example, the
probability distribution over all substrings or words of size up to k over the
alphabet 6.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 5: Kernel Methods 3 / 1



✐

✐

✐

✐

✐

✐

✐

✐

Nonlinear Features

Consider the mapping φ that takes as input a vector x = (x1,x2)
T ∈ R

2 and maps
it to a “quadratic” feature space via the nonlinear mapping

φ1(x) = (x2

1
,x2

2
,
√

2x1x2)
T ∈ R

3

For example, the point x = (5.9,3)T is mapped to the vector

φ1(x) = (5.92,3
2,

√
2 · 5.9 · 3)T = (34.81,9,25.03)T

We can then apply well-known linear analysis methods in the feature space.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 5: Kernel Methods 4 / 1



✐

✐

✐

✐

✐

✐

✐

✐

Kernel Method

Let I denote the input space, which can comprise any arbitrary set of objects, and let
D = {xi}n

i=1
⊂ I be a dataset comprising n objects in the input space. Let φ : I → F be an

arbitrary mapping from the input space I to the feature space F .

Kernel methods avoid explicitly transforming each point x in the input space into the
mapped point φ(x) in the feature space. Instead, the input objects are represented via
their pairwise similarity values comprising the n × n kernel matrix, defined as

K =











K(x1,x1) K(x1,x2) · · · K(x1,xn)

K(x2,x1) K(x2,x2) · · · K(x2,xn)

.

.

.
.
.
.

. . .
.
.
.

K(xn,x1) K(xn,x2) · · · K(xn,xn)











K : I ×I → R is a kernel function on any two points in input space, which should satisfy
the condition

K(xi,xj) = φ(xi)
Tφ(xj)

Intuitively, we need to be able to compute the value of the dot product using the original
input representation x, without having recourse to the mapping φ(x).
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Linear Kernel

Let φ(x) → x be the identity kernel. This leads to the linear kernel, which is
simply the dot product between two input vectors:

φ(x)Tφ(y) = xTy = K(x,y)

For example, if x1 =
(

5.9 3
)T

and x2 =
(

6.9 3.1
)T

, then we have

K(x1,x2) = xT
1
x2 = 5.9 × 6.9 + 3 × 3.1 = 40.71 + 9.3 = 50.01

4.5 5.0 5.5 6.0 6.5

2

2.5

3.0

X1

X2

bC
x1 bC

x2

bC
x3

bC x4

bC
x5

K x1 x2 x3 x4 x5

x1 43.81 50.01 47.64 36.74 42.00
x2 50.01 57.22 54.53 41.66 48.22
x3 47.64 54.53 51.97 39.64 45.98
x4 36.74 41.66 39.64 31.40 34.64
x5 42.00 48.22 45.98 34.64 40.84
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Kernel Trick

Many data mining methods can be kernelized that is, instead of mapping the
input points into feature space, the data can be represented via the n × n kernel
matrix K, and all relevant analysis can be performed over K.

This is done via the kernel trick, that is, show that the analysis task requires
only dot products φ(xi)

Tφ(xj) in feature space, which can be replaced by the
corresponding kernel K(xi,xj) = φ(xi)

Tφ(xj) that can be computed efficiently in
input space.

Once the kernel matrix has been computed, we no longer even need the input
points xi, as all operations involving only dot products in the feature space can
be performed over the n × n kernel matrix K.
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Kernel Matrix

A function K is called a positive semidefinite kernel if and only if it is
symmetric:

K(xi,xj) = K(xj,xi)

and the corresponding kernel matrix K for any subset D ⊂ I is positive
semidefinite, that is,

aTKa ≥ 0, for all vectors a ∈R
n

which implies that
n
∑

i=1

n
∑

j=1

aiajK(xi,xj) ≥ 0, for all ai ∈R, i ∈ [1,n]
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Dot Products and Positive Semi-definite Kernels

Positive Semidefinite Kernel

If K(xi,xj) represents the dot product φ(xi)
Tφ(xj) in some feature space, then K is a

positive semidefinite kernel.

First, K is symmetric since the dot product is symmetric, which also implies that K is
symmetric.

Second, K is positive semidefinite because

aTKa =
n
∑

i=1

n
∑

j=1

aiajK(xi,xj)

=
n
∑

i=1

n
∑

j=1

aiajφ(xi)
Tφ(xj)

=
(

n
∑

i=1

aiφ(xi)

)T




n
∑

j=1

ajφ(xj)





=

∥

∥

∥

∥

∥

n
∑

i=1

aiφ(xi)

∥

∥

∥

∥

∥

2

≥ 0

Thus, K is a positive semidefinite kernel.
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Data-specific Mercer Kernel Map

The Mercer kernel map also corresponds to a dot product in feature space.

Since K is a symmetric positive semidefinite matrix, it has real and non-negative
eigenvalues. It can be decomposed as follows:

K = U3UT

where U is the orthonormal matrix of eigenvectors ui = (ui1,ui2, . . . ,uin)
T ∈R

n

(for i = 1, . . . ,n), and 3 is the diagonal matrix of eigenvalues, with both arranged in
non-increasing order of the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0:
The Mercer map φ is given as

φ(xi) =
√

3Ui

where Ui is the ith row of U.
The kernel value is simply the dot product between scaled rows of U:

φ(xi)
Tφ(xj) =

(√
3Ui

)T (√
3Uj

)

= UT
i 3Uj
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Polynomial Kernel

Polynomial kernels are of two types: homogeneous or inhomogeneous.

Let x,y ∈R
d. The (inhomogeneous) polynomial kernel is defined as

Kq(x,y) = φ(x)Tφ(y) = (c + xTy)q

where q is the degree of the polynomial, and c ≥ 0 is some constant. When c = 0 we
obtain the homogeneous kernel, comprising only degree q terms. When c > 0, the
feature space is spanned by all products of at most q attributes.
This can be seen from the binomial expansion

Kq(x,y) = (c + xTy)q =
q
∑

k=1

(

q

k

)

cq−k
(

xTy
)k

The most typical cases are the linear (with q = 1) and quadratic (with q = 2) kernels,
given as

K1(x,y) = c + xTy

K2(x,y) = (c + xTy)2

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 5: Kernel Methods 11 / 1



✐

✐

✐

✐

✐

✐

✐

✐

Basic Kernel Operations in Feature Space

Basic data analysis tasks that can be performed solely via kernels, without
instantiating φ(x).

Norm of a Point: We can compute the norm of a point φ(x) in feature space as
follows:

‖φ(x)‖2 = φ(x)Tφ(x) = K(x,x)

which implies that ‖φ(x)‖ =
√

K(x,x).

Distance between Points: The distance between φ(xi) and φ(xj) is

∥

∥φ(xi)−φ(xj)
∥

∥

2 = ‖φ(xi)‖2 +
∥

∥φ(xj)
∥

∥

2 − 2φ(xi)
Tφ(xj)

= K(xi,xi)+ K(xj,xj)− 2K(xi,xj)

which implies that

∥

∥φ(xi)−φ(xj)
∥

∥=
√

K(xi,xi)+ K(xj,xj)− 2K(xi,xj)
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Basic Kernel Operations in Feature Space

Kernel Value as Similarity: We can rearrange the terms in

∥

∥φ(xi)−φ(xj)
∥

∥

2 = K(xi,xi)+ K(xj,xj)− 2K(xi,xj)

to obtain

1

2

(

‖φ(xi)‖2 +‖φ(xj)‖2 −‖φ(xi)−φ(xj)‖2
)

= K(xi,xj) = φ(xi)
Tφ(xj)

The more the distance ‖φ(xi)−φ(xj)‖ between the two points in feature space,

the less the kernel value, that is, the less the similarity.

Mean in Feature Space: The mean of the points in feature space is given as
µφ = 1/n

∑n
i=1

φ(xi). Thus, we cannot compute it explicitly. However, the the
squared norm of the mean is:

‖µφ‖2 = µT
φµφ =

1

n2

n
∑

i=1

n
∑

j=1

K(xi,xj) (1)

The squared norm of the mean in feature space is simply the average of the
values in the kernel matrix K.

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 5: Kernel Methods 13 / 1


