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(Concepts of) Machine Learning 
 

Neural networks for classification  

 

After this session you should be able to:  

- Create multilayer neural networks in Matlab; 

- Train and test multilayer neural networks. 

 

 

 

Classification 
 

Classification problems form an important application area of machine 

intelligence.  

 

Assume that you have a special discrete-valued variable called the class; this is 

denoted by C. The variable C takes values in {c1, c2, ...cm}. Let’s now assume that 

m=8; then we have 8 classes: c1=1, c2=2,.., c8=8. 

 

The classification problem aims to specify what value the class variable C has 

for a given object, taking into account a set of measurements on the object, e.g., 

A, B, …etc. These measurements are called features. Thus in classification we 

want to learn a mapping from features to Classes. 
 

Notation 
C is the class   

A, B, etc (the measurements) are called the features 

 

Classifiers 
In order to solve this problem we need a machine, called classifier. A classifier 

is a mapping from a feature space (a d-dimensional vector) to a set of class 

labels {1,2,…,m}. Thus, a classifier partitions a feature space into m decision 

regions. The line or surface separating any 2 classes is the decision boundary. 

 

Applications of Classification 
Medical Diagnosis: classification of cancerous cells. 

Credit card and Loan approval: Most major banks. 

Speech recognition: IBM, Dragon Systems, AT&T, Microsoft, etc. 
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Optical Character/Handwriting Recognition: Post Offices, Banks, Gateway, 

Motorola, Microsoft, Xerox, etc. 

Email classification: classify email as “junk” or “non-junk”. 

 

Classification Accuracy (success) 
Assume we have N feature vectors. Assume that you know the true class label 

for each feature vector. We can measure how accurate a classifier is by 

counting how many feature vectors have been classified correctly. 

 

Accuracy = percentage of feature vectors correctly classified. 

Training accuracy = accuracy on training data. 

Test accuracy = accuracy on new data not used in training. 

 

Training Data and Test Data 
Training data: Labelled data used to build a classifier. 

Test data: These are new data, not previously seen during training, which are 

used to estimate how well the classifier works. 

 

Memorisation versus Generalisation 
Better training accuracy leads in memorising the training data. 

Better testing accuracy results in good  generalisation over new data. 

In general, we would like our classifier to perform well on new test data, not just 

on training data, i.e. we would like it to generalise well to new data. 

 

Training and Testing Data 
Training Data:  
Dtrain = { [x(1), c(1)] ,  [x(2), c(2)] , …, [x(N), c(N)]  } 

N: pairs of feature vectors and class labels 

 

Feature Vectors and Class Labels: 

x(i) is the i-th training data feature vector. 

 

In MATLAB this could be the i-th row of an Nd matrix. c(i) is the class label 

of the i-th feature vector. In general, c(i) can take m different class values, 

e.g., c = 1, c = 2, ...  

 

Examples of Training and Test Data 
Speech Recognition 
Training data: words recorded and labelled in a laboratory 

Test data: words recorded from new speakers, noisy conditions 
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Prediction of proteins localisation 
Training data: Proteins localised in 8 different localisation sites. 

Test data: Ecoli Proteins, previously unknown, should be classified in one of 

these sites. 

 

 

Classification with a Feedforward Network 
 

Let us attempt to build a classifier that can identify the gender of a crab from 

its physical measurements. Six physical characteristics of a crab are 

considered: species, frontallip, rearwidth, length, width and depth. The problem 

on hand is to identify the gender of a crab given the observed values for each of 

these 6 physical characteristics. 

 

Step1: Preparing (or loading) the Data 

 
[x,t] = crab_dataset; 

 

% where x  input matrix of size (6,200), each row corresponding to each 

characteristic taken into account & t  target matrix of size (2,200) wherein 

Female crabs are represented with a one in the first element, male crabs with a 

one in the second element. (All other elements are zero) and 200  no. of crab 

samples in the dataset 

 

Step2: Building the classifier 

 
net = feedforwardnet(10); 

 

% creates a network with single hidden layer with 10 neurons 

 

Step3: Training the network 

 

net.trainParam.epochs = 100;    % max. epochs/iterations 

net.trainparam.lr = 0.3;            % learning rate 

net.trainParam.mc = 0.6;  % momentum constant 

[net,tr] = train(net,x,t); % network training 

 

% neural network training tool will appear on screen now, it looks like this: 
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Step4: plot performance 

% when the training stops click on Performance button, you will be able to see 

performance plot on training, validation and testing, it should look like this: 

 

 
 

Step5: test the classifier 

% retrieve the patterns that were sampled as testing patterns 

 
testX = x(:,tr.testInd); 

testT = t(:,tr.testInd); 

 

% test classifier on the new data 
testY = net(testX); 
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testIndices = vec2ind(testY)  

 

Step6: plot test performance 

One measure of how well the neural network has fit the data is the confusion 

plot. The confusion matrix shows the percentages of correct and incorrect 

classifications. Correct classifications are the green squares on the matrices 

diagonal. Incorrect classifications form the red squares. If the network has 

learned to classify properly, the percentages in the red squares should be very 

small, indicating few misclassifications. 

 
plotconfusion(testT,testY) 

 

% you should get a plot like this. Rows represent predicted classes, whilst 

columns represent true/actual classes. Diagonal cells show correct 

classifications. Off-diagonal cells show classifier mistakes. 

 
 

 

 

Output Class shows 

 
 

Target shows the “true” classes 

 

network’s predictions 

for Class 1 and Class 2. 

 

 

 

  

 

To view overall percentages of correctly classified or misclassified, use the 

following command 

 
[c,cm] = confusion(testT,testY) 
fprintf('Percentage Correct Classification   : %f%%\n', 100*(1-c)); 

fprintf('Percentage Incorrect Classification : %f%%\n', 100*c); 

 

% wherein c  confusion values, i.e. fraction of samples misclassified and cm  

S-by-S confusion matrix, where cm(i,j) is the number of samples whose target 

is the ith class but was classified as j 

Out of 15 classified as 

Class 1, only 12 patterns 

were assigned correctly to 

Class 1: (12/15)*100=80% 

Out of 15 classified as 

Class 2, 15 patterns were 

assigned correctly to Class 

2: (15/15)*100=100% 

Overall accuracy 90% 

All Class 1 patterns were 

correctly assigned to 

Class 1: 100% 

Out of 18 Class 2 

patterns, only 15 

correctly assigned to 

Class2: 83.3% 
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Upon typing the fprintf commands, what percentages did you get for correctly 

classified/misclassified results? Try improving performance by increasing 

epochs.  
 

 

Are you happy with the performance? Does the desired target look close to 
the actual values? 
 

 

Multilayer Neural Networks  
 

This category of networks can be effectively put to use for many types of 

problems like function fitting, pattern recognition etc. Multilayer feedforward 

networks have one or more hidden layers of neurons followed by an output layer 

of linear or sigmoid neurons. Multiple layers of neurons with nonlinear transfer 

functions allow the network to learn nonlinear relationships between input and 

output vectors. An example problem is described below: 

 
Classification of Wine 

 

The aim is to build a classifier that can that can classify wines from three 

wineries using thirteen different attributes, such as alcohol, colour intensity, 

hue etc. This is an example of a pattern recognition problem, where inputs are 

associated with different classes, and our aim is to create a neural network that 

not only classifies the known wines properly, but can generalize to accurately 

classify wines that were not used to design the solution.  

 

 Preparing the Data 

For classification, data for training a neural network are organised into two 

matrices, the input matrix X and the target matrix T. Each ith column of the 

input matrix has thirteen elements representing a wine whose winery is 

already known. Each corresponding column of the target matrix has three 

elements, consisting of two zeros and a 1 in the location of the associated 

winery. A dataset is already available and it can be loaded using the command: 

 

1. [x,t] = wine_dataset; 

% This commands loads the wine dataset. The matrix x contains the inputs 

and the matrix t consists of the target elements. Note that both x and t 

have 178 columns. These represent 178 wine sample attributes (inputs) and 

associated winery class vectors (targets). 
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Input matrix x has thirteen rows, for the thirteen attributes. Target matrix 

t has three rows, as for each example we have three possible wineries. 

 

 Building the Neural Network Classifier 

The next step is to create a neural network that will learn to classify the 

wines. For this task it is enough to use a one-hidden-layer feed forward 

neural networks.  

 

2. net = patternnet(10); 

% Creates a feedforward network with a single hidden layer with 10 neurons. 

You may also use the command feedforwardnet for building a network. 

 

 Training the Classifier 
The created network has to be trained. The samples are automatically 

divided into training, validation and test sets. The training set is used to 

train the network. Training continues as long as the network continues 

improving on the validation set. The test set provides a completely 

independent measure of network accuracy.  

 

3. [net,tr] = train(net,x,t); 

% The network is trained in a supervised mode on inputs x based on the 

desired targets t. To see how the network's performance improved during 

training, either click the Performance button in the training tool, or call 

plotperform. Performance is measured in terms of mean squared error, and 

shown in log scale.  

 

 Testing the Classifier 

The trained neural network can now be tested with the testing samples. This 

gives a sense of how well the network will do when applied to data from the 

real world. The network outputs are in the range 0 to 1, so we use vec2ind 

function to get the class indices as the position of the highest element in 

each output vector. 

 

4. testX = x(:,tr.testInd); 
  testT = t(:,tr.testInd); 

% Samples out 27 samples from the input and target dataset for testing 

purposes. 
 

5. testY = net(testX); 
%  Computes the test output 
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6. testIndices = vec2ind(testY) 

% Convert vectors to indices; that is, the function is applied to get the class 

indices as the position of the highest element in each   output vector. 

 

 Performance Assessment 
One method of assessing the performance is to plot the so-called confusion 
matrix. The confusion matrix shows the percentages of correct and incorrect 

classifications.  

 

7. plotconfusion(testT,testY)  

% This command plots the confusion matrix. Note that this plot is also 

generated automatically in nntraintool when you use the patternnet 

command. If you use the feedforwardnet command (see Step 2, above) 

then you’ll have to separately plot this matrix using the confusion matrix plot 

command. Correct classifications are shown as green squares on the matrices 

diagonal. Incorrect classifications form the red squares. If the network has 

learned to classify properly, the percentages in the red squares should be 

very small, indicating few misclassifications. 

 

8. [c,cm] = confusion(testT,testY) 

% This command also creates the classification confusion matrix. Here c 

refers to the confusion value, which is equal to the fraction of samples 

misclassified, and cm(i,j) is the number of samples whose target is the i-th 

class but was classified as j. 
 

9. fprintf('Percentage Correct Class:%f%%\n', 100*(1-c)); 
fprintf('Percentage Incorrect Class: %f%%\n', 100*c); 

% The above commands prints the percentages of correct and incorrect 

classifications on screen. 

 

 

 


