1
Food Webs

1.1 Introduction

Food webs are collections of predation relationships between species living in the same
habitat. As shown in Fig.1.1 such collections appear (and actually are) quite difficult
to visualise and any reductionist approach misses the point of functionality description
(not to mention the prediction of any future behaviour). The necessity of a comprehen-
sive approach makes food webs a paramount example of a complex system (Havens,
1992; Solé and Montoya, 2001; Montoya and Solé, 2002; Stouffer et al., 2005). Already
in 1991, food webs had been described as a community of predators and parasites as
“complex, but not hopelessly so” (Pimm et al., 1991). More specifically, following a
traditional approach (Cohen, 1977), ecologists distinguish among

e community webs defined by picking in the same habitat (or set of habitats) a
group of species connected by their predation relationships;

e sink webs made by collecting all the prey eaten by one or more predators and
recursively the prey of these prey;

e source webs made by collecting all the predators of one or more species and re-
cursively the predators of such predators.

In any of these webs, prey or predators do not necessarily correspond to distinct
species. Rather, the same species can appear more than once in different roles (i.e.
different stages in the life cycle of an organism). Also, since cannibalism is present
(both at the same and at different stages of growth of individuals) a single species can
be both prey and predator.

Two problems arise: firstly, by considering the definition of community webs, it
is clear that working out who eats whom can be in principle rather complicated and
typically many years of field observation are necessary to spot particularly rare events.
Secondly, when we list species in a given habitat (Willis and Yule, 1922) we are more
inclined to spot very small differences between large animals (difference in colours
of eagles or tigers), while we do not notice the differences between species of similar
bacteria. As regards the first issue, there is no other solution than working hard to
improve the quality of the data collected. Indeed, we now understand that scarcity of
observation can lead to partial knowledge of predations, thereby underestimating the
role of certain species in the environment (Martinez, 1991; Martinez et al., 1999). For
the second issue it is customary to reduce the observational bias by introducing the
concept of trophic species (Memmott et al., 2000). Those are a coarse grained version
of species and they can be obtained by lumping together different organisms when
they feed on the same prey and they are eaten by the same predators.

Data Science and Complex Networks. First Edition. Guido Caldarelli and Alessandro Chessa.
(© Guido Caldarelli and Alessandro Chessa 2016. Published in 2016 by Oxford University
Press.

Introduction 5

A simplified food waeb for the Northwaest Atlantic. © IMMA

Fig. 1.1 An example of a partial marine food web.

6 Food Webs

Food webs are a typical example of a system where we find a natural characterisa-
tion in the form of a network. Directed edges (prey — predators) connect the various
vertices (trophic species). Not surprisingly then, many ecological quantities have their
counterpart in graph theory:

e number of trophic species S that are the number n of vertices (measure of a
graph);

e number of links L that are the number m of edges (size of a graph);

e number of possible predations ~ S? (with cannibalism = S?2, without = S(S—1))
corresponding to the size of a complete directed graph;

e connectance C' ~ L/S? of a given habitat, that is, the ratio between the number
of edges present with respect to those that are possible (see previously);

e number of prey per species, that is the in-degree of the vertex and similarly the
number of predators per species, that is the out-degree of the vertex;

e number of triangulations between species (Huxham et al., 1996). In a directed
graph it is related to the motifs structure, in a simplified form of an undirected
graph with clustering.

Food webs, in particular, also show some particular behaviour that is rather un-
common in other fields: vertices can be naturally ordered according to a scale of levels
(see Fig. 1.2). The vertices in the first level are species “predating” only water, min-
erals, and sunlight energy. In ecology those are known as “basal species” or primary
producers. Species in the second level are those who predate on the first level (irre-
spective of the fact that they can also predate other species). This concept can be
iterated and in general the level of one species is related to the minimum path to
“basal species”. In this way, we can cluster together trophic species into three simple
classes:

e basal species B that have only predators;

e top species T that have only prey;

e intermediate species I that have both.

This allows us to define several quantities that we can use to describe the various food
webs:

e Firstly, the proportion of such classes (Pimm et al., 1991);

e Secondly, the proportion of the different links between the classes (BI, BT, II,
IT);

e Finally, the ratio prey/predators (Cohen, 1977) = (#B + #I)/(#I + #T).

We remind that codes, data and/or links for this chapter are available from
http://book.complexnetworks.net

1.2 Data from EcoWeb and foodweb.org

A traditional source of data for species is given by the machine readable dataset
EcoWeb,! presenting 181 small food webs. In all of them the number of species is

'https://dspace.rockefeller.edu/handle/10209/306

Data from EcoWeb and foodweb.org 7

(O Basal

[] Intermediate

v Top

Level 3

Level 2

Level 1

Environment

Fig. 1.2 Structure of a food web with the distinction in levels and classes of species.

rather small, even if in more recent datasets there is a somewhat larger number of
species.
e St Martin Island (Goldwasser and Roughgarden, 1993) with 42 trophic species;
e St Marks Seagrass (Christian and Luczkovich, 1999) with 46 trophic species;
Another grassland (Martinez et al., 1999) with 63 trophic species;
Silwood Park (Memmott et al., 2000) with 81 trophic species;
Ythan Estuary (without parasites) (Hall and Raffaelli, 1991) with 81 trophic
species;
Little Rock Lake web (Martinez, 1991) with 93 trophic species;
e Ythan Estuary (with parasites) (Huxham et al., 1996) with 126 trophic species.

We have listed these food webs in the material attached to this book. Other datasets
can be downloaded from:

e http://vlado.fmf.uni-1j.si/pub/networks/data/bio/foodweb/foodweb.htm
e http://datadryad.org/resource/doi:10.5061/dryad.b8rbc
e https://networkdata.ics.uci.edu/

e http://globalwebdb.com/

A good public resource where it is possible to download publications, software
tools, and data is the basic PEaCE Lab web site at http://foodwebs.org.

8 Food Webs

Lr—=—{2 0101

% o _|1001
L A=10001

3 2 1110

Fig. 1.3 A simple graph and its adjacency matrix.

1.3 Store and measure a graph: size, measure, and degree
1.3.1 The adjacency matrix

Graphs can be drawn (note that this can be done in many ways) either as a picture or
by means of a mathematical representation known as an “adjacency matrix”, as shown
in Fig.1.3. While the picture is useful for visualising immediately some properties of
the graph (typically local ones), the matricial form is very useful for computing others
(typically global). The adjacency matrix A is a square table of numbers (n x n, where
n is the number of vertices in the graph), where the elements in row ¢ and column j
are equal to 1 if we have an edge between vertex ¢ and j, and equal to 0 otherwise.
Such structures can be stored by computers and this representation turns out to be
particularly useful when dealing with large datasets. It would be insufficient to believe
that matrices are only useful as computer representations of graphs. Spectral properties
(related to the matricial form) of graphs can reveal many properties, starting with
community structure. We shall see these points in detail later in this book.

The simplest case of an undirected graph gives symmetric matrices A. If there is
an edge between ¢ and j there is also an edge in the opposite direction joining j and i,
so that a;; = aj;. Instead, if there is a direction in the linkage we have an arc starting
from the node i and pointing to the node j, but the opposite is not necessarily the
case, in this way a;; # a;; and the matrix is no longer symmetric. Undirected networks
are the simplest form of graph we can deal with. Symmetric matrices indicate that
we have only one kind of link connecting two vertices. In the case of the Internet this
means that a cable connecting two servers can be used both for sending part of a mail
from the first to the second and also for answering the mail from the second to the
first. Asymmetric matrices describe situations where the path cannot be followed in
reverse. If you put a link from your web page to the web page of your favourite football
team or Hollywood actor, you will not necessarily (and probably seldom) receive a link
back to your page. Oriented networks arise in a variety of situations. On the web in
social networks where we have e-mail, “likes” on Facebook posts, and retweets on
Twitter that are not symmetric; in finance where borrowing money is not lending it;
in economics where we have trade between nations, and finally in biology where the
predation relations in food webs are typically not reciprocal.

In this section we present the basic quantities used to describe a graph (some have
already been mentioned), together with an example of the Python code.

Store and measure a graph: size, measure, and degree

9

Read the adjacency matrix
Starting from this formulation it is relatively easy to cast it in Python code. We
can either start with the matrix representation of the graph or with the direct
representation of nodes and edges from the Networkx library. In the first case, we
will first represent the graph through the adjacency matrix using the basic list
data type (in this case list of lists) in the following way:

adjacency_matrix=[
[0,1,0,1],
[1,0,1,1],
[0,1,0,01,
[1,1,0,0]
]

The basic Python statement for iterative cycles is a little bit different from the
usual programming languages, like Fortran, C/C++, and the like. The iteration
is supposed to run over a list and, for example, in a simple case of an index i
running from 1 to 5 the syntax will be:
for i in [1,2,3,4,5]:

print i

#0UTPUT

a P> W=

We can browse the matrix rows using the “for” Python statement:

for row in adjacency_matrix:
print row

#OUTPUT
[0, 1, 0, 1]
[1, 0, 1, 1]
[0, 1, 0, 0]
[1, 1, 0, 0]

Note the indentation of the “print” statement, that is mandatory in Python,
even if its length is not fixed.

To get each single matrix element we will nest another for cycling to extract
each element of the rows:

for row in adjacency_matrix:
for a_ij in row:
print a_ij,

10 Food Webs

print "\r"

#0UTPUT
0101

= O
= = O
O O -
O O =

The comma prevents the new line adding simply a space in the visualisation
of the row, while the special character ”\r” stands for a carriage return.

In the case of directed networks the adjacency matrix is not symmetric, like
for a food web; if a non-zero element is present in row 2, column 3, this means
there is an arc (directed edge) from node 2 towards node 3:

adjacency_matrix_directed=[
[0,1,0,11,
[0,0,1,0],
[0,0,0,11,
[0,0,0,0]
]

1.3.2 Size, measure, connectance

The simplest scalar quantities defined in the title can be computed easily in the case
of the various food webs. We recall them here:

e the number of species S, that in graph theory corresponds to the number of
vertices n which is the measure of the graph;

e the number of predations L, that in graph theory corresponds to the number of
edges m, which is the size of the graph;

e since in this case we can distinguish among the different nature of vertices (i.e.
B,I,T), we can measure proportions of species and links between them;

e The connectance C' ~ L/S?, corresponding to the density of the graph (actual
edges present divided by the maximum possible number).

Basic statistics

#the number of species is the number of rows or columns of
#the adjacency matrix
num_species=len(adjacency_matrix_directed[0])

#the number of links or predations is the non zero elements
#of the adjacency matrix (this holds for directed graphs

Store and measure a graph: size, measure, and degree

11

num_predations=0
for i in range(num_species):
for j in range(num_species):
if adjacency_matrix_directed[i][j]!=0:
num_predations=num_predations+1

#to check if a specie is a Basal (B), an Intermediate (I) or

#a Top (T) one we have to check the presence of 1s both in

#the row and in the column of each specie

row_count=[0,0,0,0]

column_count=[0,0,0,0]

for i in range(num_species):

for j in range(num_species):

row_count [i]=row_count [i]+adjacency_matrix_directed[i] [j]
column_count [j]=column_count [j]+ \
adjacency_matrix_directed[i] [j]

number_B=0
number_I=0
number_T=0

for n in range(num_species):

if row_count[n]==0:
number_T+=1
continue

if column_count[n]==0:
number_B+=1
continue

else:
number_I+=1

print "number of species", num_species
print "number of predations", num_predations

print "classes Basal, Top, Intermediate: ",number_B,number_T,number_I

print "connectance", float(num_predations)/float(num_species**2)

#0UTPUT

number of species 4

number of predations 4

classes Basal, Top, Intermediate: 1 1 2
connectance 0.25

12 Food Webs

1.3.3 The degree

The simplest quantity that characterises the vertex is the number of its connections.
This quantity is called the degree, sometimes (mostly by physicists) called “connec-
tivity”. The degree of a vertex indicates the connections of this vertex; the degree is
thereby a “local” quantity (you need to inspect only one vertex to find its degree).
In the following we shall see non-local measures of graphs, which involve two or more
vertex neighbours, and also measures that are “global” and need an inspection of
the whole system to be computed (i.e. betweenness). The frequency distribution of
this quantity is traditionally used as a signature of “complexity”, in the sense that
the presence of long tails (or a scale-free distribution) is interpreted as a signature of
long-range correlation in the system. When the graph is oriented we can distinguish
between in-degree and out-degree. The former accounts for ingoing links (for example
the energy we receive when eating another living organism), the latter accounts for
outgoing links (as for example the hyperlinks we put on our web page to other pages
we like). Once we have the matrix of the graph, the degree can easily be computed. If
we want to know the degree k; of the vertex ¢ we simply sum the various elements a;;
on the various columns j, i.e.

j=1n

If the graph is oriented, the sum along the rows of the (non-symmetric) matrix A is
different from the sum along the columns (that is not the case when the matrix is
symmetric and the graph is not oriented). In one case we get the out-degree k¢ of
node 4, while in the opposite we get the in-degree k! of node i. In formulas,

k’{ = Z Qij, k’zo = Z Q- (1.2)

j:1,’l’L j:1,n

When the graph is weighted we can extend the previous definition, by distinguishing
between the number of connections (degree) and the weighted degree or strength s ,
that is the sum of the relative weights of those links. Also in this case, we can use the
matrix representation. Now every element a;} takes the value of the weight between 7

and j, we have
S; = Z ag;. (1.3)
j=1ln

Typically in real situations there is a power-law relation between strength and degree
(Barrat et al., 2004)

Degree
With this matrix representation we can calculate the degree for a specific node
(in this case the node “2”):

#for the undirected network
degree_node_2=0
for j in adjacency_matrix[1]:

Store and measure a graph: size, measure, and degree

13

degree_node_2=degree_node_2+]
print "degree of node 2:",degree_node_2

#and for the directed case we already calculated the sum over
#the rows and columns for the adjacency_matrix_directed
out_degree_node_3=row_count [2]
in_degree_node_4=column_count [3]

print "out_degree node 3:",out_degree_node_3
print "in_degree node 4:",in_degree_node_4

#0UTPUT

degree of node 2: 3
out_degree node 3: 1
in_degree node 4: 2

Remember that the indices in Python data structures start from “0” and so
the row “2” is marked as “17.

Degree in Networkx
The equivalent procedure in Networkx will be:

import networkx as nx

#generate an empty graph
G=nx.Graph()

#define the nodes
G.add_node (1)
G.add_node(2)
G.add_node(3)
G.add_node (4)

#link the nodes
G.add_edge(1,2)
G.add_edge(1,4)
G.add_edge(2,3)
G.add_edge(2,4)

#degree of the node 2
print G.degree(2)

#0UTPUT
3

14 Food Webs

1.4 Degree sequence

When dealing with large networks we need only to coarse grain the information on
connections by giving the degree sequence, that is the list of the various degrees in
the graph. Such information can be summarised by making a histogram of the degree
sequence (a typical and traditional statistical analysis done for complex networks that
serves as a benchmark to describe the suitability of various models of network growth).
Please note that while we can associate a degree sequence to any graph, obviously not
all sequences of numbers can produce a graph (see also Sec. 6.4). For example, the sum
of all the degrees in an undirected graph must be an even number (we are counting
every edge twice, then the sum of the elements in the degree sequence gives 2F, where
E is the total number of edges). As a consequence, any degree sequence whose sum
is odd, cannot form a graph. Furthermore even if the sum of elements in the degree
sequence is even, most configurations are impossible (imagine a degree larger than
the number of vertices present). Empirically, whenever graphs are made from a large
number of vertices, it becomes more and more difficult to check if a given degree
sequence is actually describing a graph or not.

We shall see more on these topics in Chapter 6, for the moment let us focus only on
the passage from the graph to the degree sequence. A simple way to obtain the degree
sequence starting from the previous Python formulation is to generalise the code in
order to compute the degree for each row, as follows:

Degree sequence

degree_sequence=|]
for row in range(len(adjacency_matrix)):
degree=0
for j in adjacency_matrix[row]:
degree=degree+]
degree_sequence.append (degree)

print degree_sequence

and the output will be:

#0UTPUT
(2, 3, 1, 2]

1.4.1 Plotting the degree sequence, histograms

As mentioned previously, when the network is large, we want a single plot or image
that might help us in describing the graph. A histogram is the best choice for that
purpose and it is important to learn how to draw these objects from analysis of the
raw data. In practice, we must count how many times we have a vertex whose degree
is 1,2, etc. This number is plotted against the degree values as in Fig. 1.4.

Clustering coefficient and motifs 15

1 2 3 4 5

Fig. 1.4 The way in which the degree sequence is computed and plotted by means of a
histogram. Node labels are the degrees.

Histogram
In Python it is extremely easy to plot any kind of graphs and one of the most
popular libraries is Matplotlib. In order to get the histogram of the previous degree
sequence we simply issue:

import matplotlib.pyplot as plt

plt.hist([1,1,1,1,1,1,1,2,2,2,3,3,4,5],bins=5)
plt.show()

1.5 Clustering coefficient and motifs

The clustering coefficient is a standard, basic measure of the community structure
at local scale. Imagine a network of friendship (visualised as edges) between persons
(vertices). The clustering coefficient gives the probability that if Frank is a friend of
John and Charlie, also John and Charlie are friends with each other. For graphs this
means that if we focus on a specific vertex ¢ connected to other vertices, the clustering
coefficient ¢; measures the probability that the destinations of these vertices are also
joined by a link. If all the connections are equiprobable, we just count the frequency of
such connections, that is, we measure the number of triangles insisting on a particular
vertex, as shown in Fig. 1.5 a. Another measure used is the clustering coefficient c(k)
of vertices whose degree is k. This is the average of all the values of the clustering
coefficients made with all the vertices whose degree is k,

Zi:l,N CiOki
Ny, ’

where Ny, is the number of vertices whose degree is k and dy, , = 1 if k; = k and 0

otherwise. Real networks are often characterised by a clustering larger than expected

c(k) = (1.4)

16 Food Webs

<. <

Fig. 1.5 (a) Case of a vertex (in grey) whose clustering is 1/3 (one triangle out of the possible
three. (b) A feed-forward loop.

from a series of randomly connected vertices. It is worth noticing that in the case
of directed networks as with food webs, it is somewhat difficult to determine which
triangles must to be considered, since now the edges have a direction. By considering
this further degree of freedom, a simple triangular structure can assume a variety
(nine) of different shapes. Such shapes are called motifs and their statistics can reveal
something about the density of the system at a local scale. For example, food webs are
characterised by the net dominance of a “feed-forward” loop, as shown in Fig. 1.5 b.
Similarly, motifs can be used to detect early signals of collapse in the particular case
of financial networks (Squartini et al., 2013).

Clustering coefficient
As for the node degree previously defined, we can code the clustering coefficient for
a specific node. For example, looking at Fig. 1.5 and node “2” we can express the
clustering coefficient computing the connections between the neighbours of node
“2” and dividing by all the possible connections among them (degree*(degree-
1)/2). First we compute the list indices of the neighbours of “2”:

row=1 #stands for the node 2

node_index_count=0

node_index_list=[]

for a_ij in adjacency_matrix[row]:
if a_ij==1:

node_index_list.append(node_index_count)

node_index_count=node_index_count+1

print "\r"

print node_index_list

and the list in the case of node “2” will be

#0UTPUT
[0, 2, 3]

Clustering coefficient and motifs 17

then we will check all of the possible neighbour couplings for whether a link
actually exists:

neighb_conn=0
for nl in node_index_list:
for n2 in node_index_list:
if adjacency_matrix[ni1] [n2]==1:
neighb_conn=neighb_conn+1

#we have indeed count them twice...
neighb_conn=neighb_conn/2.0

print neighb_conn
#0UTPUT

1.0

and in our case the result is simply 1. Finally the clustering coefficient for node
“2” is given by the expression

clustering_coefficient=neighb_conn/ \

(degree_node_2*(degree_node_2-1)/2.0)

print clustering_coefficient

where the final result is 0.333333333333.

1.5.1 Ecological level and categories between species, bowtie

One of the distinctive features of food web data is the possibility of arranging the
vertices along different levels defined by the distance from the environment (as usual,
the distance in a graph corresponds to the minimum number of edges to travel between
two vertices). As a result we can define categories according to the in/out links relating
to the predation. All the species that have no predations are indicated as top (T), all
the species with no prey (apart from the environment) are indicated as basal (B).
All the others are intermediate (I). Apart from the basal species, the intermediate
or top species can be more or less distant from the environment. Probably (but not
necessarily!), species at the lowest level are likely to be basal, while species on the
highest levels are likely to be top ones. The study of universality in number of levels
and composition is one of the traditional quantitative ecological analysis in the quest
for food web universality. In order to identify the various levels in the food web network
we need an algorithm able to compute the distance between all pairs of nodes. A
generalisation of this concept of levels and classes of nodes is given by the concept
of bowtie, a structure that was first noticed in the World Wide Web (Broder et al.,
2000), and late in economics (Vitali et al., 2011) and financial systems. In any directed
network you can determine a set of nodes mutually reachable one from another. They
form the strongly connected component (SCC). Those from which you arrive at SCC

18 Food Webs

are the IN component. Those reachable from the SCC form the OUT component. In
spite of the technical differences between top species and OUT components, the two
structures have some similarities (see Fig. 1.6).

Calculating the bowtie structure for a food web network

#loading the network
file_name="./data/Ythan_Estuary.txt"

DG = nx.DiGraph()

in_file=open(file_name,’r’)
while True:
next_line=in_file.readline()
if not next_line:
break
next_line_fields=next_line[:-2].split(’ ’)
node_a=next_line_fields[1] #there is a space in the beginning
#of each edge
node_b=next_line_fields[2]
DG.add_edge(node_a, node_b)

#deleting the environment
DG.remove_node(’0’)

#getting the biggest strongly connected component
scc=[(len(c),c) for c in sorted(nx.strongly_connected_components \
(DG), key=len, reverse=True)] [0] [1]

#preparing the IN and OUT component
IN_component=[]
for n in scc:
for s in DG.predecessors(n):
if s in scc: continue
if not s in IN_component:
IN_component . append(s)

OUT_component=]
for n in scc:
for s in DG.successors(n):
if s in scc: continue
if not s in OUT_component:
OUT_component . append(s)

Clustering coefficient and motifs 19

#generating the subgraph
bowtie=list(scc)+IN_component+0UT_component
DG_bowtie = DG.subgraph(bowtie)

#defining the proper layout
pos={}

in_y=100.
pos[’89°]1=(150.,in_y)

in_step=700.

for in_n in IN_component:
pos[in_n]=(100.,in_y)
in_y=in_y+in_step

out_y=100.

out_step=500.

for out_n in OUT_component:
pos [out_n]=(200,out_y)
out_y=out_ytout_step

pos[’90°]=(150. ,out_y)

#plot the bowtie structure
nx.draw(DG_bowtie, pos, node_size=50)

nx.draw_networkx_nodes(DG_bowtie, pos, IN_component, \
node_size=100, node_color=’Black’)

nx.draw_networkx_nodes(DG_bowtie, pos, OUT_component, \
node_size=100, node_color=’White’)

nx.draw_networkx_nodes(DG_bowtie, pos, scc, \
node_size=200, node_color=’Grey’)

savefig(’./data/bowtie.png’,dpi=600)

The simplest algorithm to determine paths and distances is an exploration known
as Breadth First Search (BFS).

Distance with Breadth First Search
As shown in Fig. 1.7 the strategy to compute the distance from the root node is
to explore all the accessible neighbours not already visited.

#creating the graph
G=nx.Graph()
G.add_edges_from([(’A’,’B’),(’A’,°C?),(°C’,’D’),(°C’,’E’),(’D’,’F’),

20 Food Webs

Fig. 1.6 A representation of a bowtie structure for the Ythan Estuary food web network.
On the left the IN component in black. In the middle the two nodes of the strongly connected
component in grey. On the right the OUT component in white.

@ visited
neighbours
O to be visited

0 1 2 3 d

Fig. 1.7 The procedure of the Breadth First Search (BFS) algorithm. Starting from a root
node at distance d = 0 at successive time steps we explore the neighbours at increasing
distances.

(7D)’JH))’(JD7’7G))’()E),)H7),(JEJ’)IJ)])

#printing the neighbors of the node ’A’
print G.neighbors(’A’)

Clustering coefficient and motifs 21

#0UTPUT
[JC)’)B)]

root_node=’A’
queue=[]
queue.append(’A’)
G.node[’A’] ["distance"]=0
while len(queue):
working_node=queue.pop(0)
for n in G.neighbors(working_node):
if len(G.node[n])==0:
G.node[n] ["distance"]=G.node [working_node] ["distance"]+1
queue.append (n)
for n in G.nodes(Q):
print n,G.node[n] ["distance"]

#0UTPUT
0

T HT QO MWaQ =
WWwWwwMNNNN - -

As previously mentioned, we need trophic species to remove dimensional bias in the
food webs; this is done by concentrating in a single node all the nodes with the same
prey /predator pattern. In Table 1.1 we show trophic versions of the food web datasets
we presented at the beginning of this chapter and their fundamental measures (Dunne
et al., 2002; Caldarelli et al., 1998). In the following we will compute them, step by
step, with simple Python code.

The first thing to do is to load the dataset in the shape of a network:

Reading the file with food web data

file_name="./data/Little_Rock_Lake.txt"
DG = nx.DiGraph()

in_file=open(file_name,’r’)
while True:

22 Food Webs

next_line=in_file.readline()
if not next_line:
break
next_line_fields=next_line[:-2].split(’ ’)
node_a=next_line_fields[1] #there is a space in the beginning
#of each edge
node_b=next_line_fields[2]
print node_a,node_b
DG.add_edge(node_a, node_b)

#0UTPUT
0 11

0 61

0 80

0 123

0 124

Once the specific food web has been loaded in the Networkx structure we can
operate on it. The first thing to do is to generate trophic versions of this network. We
will use extensively the property of the dictionary key to be a complex data structure.
In the present case we will use the list/tuple as a pattern to identify the particular
trophic species.

Defining the trophic pattern key

def get_node_key(node):

out_list=[]

for out_edge in DG.out_edges(node):
out_list.append(out_edge[1])

in_list=[]

for in_edge in DG.in_edges(node):
in_list.append(in_edge[0])

out_list.sort()

out_list.append(’-’)

in_list.sort()

out_list.extend(in_list)

return out_list

Leveraging from this pattern function we can extract the trophic species through
the following function:

Clustering coefficient and motifs 23

Grouping the trophic species and regenerating the trophic network

def TrophicNetwork(DG) :
trophic={}
for n in DG.nodes():
k=tuple(get_node_key(n))
if not trophic.has_key(k):
trophic [k]=[]
trophic[k] .append(n)
for specie in trophic.keys():
if len(trophic[specie])>1:
for n in trophic[specie] [1:]:
DG.remove_node (n)
return DG

#deleting the environment
DG.remove_node(’0’)

TrophicDG=TrophicNetwork (DG)

print "S:",TrophicDG.number_of_nodes()

print "L:",TrophicDG.number_of_edges()

print "L/S:",float(TrophicDG.number_of_edges())/ \
TrophicDG.number_of _nodes ()

#0UTPUT
S: 93
L: 1034

L/S: 11.1182795699

Categories in a food web network are in relation to in/out links of each species.
We have the basal ones (B) that are the prey (outgoing links only), the top species
T (ingoing links only) which are only predators, and finally the intermediate species I
(with in- and outgoing links) which are both prey and predators. Here is the Python
code that categorised the “Little Rock” food web network introduced before:

Classes in food webs

def compute_classes(DG):
basal_species=[]
top_species=[]
intermediate_species=[]
for n in DG.nodes():

24 Food Webs

if DG.in_degree(n)==0:
basal_species.append(n)
elif DG.out_degree(n)==0:
top_species.append(n)
else:
intermediate_species.append(n)
return (basal_species,intermediate_species,top_species)

(B,I,T)=compute_classes(TrophicDG)

print "B:",float(len(B))/(len(B)+len(T)+len(I))
print "I:",float(len(I))/(len(B)+len(T)+len(I))
print "T:",float(len(T))/(len(B)+len(T)+len(I))

#0UTPUT

B: 0.129032258065
I: 0.860215053763
T: 0.010752688172

Finally, we compute the proportion of the links among the various classes previously
defined and the ratio prey/predators, defined as: (#B + #1)/(#1 + #T).

Proportion of links among classes and ratio prey/predators

def InterclassLinkProportion(DG,C1,C2):
count=0
for nl1 in C1:
for n2 in C2:
if DG.has_edge(nl,n2):
count+=1
return float(count)/DG.number_of_edges()

print "links in BT:",InterclassLinkProportion(TrophicDG,B,T)
print "links in BI:",InterclassLinkProportion(TrophicDG,B,I)
print "links in II:",InterclassLinkProportion(TrophicDG,I,I)
print "links in IT:",InterclassLinkProportion(TrophicDG,I,T)

#Ratio prey/predators
print "P/R:",float((len(B)+len(I)))/(len(I)+1len(T))

#0UTPUT
links in BT: 0.000967117988395
links in BI: 0.0909090909091

Clustering coefficient and motifs

Experimental data

Silwood | Grassland | St Marks | St Martin | Ythan | L. Rock

S 16 15 29 42 83 93

L 33 30 262 203 398 1034
L/S 2.0 2.0 9.0 4.8 4.8 11.1
B (%) 21 13 10 14 5 13
I (%) 49 74 90 69 59 86
T (%) 30 13 0 17 36 1
TB (%) 10 3 0 3 1 0
IB (%) 29 10 13 19 10 9
IT (%) 29 57 87 53 51 91
TI (%) 32 30 0 25 38 0

P/R 0.89 1.0 1.11 0.97 0.67 1.13

25

Table 1.1 Some basic quantities in various food webs. The data come from the following
publications St. Martin (Goldwasser and Roughgarden, 1993), Ythan (Hall and Raffaelli,

1991), Little Rock (Martinez, 1991).

links in II: 0.908123791103
links in IT: 0.0
P/R: 1.13580246914

