
 1

(Concepts of) Machine Learning

Shallow neural networks and learning rules

After this session you should be able to:

- Use fundamental neural network functions in Matlab;

- Implement simple weight updating in Matlab;

- Manipulate activation functions in Matlab;

- Describe what a decision boundary is and how it is used;

- Implement the perceptron rule in Matlab ;

- Experiment with the perceptron rule in Matlab.

What are Artificial Neural Networks (ANNs)?

They are massively parallel distributed processors made up of simple

processing units called neurons, which have a natural propensity for storing

experiential knowledge and making it available for use. Knowledge is acquired

by the network from its environment through a learning process. This

acquired knowledge is stored in the inter neuron connections or links known

as synaptic weights.

The neuron as a computing element

A neuron is a simple information processing unit that is fundamental to the

operation of a neural network. Fig. 1 shows the model of an artificial neuron.

bk
wkj

Neuron kxj

Figure 1: Nonlinear model of a neuron

 2

There are four main elements in a neuron model, as shown in Fig. 1:

 Synapses or Connecting links: The neurons are connected by links, and each

link has a numerical weight, or synaptic weight, associated with it. A signal xj,

at the input of the synapse j connected to neuron k is multiplied by the

synaptic weight wkj. The first subscript refers to the neuron in question and

the second subscript indicates the input end of the synapse to which the

weight refers.

 Summation Function or Linear Combiner: Computes the weighted sum of all

the input signals.

 Activation or Transfer Function: The neurons in the ANN transform their

net input by using a scalar-to-scalar function called an activation function.

These are needed to introduce non-linearity into the network and thus make

it more powerful when performing classification tasks. There are many

transfer functions available for use in the toolbox. The most commonly used

ones are logsig, tansig and purelin.

 Bias: This has the effect of increasing or lowering, the net input of the

activation function, depending on whether it is positive or negative.

Fundamentals of ANNs in Matlab

Some important concepts about ANN are described below:

 Learning algorithm: The procedure used to train a neural network to

perform a particular task. The neurons are connected by links, and each

link has a numerical weight associated with it. The weights express the

strength or the importance of each neuron input. The neural network

learns through repeated adjustments of these weights. Numerous learning

functions are included in the toolbox such as learngdm, learnp,

learnwh and others.

 Network Architectures: In a neural network, the neurons are organised in

the form of layers. We consider two fundamentally different classes of

network architectures:

i. Single-Layer feed-forward or Static: This is the simplest form of

layered network; there is an input layer of source nodes/neurons that

projects onto an output layer of neurons, but not vice versa.

ii. Multi-Layer feed-forward or Static: This category of networks has

one or more hidden layers, whose computation nodes are referred to as

the hidden units. The function of these hidden units is to intervene

between the external input and the network output in some useful

manner. These feed-forward networks are also referred to as static

networks since there are no feedbacks or delays.

 3

 Data Structures: The format of the data presented affects the

networks training. There are two basic types of input vectors – ones that

occur concurrently (at the same time or in no particular time sequence)

and those that occur sequentially in time. For the concurrent vectors, the

order in which the inputs are presented is not important, whereas for

sequential vectors, the order in which these vectors appear is important.

 Training Styles: An ANN can be trained in 2 different ways. The first

method is the Incremental or online training wherein the weights and

biases of the network are updated each time an input is presented to the

network. For this training mode the command, adapt is used. The other

mode of training is the Batch training mode. Here the weights and biases

are updated only after all the inputs have been presented. Batch training

can be done using either adapt or train, although train is generally the

best option.

 Work Flow: The work flow for the neural network design process has

seven primary steps:

(i) Collect data

(ii) Create the network

(iii) Configure the network

(iv) Initialise the weights and biases

(v) Train the network

(vi) Validate the network

(vii) Use the network

In the Deep Learning Toolbox (Matlab documentation available online at:

https://uk.mathworks.com/help/deeplearning/index.html) a plethora of

information about training shallow and deep networks as well as examples

about each of the aforementioned functions are provided.

The case of a single neuron

A single neuron with two weights is trained using the following rule:

2,1,
1

1

 iyxwwww
p

P

p
ip

t

ii

t

i

t

i ,

where t denotes iterations, P is the number of patterns in the training set and

the inputs, ip
x , and outputs, p

y , for each pattern, p=1,…,4, are shown in the

following truth table

p x1p x2p yp

https://uk.mathworks.com/help/deeplearning/index.html

 4

1 -1 -1 -1

2 -1 +1 -1

3 +1 -1 +1

4 +1 +1 -1

The weights are all zero

at the start, i.e.

2,1 allfor ,00 iw
i .

The node is trained by

presenting it with input

and output pairs in the

same order as the truth

table, starting form the

top, then the first input pattern that is used (p=1) is [-1, -1] and the

corresponding output pattern is (-1).

Matlab implementation

As the weights are initially set to zero, their value after a set of training

patterns has been presented to the input is:

2,1,
1

1

 iyxw
p

P

p
ip

t

i

This can be rewritten in matrix notation as:

[W]=[X]T [Y]

where [X]T is the transpose of [X], implemented as – x’.

Define X and Y matrices in Matlab and calculate the weight matrix.
This can be simply done by defining the matrices X and Y and using Matlab

operators for multiplication of matrices/vectors.

What is the neuron’s output for the input data X when the hard limiter
(threshold) activation function is used?
Use the hardlims function to calculate the neurons output. Does this meet your

expectations?

Can you think of a way to improve the performance of the neuron?

Hint: Plot the output of the hardlims function when inputs are the interval [-5,

5] using steps of 0.1. Notice where the threshold is applied.

w1

w2

x1p

x2p

yp
i

ipi
xw

-1

+1

 5

Perceptron Learning

Assume a training set P, shown in the table below, is presented at the input of

the single neuron.

p x1p x2p dp

1 -0.5 -0.5 1

2 -0.5 +0.5 1

3 +0.3 -0.5 0

4 -0.1 +1 0

5 -0.8 0 0

A simple algorithm to train this model is perceptron learning which updates the

weights according to the rule:
ttttt xydww)(1

where t denotes iterations, ε is the learning rate, P is the number of patterns in

the training set; }{ pdd is the set of desired outputs (i.e. what we would like

the neuron to produce), }{ ipxx is the input set, and }{ pyy is the set of

real outputs produced (i.e. what the neuron really produces), where p=1,…,5, are

shown in the above table.

The neuron operates by dividing the input space into two regions because it can

only be in one of two states (i.e. 1 or 0 because a threshold activation is used).

This kind of partitioning is called a decision boundary. In general, a decision

boundary can take any functional form, but it is often useful to derive the

optimal decision boundary that maximizes accuracy (best generalisation). In our

case, the functional form is the equation of a line:
02111 xwxw

This line defines the boundary between regions where the input pattern

produces a positive response (output) and regions where the response will be

zero.

Visit http://en.wikipedia.org/wiki/Decision_boundary for a relevant article.

Implementing perceptron leaning in Matlab

Let’s take the following example of a four-class classification problem; the steps

involved in perceptron learning are:

Step1: Defining data and classes

% number of samples of each class

http://en.wikipedia.org/wiki/Decision_boundary

 6

K = 30;

% define classes

q = .7; % offset of classes
A = [rand(1,K)-q; rand(1,K)+q];

B = [rand(1,K)+q; rand(1,K)+q];

C = [rand(1,K)+q; rand(1,K)-q];

D = [rand(1,K)-q; rand(1,K)-q];

Step2: plot classes

plot(A(1,:),A(2,:),'bs')

hold on

grid on

plot(B(1,:),B(2,:),'r+')

plot(C(1,:),C(2,:),'go')

plot(D(1,:),D(2,:),'m*')

% the plot will look like this:

Step3: text labels for classes

text(.5-q,.5+2*q,'Class A')

text(.5+q,.5+2*q,'Class B')

text(.5+q,.5-2*q,'Class C')

text(.5-q,.5-2*q,'Class D')

 7

% plot should now look like this:

Step4: defining input & outputs

% define output coding for classes

a = [0 1]';

b = [1 1]';

c = [1 0]';

d = [0 0]';

% define inputs by combining inputs from all 4 classes

P = [A B C D];

% p (2X120) size matrix containing all 4 classes; (:,1:30 class A, (:,30:60

class B & so on)

% define targets. Type T, below, in just one line – not two lines are shown below

due to space limitations.

T = [repmat(a,1,length(A)) repmat(b,1,length(B))

 repmat(c,1,length(C)) repmat(d,1,length(D))];

% T (2X120) size matrix containing desired targets for all 4 classes; [(:,1:30

 class A), (:,30:60 class B & so on)]

Step5: network creation & training

% create a perceptron

net = perceptron;

 8

% note: you could also use the command patternnet instead, see help
patternnet

% Perceptron training

E = 1;

net.adaptParam.passes = 1;

linehandle = plotpc(net.IW{1},net.b{1});

n = 0;

while (sse(E) & n<1000)

n = n+1;

[net,Y,E] = adapt(net,P,T);

linehandle = plotpc(net.IW{1},net.b{1},linehandle);

drawnow;

end

% where, net updated network; Y network outputs and E network error

% the plot should now look like:

Try changing class offset to 0.5 or 0.4, are the results different? Try
increasing training passes? Does it help?

Does the perceptron classify the data correctly?

Retrain the perceptron again for 25 iterations. Is your result the same as
before? Do you think it is possible to get better results?

Train the perceptron for 100 iterations. Are you able to obtain better
classifications?

