
 1

(Concepts of) Machine Learning
Familiarising with MATLAB- part 2

After this activity you should be able to:

- Generate and manage data formulated as matrices;

- Implement simple algorithms to generate data;

- Work with plots.

Generate and manage data

Concatenation
Concatenation is the process of joining small matrices to make bigger ones. In

fact, in session 1 you made your first matrix by concatenating its individual

elements. The pair of square brackets, [], is the concatenation operator.

Example:

Start with the 2-by-2 matrix A,
A= 1 2

 3 4

and form

B = [A A+1; A+2 A+3]

The result is a 4-by-4 matrix, obtained by joining the four submatrices.

B= 1 2 2 3

 3 4 4 5

 3 4 4 5

 5 6 6 7

Deleting Rows and Columns
You can delete rows and columns from a matrix using just a pair of square

brackets. Start with

X = B;

Then, to delete the second column of X, use

 2

X(:,2) = []

This changes X to

X= 1 2 3

 3 4 5

 3 4 5

 5 6 7

If you delete a single element from a matrix, the result isn’t a matrix anymore.

So, expressions like

X(1,2) = []

result in an error.

However, using a single subscript deletes a single element, or sequence of

elements, and reshapes the remaining elements into a row vector. So:

X(2:2:11) = []

results in

X = 1 3 2 4 3 5 7

Exercises

1) Create the following arrays using Matlab language:

(i) A = all real numbers from 0.7 to 3 in increments
of 0.5

(ii) B = 1,2,…,15

(iii) C = all even numbers between 8 and 15 of B

(iv) Delete the first and last elements of B

(v) Replace all odd elements of B with -1

2) Perform the following calculations in Matlab command window

(i) x = 0.01

(ii) y = x2

(iii) xz 

(iv) a = x*(y-z)

Type: help sqrt and help ^ to find details.

3) Generate each of the following arrays using Matlab language:

(i) array a, where a(n)=0.1*n and n=1:10

(ii) array b, where b(n)=n*2 - 0.1*n -3*n and n=1:10

 3

(iii) array c, where c =1/2,1/3,1/4,…1/20

(iv) array d, where d =1/2,1/22 ,1/23 ,1/24 ,… ,1/220

Find out how to compute the sum of an array, and show that





20

1

1
2

1

n
n

Type: help sum to find details about this command.

Graphics

Use the help
Type:

help plot

Plotting functions or expressions
Create argument values:

x = start: increment: stop

The plotting function is:
plot(argument, f(argument))

Example:

plot(t, sin(t).^2) where t =0:0.01:2*pi

The figure window: adding and deleting curves
The default operation is that every use of plot command overrides previous

plots.

Some useful operations include:

hold on: switches to add-a-new-plot mode

hold off: switches to replace mode

clf: clears the figure

Curve style
You can choose the line style, the marker and the colour that you will use to plot.

These are inputted as additional parameters to the plot command. Use help

plot to see how.

Example

plot(t, sin(t).^2, ‘r:’) where t =0:0.01:2*pi

Compare this graph with the previous one of the same function. Are there any

differences?

 4

Exercises

1) Implement in Matalb the functions:
u=sin(2*t)

v=sin(3*t)

for
t =0:0.01:2*pi.

Plot u versus v.

2) Plot u (alone).

Is this plot different from the previous one?

3) Assume that u is measured from t=0 with increment of 0.1.
(i) Plot u versus t.

(ii)Plot
2u .

4) Plot both u and v versus t on the same plot, using different colours and line-

styles.

(Note: You have to use the command hold on, etc).

