
CHAPTER 21 Support Vector Machines

In this chapter we describe Support Vector Machines (SVMs), a classification method
based on maximum margin linear discriminants, that is, the goal is to find the optimal
hyperplane that maximizes the gap or margin between the classes. Further, we can use
the kernel trick to find the optimal nonlinear decision boundary between classes, which
corresponds to a hyperplane in some high-dimensional “nonlinear” space.

21.1 SUPPORT VECTORS AND MARGINS

Let D= {(xi ,yi)}ni=1 be a classification dataset, with n points in a d-dimensional space.
Further, let us assume that there are only two class labels, that is, yi ∈ {+1,−1},
denoting the positive and negative classes.

Hyperplanes
A hyperplane in d dimensions is given as the set of all points x ∈ R

d that satisfy the
equation h(x)= 0, where h(x) is the hyperplane function, defined as follows:

h(x)=wTx+ b (21.1)

=w1x1+w2x2+ ·· ·+wdxd + b

Here, w is a d dimensional weight vector and b is a scalar, called the bias. For points
that lie on the hyperplane, we have

h(x)=wTx+ b= 0 (21.2)

The hyperplane is thus defined as the set of all points such that wTx =−b. To see the
role played by b, assuming that w1 �= 0, and setting xi = 0 for all i > 1, we can obtain
the offset where the hyperplane intersects the first axis, as by Eq. (21.2), we have

w1x1 =−b or x1 = −b

w1

In other words, the point (−b

w1
,0, . . . ,0) lies on the hyperplane. In a similar manner, we

can obtain the offset where the hyperplane intersects each of the axes, which is given
as −b

wi
(provided wi �= 0).

514

DSTA 2018-19

Study the following parts:
--up to page 520
--Sec. 21.3 up to 21.3.1 (excluded)
--Sec. 21.4, only pages 520-521
--Example 21.6.

21.1 Support Vectors and Margins 515

Separating Hyperplane
A hyperplane splits the original d-dimensional space into two half-spaces. A dataset
is said to be linearly separable if each half-space has points only from a single class.
If the input dataset is linearly separable, then we can find a separating hyperplane
h(x)= 0, such that for all points labeled yi =−1, we have h(xi) < 0, and for all points
labeled yi = +1, we have h(xi) > 0. In fact, the hyperplane function h(x) serves as a
linear classifier or a linear discriminant, which predicts the class y for any given point
x, according to the decision rule:

y =
{
+1 if h(x) > 0

−1 if h(x) < 0
(21.3)

Let a1 and a2 be two arbitrary points that lie on the hyperplane. From Eq. (21.2)
we have

h(a1)=wTa1+ b= 0

h(a2)=wTa2+ b= 0

Subtracting one from the other we obtain

wT(a1− a2)= 0

This means that the weight vector w is orthogonal to the hyperplane because it is
orthogonal to any arbitrary vector (a1 − a2) on the hyperplane. In other words, the
weight vector w specifies the direction that is normal to the hyperplane, which fixes
the orientation of the hyperplane, whereas the bias b fixes the offset of the hyperplane
in the d-dimensional space. Because both w and −w are normal to the hyperplane,
we remove this ambiguity by requiring that h(xi) > 0 when yi = 1, and h(xi) < 0 when
yi =−1.

Distance of a Point to the Hyperplane
Consider a point x ∈ R

d , such that x does not lie on the hyperplane. Let xp be the
orthogonal projection of x on the hyperplane, and let r = x − xp, then as shown in
Figure 21.1 we can write x as

x= xp+ r

x= xp+ r
w
‖w‖ (21.4)

where r is the directed distance of the point x from xp, that is, r gives the offset of x
from xp in terms of the unit weight vector w

‖w‖ . The offset r is positive if r is in the same
direction as w, and r is negative if r is in a direction opposite to w.

Plugging Eq. (21.4) into the hyperplane function [Eq. (21.1)], we get

h(x)= h

(
xp+ r

w
‖w‖

)

=wT

(
xp+ r

w
‖w‖

)
+ b

516 Support Vector Machines

1

2

3

4

5

1 2 3 4 5

��

��

��

��

��

��

��

��

��

��

�� ��

��

��

h
(x

)=
0

� x

�
xp

0

r= r
w
‖w‖

h(x) < 0 h(x) > 0

w
‖w‖

��

b

‖w‖

Figure 21.1. Geometry of a separating hyperplane in 2D. Points labeled +1 are shown as circles, and those
labeled−1 are shown as triangles. The hyperplane h(x)= 0 divides the space into two half-spaces. The shaded
region comprises all points x satisfying h(x) < 0, whereas the unshaded region consists of all points satisfying
h(x) > 0. The unit weight vector w

‖w‖ (in gray) is orthogonal to the hyperplane. The directed distance of the

origin to the hyperplane is b
‖w‖ .

=wTxp+ b︸ ︷︷ ︸
h(xp)

+r
wTw
‖w‖

= h(xp)︸ ︷︷ ︸
0

+r‖w‖

= r‖w‖

The last step follows from the fact that h(xp) = 0 because xp lies on the hyperplane.
Using the result above, we obtain an expression for the directed distance of a point to
the hyperplane:

r = h(x)

‖w‖

To obtain distance, which must be non-negative, we can conveniently multiply r by
the class label y of the point because when h(x) < 0, the class is −1, and when h(x) > 0
the class is +1. The distance of a point x from the hyperplane h(x)= 0 is thus given as

δ = y r = y h(x)

‖w‖ (21.5)

21.1 Support Vectors and Margins 517

In particular, for the origin x= 0, the directed distance is

r = h(0)

‖w‖ =
wT0+ b

‖w‖ = b

‖w‖
as illustrated in Figure 21.1.

Example 21.1. Consider the example shown in Figure 21.1. In this 2-dimensional
example, the hyperplane is just a line, defined as the set of all points x = (x1,x2)

T

that satisfy the following equation:

h(x)=wTx+ b=w1x1+w2x2+ b= 0

Rearranging the terms we get

x2 =−
w1

w2
x1−

b

w2

where −w1
w2

is the slope of the line, and − b

w2
is the intercept along the second

dimension.
Consider any two points on the hyperplane, say p = (p1,p2) = (4,0), and

q= (q1,q2)= (2,5). The slope is given as

−w1

w2
= q2−p2

q1−p1
= 5− 0

2− 4
=−5

2

which implies that w1 = 5 and w2 = 2. Given any point on the hyperplane, say (4,0),
we can compute the offset b directly as follows:

b=−5x1− 2x2 =−5 · 4− 2 · 0=−20

Thus, w=
(

5
2

)
is the weight vector, and b =−20 is the bias, and the equation of the

hyperplane is given as

h(x)=wTx+ b= (
5 2

)(x1

x2

)
− 20= 0

One can verify that the distance of the origin 0 from the hyperplane is given as

δ = y r =−1 r = −b

‖w‖ =
−(−20)√

29
= 3.71

Margin and Support Vectors of a Hyperplane
Given a training dataset of labeled points, D= {xi,yi}ni=1 with yi ∈ {+1,−1}, and given
a separating hyperplane h(x) = 0, for each point xi we can find its distance to the
hyperplane by Eq. (21.5):

δi = yi h(xi)

‖w‖ = yi(wTxi + b)

‖w‖

518 Support Vector Machines

Over all the n points, we define the margin of the linear classifier as the minimum
distance of a point from the separating hyperplane, given as

δ∗ =min
xi

{
yi(wTxi + b)

‖w‖
}

(21.6)

Note that δ∗ �= 0, since h(x) is assumed to be a separating hyperplane, and Eq. (21.3)
must be satisfied.

All the points (or vectors) that achieve this minimum distance are called support
vectors for the hyperplane. In other words, a support vector x∗ is a point that lies
precisely on the margin of the classifier, and thus satisfies the condition

δ∗ = y∗(wTx∗ + b)

‖w‖
where y∗ is the class label for x∗. The numerator y∗(wTx∗ + b) gives the absolute
distance of the support vector to the hyperplane, whereas the denominator ‖w‖makes
it a relative distance in terms of w.

Canonical Hyperplane
Consider the equation of the hyperplane [Eq. (21.2)]. Multiplying on both sides by
some scalar s yields an equivalent hyperplane:

s h(x)= s wTx+ s b= (sw)Tx+ (sb)= 0

To obtain the unique or canonical hyperplane, we choose the scalar s such that the
absolute distance of a support vector from the hyperplane is 1. That is,

sy∗(wTx∗ + b)= 1

which implies

s = 1
y∗(wTx∗ + b)

= 1
y∗h(x∗)

(21.7)

Henceforth, we will assume that any separating hyperplane is canonical. That is, it
has already been suitably rescaled so that y∗h(x∗)= 1 for a support vector x∗, and the
margin is given as

δ∗ = y∗h(x∗)
‖w‖ = 1

‖w‖
For the canonical hyperplane, for each support vector x∗i (with label y∗i), we

have y∗i h(x∗i) = 1, and for any point that is not a support vector we have yih(xi) > 1,
because, by definition, it must be farther from the hyperplane than a support
vector. Over all the n points in the dataset D, we thus obtain the following set of
inequalities:

yi (wTxi + b)≥ 1, for all points xi ∈D (21.8)

21.1 Support Vectors and Margins 519

1

2

3

4

5

1 2 3 4 5
h
(x

)=
0

��

��

��

��

��

��

�� ��

��

��

�� ��

��

��

1
‖w‖

1
‖w‖

Figure 21.2. Margin of a separating hyperplane: 1
‖w‖ is the margin, and the shaded points are the support

vectors.

Example 21.2. Figure 21.2 gives an illustration of the support vectors and the margin
of a hyperplane. The equation of the separating hyperplane is

h(x)=
(

5
2

)T

x− 20= 0

Consider the support vector x∗ = (2,2)T, with class y∗ = −1. To find the canonical
hyperplane equation, we have to rescale the weight vector and bias by the scalar s,
obtained using Eq. (21.7):

s = 1
y∗h(x∗)

= 1

−1

((
5
2

)T (
2
2

)
− 20

) = 1
6

Thus, the rescaled weight vector is

w= 1
6

(
5
2

)
=

(
5/6
2/6

)

and the rescaled bias is

b = −20
6

520 Support Vector Machines

The canonical form of the hyperplane is therefore

h(x)=
(

5/6
2/6

)T

x− 20/6=
(

0.833
0.333

)T

x− 3.33

and the margin of the canonical hyperplane is

δ∗ = y∗ h(x∗)
‖w‖ = 1√(

5
6

)2+ (
2
6

)2
= 6√

29
= 1.114

In this example there are five support vectors (shown as shaded points), namely,
(2,2)T and (2.5,0.75)T with class y =−1 (shown as triangles), and (3.5,4.25)T, (4,3)T,
and (4.5,1.75)T with class y =+1 (shown as circles), as illustrated in Figure 21.2.

21.2 SVM: LINEAR AND SEPARABLE CASE

Given a dataset D = {xi ,yi}ni=1 with xi ∈ R
d and yi ∈ {+1,−1}, let us assume for

the moment that the points are linearly separable, that is, there exists a separating
hyperplane that perfectly classifies each point. In other words, all points labeled
yi = +1 lie on one side (h(x) > 0) and all points labeled yi = −1 lie on the other side
(h(x) < 0) of the hyperplane. It is obvious that in the linearly separable case, there
are in fact an infinite number of such separating hyperplanes. Which one should we
choose?

Maximum Margin Hyperplane
The fundamental idea behind SVMs is to choose the canonical hyperplane, specified by
the weight vector w and the bias b, that yields the maximum margin among all possible
separating hyperplanes. If δ∗h represents the margin for hyperplane h(x) = 0, then the
goal is to find the optimal hyperplane h∗:

h∗ = argmax
h

{
δ∗h

}
= argmax

w,b

{
1
‖w‖

}

The SVM task is to find the hyperplane that maximizes the margin 1
‖w‖ , subject to the

n constraints given in Eq. (21.8), namely, yi (wTxi+b)≥ 1, for all points xi ∈D. Notice
that instead of maximizing the margin 1

‖w‖ , we can minimize ‖w‖. In fact, we can obtain
an equivalent minimization formulation given as follows:

Objective Function: min
w,b

{‖w‖2

2

}
Linear Constraints: yi (wTxi + b)≥ 1, ∀xi ∈D

We can directly solve the above primal convex minimization problem with the
n linear constraints using standard optimization algorithms, as outlined later in
Section 21.5. However, it is more common to solve the dual problem, which is obtained
via the use of Lagrange multipliers. The main idea is to introduce a Lagrange multiplier

21.2 SVM: Linear and Separable Case 521

αi for each constraint, which satisfies the Karush–Kuhn–Tucker (KKT) conditions at
the optimal solution:

αi

(
yi(wTxi + b)− 1

)= 0

and αi ≥ 0

Incorporating all the n constraints, the new objective function, called the Lagrangian,
then becomes

min L= 1
2
‖w‖2−

n∑
i=1

αi

(
yi(wTxi + b)− 1

)
(21.9)

L should be minimized with respect to w and b, and it should be maximized with respect
to αi .

Taking the derivative of L with respect to w and b, and setting those to zero, we
obtain

∂

∂w
L=w−

n∑
i=1

αiyixi = 0 or w=
n∑

i=1

αiyixi (21.10)

∂

∂b
L=

n∑
i=1

αiyi = 0 (21.11)

The above equations give important intuition about the optimal weight vector w. In
particular, Eq. (21.10) implies that w can be expressed as a linear combination of the
data points xi , with the signed Lagrange multipliers, αiyi , serving as the coefficients.
Further, Eq. (21.11) implies that the sum of the signed Lagrange multipliers, αiyi , must
be zero.

Plugging these into Eq. (21.9), we obtain the dual Lagrangian objective function,
which is specified purely in terms of the Lagrange multipliers:

Ldual = 1
2

wTw−wT

(n∑
i=1

αiyixi︸ ︷︷ ︸
w

)
− b

n∑
i=1

αiyi︸ ︷︷ ︸
0

+
n∑

i=1

αi

=−1
2

wTw+
n∑

i=1

αi

=
n∑

i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiαjyiyjxT
i xj

The dual objective is thus given as

Objective Function: max
α

Ldual =
n∑

i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiαj yiyjxT
i xj

Linear Constraints: αi ≥ 0, ∀i ∈D, and
n∑

i=1

αiyi = 0

(21.12)

522 Support Vector Machines

where α = (α1,α2, . . . ,αn)
T is the vector comprising the Lagrange multipliers. Ldual is

a convex quadratic programming problem (note the αiαj terms), which can be solved
using standard optimization techniques. See Section 21.5 for a gradient-based method
for solving the dual formulation.

Weight Vector and Bias
Once we have obtained the αi values for i = 1, . . . ,n, we can solve for the weight vector
w and the bias b. Note that according to the KKT conditions, we have

αi

(
yi(wTxi + b)− 1

)= 0

which gives rise to two cases:

(1) αi = 0, or

(2) yi(wTxi + b)− 1= 0, which implies yi(wTxi + b)= 1

This is a very important result because if αi > 0, then yi(wTxi + b) = 1, and thus the
point xi must be a support vector. On the other hand if yi(wTxi + b) > 1, then αi = 0,
that is, if a point is not a support vector, then αi = 0.

Once we know αi for all points, we can compute the weight vector w using
Eq. (21.10), but by taking the summation only for the support vectors:

w=
∑

i,αi>0

αiyixi (21.13)

In other words, w is obtained as a linear combination of the support vectors, with the
αiyi’s representing the weights. The rest of the points (with αi = 0) are not support
vectors and thus do not play a role in determining w.

To compute the bias b, we first compute one solution bi , per support vector, as
follows:

αi

(
yi(wTxi + b)− 1

)= 0

yi(wTxi + b)= 1

bi = 1
yi

−wTxi = yi −wTxi (21.14)

We can take b as the average bias value over all the support vectors:

b= avgαi>0{bi} (21.15)

SVM Classifier
Given the optimal hyperplane function h(x)=wTx+b, for any new point z, we predict
its class as

ŷ = sign(h(z))= sign(wTz+ b) (21.16)

where the sign(·) function returns +1 if its argument is positive, and −1 if its argument
is negative.

21.2 SVM: Linear and Separable Case 523

Table 21.1. Dataset corresponding to Figure 21.2

xi xi1 xi2 yi

x1 3.5 4.25 +1
x2 4 3 +1
x3 4 4 +1
x4 4.5 1.75 +1
x5 4.9 4.5 +1
x6 5 4 +1
x7 5.5 2.5 +1
x8 5.5 3.5 +1
x9 0.5 1.5 −1
x10 1 2.5 −1
x11 1.25 0.5 −1
x12 1.5 1.5 −1
x13 2 2 −1
x14 2.5 0.75 −1

Example 21.3. Let us continue with the example dataset shown in Figure 21.2. The
dataset has 14 points as shown in Table 21.1.

Solving the Ldual quadratic program yields the following nonzero values for the
Lagrangian multipliers, which determine the support vectors

xi xi1 xi2 yi αi

x1 3.5 4.25 +1 0.0437
x2 4 3 +1 0.2162
x4 4.5 1.75 +1 0.1427
x13 2 2 −1 0.3589
x14 2.5 0.75 −1 0.0437

All other points have αi=0 and therefore they are not support vectors. Using
Eq. (21.13), we can compute the weight vector for the hyperplane:

w=
∑

i,αi>0

αiyixi

= 0.0437
(

3.5
4.25

)
+ 0.2162

(
4
3

)
+ 0.1427

(
4.5
1.75

)
− 0.3589

(
2
2

)
− 0.0437

(
2.5
0.75

)

=
(

0.833
0.334

)

The final bias is the average of the bias obtained from each support vector using
Eq. (21.14):

524 Support Vector Machines

xi wTxi bi = yi −wTxi

x1 4.332 −3.332
x2 4.331 −3.331
x4 4.331 −3.331
x13 2.333 −3.333
x14 2.332 −3.332

b = avg{bi} −3.332

Thus, the optimal hyperplane is given as follows:

h(x)=
(

0.833
0.334

)T

x− 3.332= 0

which matches the canonical hyperplane in Example 21.2.

21.3 SOFT MARGIN SVM: LINEAR AND NONSEPARABLE CASE

So far we have assumed that the dataset is perfectly linearly separable. Here we
consider the case where the classes overlap to some extent so that a perfect separation
is not possible, as depicted in Figure 21.3.

1

2

3

4

5

1 2 3 4 5

h
(x

)=
0

��

��

��
��

��

��

��

��

��

��

�� ��

��

��

�� ��

��

��

1
‖w‖

1
‖w‖

Figure 21.3. Soft margin hyperplane: the shaded points are the support vectors. The margin is 1/‖w‖ as
illustrated, and points with positive slack values are also shown (thin black line).

21.3 Soft Margin SVM: Linear and Nonseparable Case 525

Recall that when points are linearly separable we can find a separating hyperplane
so that all points satisfy the condition yi(wTxi+b)≥ 1. SVMs can handle non-separable
points by introducing slack variables ξi in Eq. (21.8), as follows:

yi(wTxi + b)≥ 1− ξi

where ξi ≥ 0 is the slack variable for point xi , which indicates how much the point
violates the separability condition, that is, the point may no longer be at least 1/‖w‖
away from the hyperplane. The slack values indicate three types of points. If ξi = 0,
then the corresponding point xi is at least 1

‖w‖ away from the hyperplane. If 0 < ξi < 1,
then the point is within the margin and still correctly classified, that is, it is on the
correct side of the hyperplane. However, if ξi ≥ 1 then the point is misclassified and
appears on the wrong side of the hyperplane.

In the nonseparable case, also called the soft margin case, the goal of SVM
classification is to find the hyperplane with maximum margin that also minimizes the
slack terms. The new objective function is given as

Objective Function: min
w,b,ξi

{
‖w‖2

2
+C

n∑
i=1

(ξi)
k

}

Linear Constraints: yi (wTxi + b)≥ 1− ξi, ∀xi ∈D

ξi ≥ 0 ∀xi ∈D

(21.17)

where C and k are constants that incorporate the cost of misclassification. The term∑n

i=1(ξi)
k gives the loss, that is, an estimate of the deviation from the separable case.

The scalar C, which is chosen empirically, is a regularization constant that controls
the trade-off between maximizing the margin (corresponding to minimizing ‖w‖2 /2)
or minimizing the loss (corresponding to minimizing the sum of the slack terms∑n

i=1(ξi)
k). For example, if C→ 0, then the loss component essentially disappears, and

the objective defaults to maximizing the margin. On the other hand, if C→∞, then
the margin ceases to have much effect, and the objective function tries to minimize the
loss. The constant k governs the form of the loss. Typically k is set to 1 or 2. When
k = 1, called hinge loss, the goal is to minimize the sum of the slack variables, whereas
when k = 2, called quadratic loss, the goal is to minimize the sum of the squared slack
variables.

21.3.1 Hinge Loss

Assuming k = 1, we can compute the Lagrangian for the optimization problem in
Eq. (21.17) by introducing Lagrange multipliers αi and βi that satisfy the following
KKT conditions at the optimal solution:

αi

(
yi(wTxi + b)− 1+ ξi

)= 0 with αi ≥ 0

βi(ξi − 0)= 0 with βi ≥ 0 (21.18)

The Lagrangian is then given as

L= 1
2
‖w‖2+C

n∑
i=1

ξi −
n∑

i=1

αi

(
yi(wTxi + b)− 1+ ξi

)− n∑
i=1

βiξi (21.19)

526 Support Vector Machines

We turn this into a dual Lagrangian by taking its partial derivative with respect to
w, b and ξi , and setting those to zero:

∂

∂w
L=w−

n∑
i=1

αiyixi = 0 or w=
n∑

i=1

αiyixi

∂

∂b
L=

n∑
i=1

αiyi = 0

∂

∂ξi

L=C−αi −βi = 0 or βi =C−αi (21.20)

Plugging these values into Eq. (21.19), we get

Ldual = 1
2

wTw−wT

(n∑
i=1

αiyixi︸ ︷︷ ︸
w

)
− b

n∑
i=1

αiyi︸ ︷︷ ︸
0

+
n∑

i=1

αi +
n∑

i=1

(C−αi +βi)︸ ︷︷ ︸
0

ξi

=
n∑

i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiαj yiyjxT
i xj

The dual objective is thus given as

Objective Function: max
α

Ldual =
n∑

i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiαjyiyjxT
i xj

Linear Constraints: 0≤ αi ≤C, ∀i ∈D and
n∑

i=1

αiyi = 0

(21.21)

Notice that the objective is the same as the dual Lagrangian in the linearly separable
case [Eq. (21.12)]. However, the constraints on αi ’s are different because we now
require that αi+βi =C with αi ≥ 0 and βi ≥ 0, which implies that 0≤αi ≤C. Section 21.5
describes a gradient ascent approach for solving this dual objective function.

Weight Vector and Bias
Once we solve for αi , we have the same situation as before, namely, αi = 0 for points
that are not support vectors, and αi > 0 only for the support vectors, which comprise
all points xi for which we have

yi(wTxi + b)= 1− ξi (21.22)

Notice that the support vectors now include all points that are on the margin, which
have zero slack (ξi = 0), as well as all points with positive slack (ξi > 0).

21.3 Soft Margin SVM: Linear and Nonseparable Case 527

We can obtain the weight vector from the support vectors as before:

w=
∑

i,αi>0

αiyixi (21.23)

We can also solve for the βi using Eq. (21.20):

βi =C−αi

Replacing βi in the KKT conditions [Eq. (21.18)] with the expression from above we
obtain

(C−αi)ξi = 0 (21.24)

Thus, for the support vectors with αi > 0, we have two cases to consider:

(1) ξi > 0, which implies that C−αi = 0, that is, αi =C, or

(2) C− αi > 0, that is αi < C. In this case, from Eq. (21.24) we must have ξi = 0. In
other words, these are precisely those support vectors that are on the margin.

Using those support vectors that are on the margin, that is, have 0 < αi < C and
ξi = 0, we can solve for bi :

αi

(
yi(wTxi + bi)− 1

)= 0

yi(wTxi + bi)= 1

bi = 1
yi

−wTxi = yi −wTxi (21.25)

To obtain the final bias b, we can take the average over all the bi values. From
Eqs. (21.23) and (21.25), both the weight vector w and the bias term b can be computed
without explicitly computing the slack terms ξi for each point.

Once the optimal hyperplane plane has been determined, the SVM model predicts
the class for a new point z as follows:

ŷ = sign(h(z))= sign(wTz+ b)

Example 21.4. Let us consider the data points shown in Figure 21.3. There are
four new points in addition to the 14 points from Table 21.1 that we considered in
Example 21.3; these points are

xi xi1 xi2 yi

x15 4 2 +1
x16 2 3 +1
x17 3 2 −1
x18 5 3 −1

Let k = 1 and C = 1, then solving the Ldual yields the following support vectors and
Lagrangian values αi :

528 Support Vector Machines

xi xi1 xi2 yi αi

x1 3.5 4.25 +1 0.0271
x2 4 3 +1 0.2162
x4 4.5 1.75 +1 0.9928
x13 2 2 −1 0.9928
x14 2.5 0.75 −1 0.2434
x15 4 2 +1 1
x16 2 3 +1 1
x17 3 2 −1 1
x18 5 3 −1 1

All other points are not support vectors, having αi = 0. Using Eq. (21.23) we compute
the weight vector for the hyperplane:

w=
∑

i,αi>0

αiyixi

= 0.0271
(

3.5
4.25

)
+ 0.2162

(
4
3

)
+ 0.9928

(
4.5
1.75

)
− 0.9928

(
2
2

)

− 0.2434
(

2.5
0.75

)
+

(
4
2

)
+

(
2
3

)
−

(
3
2

)
−

(
5
3

)

=
(

0.834
0.333

)

The final bias is the average of the biases obtained from each support vector using
Eq. (21.25). Note that we compute the per-point bias only for the support vectors that
lie precisely on the margin. These support vectors have ξi = 0 and have 0 < αi < C.
Put another way, we do not compute the bias for support vectors with αi = C = 1,
which include the points x15, x16, x17, and x18. From the remaining support vectors,
we get

xi wTxi bi = yi −wTxi

x1 4.334 −3.334
x2 4.334 −3.334
x4 4.334 −3.334
x13 2.334 −3.334
x14 2.334 −3.334

b = avg{bi} −3.334

Thus, the optimal hyperplane is given as follows:

h(x)=
(

0.834
0.333

)T

x− 3.334= 0

21.3 Soft Margin SVM: Linear and Nonseparable Case 529

One can see that this is essentially the same as the canonical hyperplane we found in
Example 21.3.

It is instructive to see what the slack variables are in this case. Note that ξi = 0 for
all points that are not support vectors, and also for those support vectors that are on
the margin. So the slack is positive only for the remaining support vectors, for whom
the slack can be computed directly from Eq. (21.22), as follows:

ξi = 1− yi(wTxi + b)

Thus, for all support vectors not on the margin, we have

xi wTxi wTxi + b ξi = 1− yi(wTxi + b)

x15 4.001 0.667 0.333
x16 2.667 −0.667 1.667
x17 3.167 −0.167 0.833
x18 5.168 1.834 2.834

As expected, the slack variable ξi > 1 for those points that are misclassified (i.e.,
are on the wrong side of the hyperplane), namely x16 = (3,3)T and x18 = (5,3)T. The
other two points are correctly classified, but lie within the margin, and thus satisfy
0 < ξi < 1. The total slack is given as∑

i

ξi = ξ15+ ξ16+ ξ17+ ξ18 = 0.333+ 1.667+ 0.833+2.834= 5.667

21.3.2 Quadratic Loss

For quadratic loss, we have k = 2 in the objective function [Eq. (21.17)]. In this case
we can drop the positivity constraint ξi ≥ 0 due to the fact that (1) the sum of the
slack terms

∑n

i=1 ξ 2
i is always positive, and (2) a potential negative value of slack will

be ruled out during optimization because a choice of ξi = 0 leads to a smaller value of
the primary objective, and it still satisfies the constraint yi(wTxi+b)≥ 1− ξi whenever
ξi < 0. In other words, the optimization process will replace any negative slack variables
by zero values. Thus, the SVM objective for quadratic loss is given as

Objective Function: min
w,b,ξi

{
‖w‖2

2
+C

n∑
i=1

ξ 2
i

}

Linear Constraints: yi (wTxi + b)≥ 1− ξi, ∀xi ∈D

The Lagrangian is then given as:

L= 1
2
‖w‖2+C

n∑
i=1

ξ 2
i −

n∑
i=1

αi

(
yi(wTxi + b)− 1+ ξi

)
(21.26)

530 Support Vector Machines

Differentiating with respect to w, b, and ξi and setting them to zero results in the
following conditions, respectively:

w=
n∑

i=1

αiyixi

n∑
i=1

αiyi = 0

ξi =
1

2C
αi

Substituting these back into Eq. (21.26) yields the dual objective

Ldual =
n∑

i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiαjyiyjxT
i xj − 1

4C

n∑
i=1

α2
i

=
n∑

i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiαjyiyj

(
xT

i xj + 1
2C

δij

)

where δ is the Kronecker delta function, defined as δij = 1 if i= j , and δij = 0 otherwise.
Thus, the dual objective is given as

max
α

Ldual =
n∑

i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiαjyiyj

(
xT

i xj + 1
2C

δij

)

subject to the constraints αi ≥ 0,∀i ∈D,and
n∑

i=1

αiyi = 0

(21.27)

Once we solve for αi using the methods from Section 21.5, we can recover the weight
vector and bias as follows:

w=
∑

i,αi>0

αiyixi

b = avgi,C>αi>0

{
yi −wTxi

}

21.4 KERNEL SVM: NONLINEAR CASE

The linear SVM approach can be used for datasets with a nonlinear decision boundary
via the kernel trick from Chapter 5. Conceptually, the idea is to map the original
d-dimensional points xi in the input space to points φ(xi) in a high-dimensional feature
space via some nonlinear transformation φ. Given the extra flexibility, it is more likely
that the points φ(xi) might be linearly separable in the feature space. Note, however,
that a linear decision surface in feature space actually corresponds to a nonlinear
decision surface in the input space. Further, the kernel trick allows us to carry out
all operations via the kernel function computed in input space, rather than having to
map the points into feature space.

21.4 Kernel SVM: Nonlinear Case 531

0

1

2

3

4

5

0 1 2 3 4 5 6 7

��

��

��

��

��

��

��
�� ��

��

��

��
��

��

��
��

��

��

��

��

��

��

��

��

��

��
��

����

Figure 21.4. Nonlinear SVM: shaded points are the support vectors.

Example 21.5. Consider the set of points shown in Figure 21.4. There is no linear
classifier that can discriminate between the points. However, there exists a perfect
quadratic classifier that can separate the two classes. Given the input space over
the two dimensions X1 and X2, if we transform each point x = (x1,x2)

T into a
point in the feature space consisting of the dimensions (X1,X2,X2

1,X2
2,X1X2), via

the transformation φ(x) = (
√

2x1,
√

2x2,x
2
1 ,x

2
2 ,
√

2x1x2)
T, then it is possible to find a

separating hyperplane in feature space. For this dataset, it is possible to map the
hyperplane back to the input space, where it is seen as an ellipse (thick black line)
that separates the two classes (circles and triangles). The support vectors are those
points (shown in gray) that lie on the margin (dashed ellipses).

To apply the kernel trick for nonlinear SVM classification, we have to show that
all operations require only the kernel function:

K(xi,xj)= φ(xi)
Tφ(xj)

Let the original database be given as D= {xi ,yi}ni=1. Applying φ to each point, we can
obtain the new dataset in the feature space Dφ = {φ(xi),yi}ni=1.

The SVM objective function [Eq. (21.17)] in feature space is given as

Objective Function: min
w,b,ξi

{
‖w‖2

2
+C

n∑
i=1

(ξi)
k

}

Linear Constraints: yi (wTφ(xi)+ b)≥ 1− ξi,and ξi ≥ 0, ∀xi ∈D

(21.28)

where w is the weight vector, b is the bias, and ξi are the slack variables, all in feature
space.

532 Support Vector Machines

Hinge Loss
For hinge loss, the dual Lagrangian [Eq. (21.21)] in feature space is given as

max
α

Ldual =
n∑

i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiαjyiyjφ(xi)
Tφ(xj)

=
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi,xj)

(21.29)

Subject to the constraints that 0 ≤ αi ≤ C, and
∑n

i=1 αiyi = 0. Notice that the dual
Lagrangian depends only on the dot product between two vectors in feature space
φ(xi)

Tφ(xj) = K(xi ,xj), and thus we can solve the optimization problem using the
kernel matrix K= {K(xi,xj)}i,j=1,...,n. Section 21.5 describes a stochastic gradient-based
approach for solving the dual objective function.

Quadratic Loss
For quadratic loss, the dual Lagrangian [Eq. (21.27)] corresponds to a change of kernel.
Define a new kernel function Kq , as follows:

Kq(xi ,xj)= xT
i xj + 1

2C
δij =K(xi,xj)+ 1

2C
δij

which affects only the diagonal entries of the kernel matrix K, as δij = 1 iff i = j , and
zero otherwise. Thus, the dual Lagrangian is given as

max
α

Ldual =
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjKq(xi ,xj) (21.30)

subject to the constraints that αi ≥ 0, and
∑n

i=1 αiyi = 0. The above optimization can be
solved using the same approach as for hinge loss, with a simple change of kernel.

Weight Vector and Bias
We can solve for w in feature space as follows:

w=
∑
αi>0

αiyiφ(xi) (21.31)

Because w uses φ(xi) directly, in general, we may not be able or willing to compute w
explicitly. However, as we shall see next, it is not necessary to explicitly compute w for
classifying the points.

Let us now see how to compute the bias via kernel operations. Using Eq. (21.25),
we compute b as the average over the support vectors that are on the margin, that is,
those with 0 < αi < C, and ξi = 0:

b= avgi, 0<αi<C

{
bi

}= avgi, 0<αi<C

{
yi −wTφ(xi)

}
(21.32)

21.4 Kernel SVM: Nonlinear Case 533

Substituting w from Eq. (21.31), we obtain a new expression for bi as

bi = yi −
∑
αj >0

αjyjφ(xj)
Tφ(xi)

= yi −
∑
αj >0

αjyjK(xj ,xi) (21.33)

Notice that bi is a function of the dot product between two vectors in feature space and
therefore it can be computed via the kernel function in the input space.

Kernel SVM Classifier
We can predict the class for a new point z as follows:

ŷ = sign(wTφ(z)+ b)

= sign

⎛
⎝∑

αi>0

αiyiφ(xi)
Tφ(z)+ b

⎞
⎠

= sign

⎛
⎝∑

αi>0

αiyiK(xi ,z)+ b

⎞
⎠

Once again we see that ŷ uses only dot products in feature space.
Based on the above derivations, we can see that, to train and test the SVM

classifier, the mapped points φ(xi) are never needed in isolation. Instead, all operations
can be carried out in terms of the kernel function K(xi,xj) = φ(xi)

Tφ(xj). Thus, any
nonlinear kernel function can be used to do nonlinear classification in the input space.
Examples of such nonlinear kernels include the polynomial kernel [Eq. (5.9)], and the
Gaussian kernel [Eq. (5.10)], among others.

Example 21.6. Let us consider the example dataset shown in Figure 21.4; it has 29
points in total. Although it is generally too expensive or infeasible (depending on
the choice of the kernel) to compute an explicit representation of the hyperplane in
feature space, and to map it back into input space, we will illustrate the application
of SVMs in both input and feature space to aid understanding.

We use an inhomogeneous polynomial kernel [Eq. (5.9)] of degree q = 2, that is,
we use the kernel:

K(xi ,xj)= φ(xi)
Tφ(xj)= (1+ xT

i xj)
2

With C=4, solving the Ldual quadratic program [Eq. (21.30)] in input space
yields the following six support vectors, shown as the shaded (gray) points in
Figure 21.4.

534 Support Vector Machines

xi (xi1,xi2)
T φ(xi) yi αi

x1 (1,2)T (1,1.41,2.83,1,4,2.83)T +1 0.6198
x2 (4,1)T (1,5.66,1.41,16,1,5.66)T +1 2.069
x3 (6,4.5)T (1,8.49,6.36,36,20.25,38.18)T +1 3.803
x4 (7,2)T (1,9.90,2.83,49,4,19.80)T +1 0.3182
x5 (4,4)T (1,5.66,5.66,16,16,15.91)T −1 2.9598
x6 (6,3)T (1,8.49,4.24,36,9,25.46)T −1 3.8502

For the inhomogeneous quadratic kernel, the mapping φ maps an input point xi

into feature space as follows:

φ
(
x= (x1,x2)

T)= (
1,
√

2x1,
√

2x2,x
2
1 ,x

2
2 ,
√

2x1x2

)T

The table above shows all the mapped points, which reside in feature space. For
example, x1 = (1,2)T is transformed into

φ(xi)=
(
1,
√

2 · 1,
√

2 · 2,12,22,
√

2 · 1 · 2
)T
= (1,1.41,2.83,1,2,2.83)T

We compute the weight vector for the hyperplane using Eq. (21.31):

w=
∑

i,αi>0

αiyiφ(xi)= (0,−1.413,−3.298,0.256,0.82,−0.018)T

and the bias is computed using Eq. (21.32), which yields

b=−8.841

For the quadratic polynomial kernel, the decision boundary in input space
corresponds to an ellipse. For our example, the center of the ellipse is given as
(4.046,2.907), and the semimajor axis length is 2.78 and the semiminor axis length
is 1.55. The resulting decision boundary is the ellipse shown in Figure 21.4. We
emphasize that in this example we explicitly transformed all the points into the
feature space just for illustration purposes. The kernel trick allows us to achieve the
same goal using only the kernel function.

21.5 SVM TRAINING ALGORITHMS

We now turn our attention to algorithms for solving the SVM optimization problems.
We will consider simple optimization approaches for solving the dual as well as the
primal formulations. It is important to note that these methods are not the most
efficient. However, since they are relatively simple, they can serve as a starting point
for more sophisticated methods.

For the SVM algorithms in this section, instead of dealing explicitly with the bias
b, we map each point xi ∈R

d to the point x′i ∈R
d+1 as follows:

x′i = (xi1, . . . ,xid ,1)T (21.34)

