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DSTA class 6: Support vector machines
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Motivation I: linear separation of classes
c1: Iris-setosa (circles) and c2 : other types of Iris flowers (triangles)
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Motivation II: non-linear kernel SVM
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Hyperplanes

Let D = {(xi,yi)}
n
i=1

be a classification dataset, with n points in a d-dimensional
space. We assume that there are only two class labels, that is, yi ∈ {+1,−1},
denoting the positive and negative classes.

A hyperplane in d dimensions is given as the set of all points x ∈R
d that satisfy

the equation h(x) = 0, where h(x) is the hyperplane function:

h(x) = w
T
x + b = w1x1 + w2x2 + ·· ·+ wdxd + b

Here, w is a d dimensional weight vector and b is a scalar, called the bias.

For points that lie on the hyperplane, we have

h(x) = w
T
x + b = 0

The weight vector w specifies the direction that is orthogonal or normal to the
hyperplane, which fixes the orientation of the hyperplane, whereas the bias b
fixes the offset of the hyperplane in the d-dimensional space, i.e., where the
hyperplane intersects each of the axes:

wixi = −b or xi =
−b

wi
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Separating Hyperplane

A hyperplane splits the d-dimensional data space into two half-spaces.

A dataset is said to be linearly separable if each half-space has points only from
a single class.

If the input dataset is linearly separable, then we can find a separating

hyperplane h(x) = 0, such that for all points labeled yi = −1, we have h(xi) < 0,
and for all points labeled yi = +1, we have h(xi) > 0.

The hyperplane function h(x) thus serves as a linear classifier or a linear
discriminant, which predicts the class y for any given point x, according to the
decision rule:

y =

{

+1 if h(x) > 0

−1 if h(x) < 0
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Geometry of a Hyperplane: Distance

Consider a point x ∈ R
d that does not lie on the hyperplane. Let xp be the orthogonal

projection of x on the hyperplane, and let r = x − xp. Then we can write x as

x = xp + r = xp + r
w

‖w‖

where r is the directed distance of the point x from xp.
To obtain an expression for r, consider the value h(x), we have:

h(x) = h

(

xp + r
w

‖w‖

)

= w
T

(

xp + r
w

‖w‖

)

+ b = r‖w‖

The directed distance r of point x to the hyperplane is thus:

r =
h(x)

‖w‖

To obtain distance, which must be non-negative, we multiply r by the class label yi of the
point xi because when h(xi) < 0, the class is −1, and when h(xi) > 0 the class is +1:

δi =
yih(xi)

‖w‖
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Geometry of a Hyperplane in 2D
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Margin and Support Vectors

The distance of a point x from the hyperplane h(x) = 0 is thus given as

δ = y r =
y h(x)

‖w‖

The margin is the minimum distance of a point from the separating hyperplane:

δ∗ =min
xi

{

yi(w
T
xi + b)

‖w‖

}

All the points (or vectors) that achieve the minimum distance are called
support vectors for the hyperplane. They satisfy the condition:

δ∗ =
y∗(wT

x
∗ + b)

‖w‖

where y∗ is the class label for x
∗.
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Canonical Hyperplane

Multiplying the hyperplane equation on both sides by some scalar s yields an
equivalent hyperplane:

s h(x) = s w
T
x + s b = (sw)T

x + (sb) = 0

To obtain the unique or canonical hyperplane, we choose the scalar
s = 1

y∗(wTx∗+b)
so that the absolute distance of a support vector from the

hyperplane is 1, i.e., the margin is

δ∗ =
y∗(wT

x
∗ + b)

‖w‖
=

1

‖w‖

For the canonical hyperplane, for each support vector x
∗
i (with label y∗

i ), we
have y∗

i h(x∗
i ) = 1, and for any point that is not a support vector we have

yih(xi) > 1. Over all points, we have

yi (w
T
xi + b) ≥ 1, for all points xi ∈ D
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Separating Hyperplane: Margin and Support Vectors
Shaded points are support vectors

Canonical hyperplane: h(x) = 5/6x + 2/6y − 20/6 = 0.334x + 0.833y − 3.332
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SVM: Linear and Separable Case

Assume that the points are linearly separable, that is, there exists a separating
hyperplane that perfectly classifies each point.

The goal of SVMs is to choose the canonical hyperplane, h∗, that yields the
maximum margin among all possible separating hyperplanes

h∗ = argmax
w,b

{

1

‖w‖

}

We can obtain an equivalent minimization formulation:

Objective Function: min
w,b

{

‖w‖2

2

}

Linear Constraints: yi (w
T
xi + b) ≥ 1, ∀xi ∈ D
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SVM: Linear and Separable Case

We turn the constrained SVM optimization into an unconstrained one by introducing a
Lagrange multiplier αi for each constraint. The new objective function, called the
Lagrangian, then becomes

min L =
1

2
‖w‖2 −

n
∑

i=1

αi

(

yi(w
T
xi + b)− 1

)

L should be minimized with respect to w and b, and it should be maximized with respect
to αi.
Taking the derivative of L with respect to w and b, and setting those to zero, we obtain

∂

∂w
L = w −

n
∑

i=1

αiyixi = 0 or w =

n
∑

i=1

αiyixi

∂

∂b
L =

n
∑

i=1

αiyi = 0

We can see that w can be expressed as a linear combination of the data points xi, with
the signed Lagrange multipliers, αiyi, serving as the coefficients.

Further, the sum of the signed Lagrange multipliers, αiyi, must be zero.
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SVM: Linear and Separable Case

Incorporating w =

n
∑

i=1

αiyixi and

n
∑

i=1

αiyi = 0 into the Lagrangian we obtain the

new dual Lagrangian objective function, which is specified purely in terms of
the Lagrange multipliers:

Objective Function: max
α

Ldual =

n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjx
T
i xj

Linear Constraints: αi ≥ 0, ∀i ∈ D, and

n
∑

i=1

αiyi = 0

where α = (α1,α2, . . . ,αn)
T is the vector comprising the Lagrange multipliers.

Ldual is a convex quadratic programming problem (note the αiαj terms), which
admits a unique optimal solution.
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SVM: Linear and Separable Case

Once we have obtained the αi values for i = 1, . . . ,n, we can solve for the weight
vector w and the bias b. Each of the Lagrange multipliers αi satisfies the KKT
conditions at the optimal solution:

αi

(

yi(w
T
xi + b)− 1

)

= 0

which gives rise to two cases:

(1) αi = 0, or

(2) yi(w
T
xi + b)− 1 = 0, which implies yi(w

T
xi + b) = 1

This is a very important result because if αi > 0, then yi(w
T
xi + b) = 1, and thus

the point xi must be a support vector.

On the other hand, if yi(w
T
xi + b) > 1, then αi = 0, that is, if a point is not a

support vector, then αi = 0.
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Linear and Separable Case: Weight Vector and Bias

Once we know αi for all points, we can compute the weight vector w by taking
the summation only for the support vectors:

w =
∑

i,αi>0

αiyixi

Only the support vectors determine w, since αi = 0 for other points.
To compute the bias b, we first compute one solution bi, per support vector, as
follows:

yi(w
T
xi + b) = 1, which implies bi =

1

yi
− w

T
xi = yi − w

T
xi

The bias b is taken as the average value:

b = avgαi>0
{bi}

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 21: Support Vector Machines 15 / 33



✐

✐

✐

✐

✐

✐

✐

✐

SVM Classifier

Given the optimal hyperplane function h(x) = w
T
x + b, for any new point z, we

predict its class as

ŷ = sign(h(z)) = sign(wT
z + b)

where the sign(·) function returns +1 if its argument is positive, and −1 if its
argument is negative.
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Example Dataset: Separable Case

xi xi1 xi2 yi

x1 3.5 4.25 +1

x2 4 3 +1

x3 4 4 +1

x4 4.5 1.75 +1

x5 4.9 4.5 +1

x6 5 4 +1

x7 5.5 2.5 +1

x8 5.5 3.5 +1

x9 0.5 1.5 −1

x10 1 2.5 −1

x11 1.25 0.5 −1

x12 1.5 1.5 −1

x13 2 2 −1

x14 2.5 0.75 −1

Zaki & Meira Jr. (RPI and UFMG) Data Mining and Analysis Chapter 21: Support Vector Machines 17 / 33



✐

✐

✐

✐

✐

✐

✐

✐

Optimal Separating Hyperplane
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Solving the Ldual quadratic program yields

xi xi1 xi2 yi αi

x1 3.5 4.25 +1 0.0437

x2 4 3 +1 0.2162

x4 4.5 1.75 +1 0.1427

x13 2 2 −1 0.3589

x14 2.5 0.75 −1 0.0437

The weight vector and bias are:

w =
∑

i,αi>0

αiyixi =

(

0.833

0.334

)

b = avg{bi} = −3.332

The optimal hyperplane is given as follows:

h(x) =

(

0.833

0.334

)T

x − 3.332 = 0
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Soft Margin SVM: Linear and Nonseparable Case

The assumption that the dataset be perfectly linearly separable is unrealistic.
SVMs can handle non-separable points by introducing slack variables ξi as
follows:

yi(w
T
xi + b) ≥ 1 − ξi

where ξi ≥ 0 is the slack variable for point xi, which indicates how much the
point violates the separability condition, that is, the point may no longer be at
least 1/‖w‖ away from the hyperplane.

The slack values indicate three types of points. If ξi = 0, then the corresponding
point xi is at least 1

‖w‖
away from the hyperplane.

If 0 < ξi < 1, then the point is within the margin and still correctly classified,
that is, it is on the correct side of the hyperplane.

However, if ξi ≥ 1 then the point is misclassified and appears on the wrong side
of the hyperplane.
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Soft Margin Hyperplane
Shaded points are the support vectors
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SVM: Soft Margin or Linearly Non-separable Case

In the nonseparable case, also called the soft margin the SVM objective
function is

Objective Function: min
w,b,ξi

{

‖w‖2

2
+ C

n
∑

i=1

(ξi)
k

}

Linear Constraints: yi (w
T
xi + b) ≥ 1 − ξi, ∀xi ∈ D

ξi ≥ 0 ∀xi ∈ D

where C and k are constants that incorporate the cost of misclassification.

The term
∑n

i=1
(ξi)

k gives the loss, that is, an estimate of the deviation from the
separable case.

The scalar C is a regularization constant that controls the trade-off between
maximizing the margin or minimizing the loss. For example, if C → 0, then the
loss component essentially disappears, and the objective defaults to maximizing
the margin. On the other hand, if C → ∞, then the margin ceases to have much
effect, and the objective function tries to minimize the loss.
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SVM: Soft Margin Loss Function

The constant k governs the form of the loss. When k = 1, called hinge loss, the
goal is to minimize the sum of the slack variables, whereas when k = 2, called
quadratic loss, the goal is to minimize the sum of the squared slack variables.

Hinge Loss: Assuming k = 1, the SVM dual Lagrangian is given as

max
α

Ldual =

n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjx
T
i xj

The only difference from the separable case is that 0 ≤ αi ≤ C.

Quadratic Loss: Assuming k = 2, the dual objective is:

max
α

Ldual =

n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyj

(

x
T
i xj +

1

2C
δij

)

where δ is the Kronecker delta function, defined as δij = 1 if and only if i = j.
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Example Dataset: Linearly Non-separable Case

xi xi1 xi2 yi

x1 3.5 4.25 +1

x2 4 3 +1

x3 4 4 +1

x4 4.5 1.75 +1

x5 4.9 4.5 +1

x6 5 4 +1

x7 5.5 2.5 +1

x8 5.5 3.5 +1

x9 0.5 1.5 −1

x10 1 2.5 −1

x11 1.25 0.5 −1

x12 1.5 1.5 −1

x13 2 2 −1

x14 2.5 0.75 −1

x15 4 2 +1

x16 2 3 +1

x17 3 2 −1

x18 5 3 −1
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Example Dataset: Linearly Non-separable Case

Let k = 1 and C = 1, then solving the Ldual yields the following support vectors
and Lagrangian values αi:

xi xi1 xi2 yi αi

x1 3.5 4.25 +1 0.0271

x2 4 3 +1 0.2162

x4 4.5 1.75 +1 0.9928

x13 2 2 −1 0.9928

x14 2.5 0.75 −1 0.2434

x15 4 2 +1 1

x16 2 3 +1 1

x17 3 2 −1 1

x18 5 3 −1 1

The optimal hyperplane is given as follows:

h(x) =

(

0.834

0.333

)T

x − 3.334 = 0
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Example Dataset: Linearly Non-separable Case

The slack ξi = 0 for all points that are not support vectors, and also for those
support vectors that are on the margin. Slack is positive only for the remaining
support vectors and it can be computed as: ξi = 1 − yi(w

T
xi + b).

Thus, for all support vectors not on the margin, we have

xi w
T
xi w

T
xi + b ξi = 1 − yi(w

T
xi + b)

x15 4.001 0.667 0.333

x16 2.667 −0.667 1.667

x17 3.167 −0.167 0.833

x18 5.168 1.834 2.834

The total slack is given as
∑

i

ξi = ξ15 + ξ16 + ξ17 + ξ18 = 0.333 + 1.667 + 0.833 + 2.834 = 5.667

The slack variable ξi > 1 for those points that are misclassified (i.e., are on the
wrong side of the hyperplane), namely x16 = (3,3)T and x18 = (5,3)T. The other
two points are correctly classified, but lie within the margin, and thus satisfy
0 < ξi < 1.
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Kernel SVM: Nonlinear Case

The linear SVM approach can be used for datasets with a nonlinear decision
boundary via the kernel trick.

Conceptually, the idea is to map the original d-dimensional points xi in the
input space to points φ(xi) in a high-dimensional feature space via some
nonlinear transformation φ.

Given the extra flexibility, it is more likely that the points φ(xi) might be
linearly separable in the feature space.

A linear decision surface in feature space actually corresponds to a nonlinear
decision surface in the input space.

Further, the kernel trick allows us to carry out all operations via the kernel
function computed in input space, rather than having to map the points into
feature space.
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Nonlinear SVM

There is no linear classifier that can discriminate between the points. However,
there exists a perfect quadratic classifier that can separate the two classes.
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Nonlinear SVMs: Kernel Trick

To apply the kernel trick for nonlinear SVM classification, we have to show
that all operations require only the kernel function:

K(xi,xj) = φ(xi)
Tφ(xj)

Applying φ to each point, we can obtain the new dataset in the feature space
Dφ = {φ(xi),yi}

n
i=1

.

The SVM objective function in feature space is given as

Objective Function: min
w,b,ξi

{

‖w‖2

2
+ C

n
∑

i=1

(ξi)
k

}

Linear Constraints: yi (w
Tφ(xi)+ b) ≥ 1 − ξi,and ξi ≥ 0, ∀xi ∈ D

where w is the weight vector, b is the bias, and ξi are the slack variables, all in
feature space.
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Nonlinear SVMs: Kernel Trick

For hinge loss, the dual Lagrangian in feature space is given as

max
α

Ldual =

n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjφ(xi)
Tφ(xj)

=

n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjK(xi,xj)

Subject to the constraints that 0 ≤ αi ≤ C, and
∑n

i=1
αiyi = 0.

The dual Lagrangian depends only on the dot product between two vectors in
feature space φ(xi)

Tφ(xj) = K(xi,xj), and thus we can solve the optimization
problem using the kernel matrix K = {K(xi,xj)}i,j=1,...,n.

For quadratic loss, the dual Lagrangian corresponds to the use of a new kernel

Kq(xi,xj) = x
T
i xj +

1

2C
δij = K(xi,xj)+

1

2C
δij
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Nonlinear SVMs: Weight Vector and Bias

We cannot directly obtain the weight vector without transforming the points,
since

w =
∑

αi>0

αiyiφ(xi)

However, we can compute the bias via kernel operations, since

bi = yi − w
Tφ(xi) = yi −

∑

αj>0

αjyjK(xj,xi)

Likewise, we can predict the class for a new point z as follows:

ŷ = sign(wTφ(z)+ b) = sign





∑

αi>0

αiyiK(xi,z)+ b





All SVM operations can be carried out in terms of the kernel function
K(xi,xj) = φ(xi)

Tφ(xj). Thus, any nonlinear kernel function can be used to do
nonlinear classification in the input space.
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Nonlinear SVM: Inhomogeneous Quadratic Kernel
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The optimal quadratic hyperplane is obtained by setting C = 4, and using an
inhomogeneous polynomial kernel of degree q = 2:

K(xi,xj) = φ(xi)
Tφ(xj) = (1 + x

T
i xj)

2
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SVM Dual Algorithm: Iris Data – Linear Kernel
c1: Iris-setosa (circles) and c2 : other types of Iris flowers (triangles)
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Hyperplane h10 uses C = 10 and h1000 uses C = 1000:

h10(x) : 2.74x1 − 3.74x2 − 3.09 = 0

h1000(x) : 8.56x1 − 7.14x2 − 23.12 = 0

h10 has a larger margin, but also a larger slack; h1000 has a smaller margin, but it
minimizes the slack.
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SVM Dual Algorithm: Quadratic versus Linear Kernel
c1: Iris-versi
olor (circles) and c2: other types of Iris flowers (triangles)
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