(Concepts of) Machine Learning

Deep transfer learning with Keras on Kaggle

After this session, you should be able to:

- Use kaggle.com, and get access to all datasets and competitions

- Use keras to import pretrained models

- Apply transfer learning techniques to reduce training time of deep nets

What is transfer learning?

Transfer learning is a popular training technique used in deep learning;
where models that have been trained for a task are reused as base/starting
point For another model. To train an Image classifier that will achieve near or
above human level accuracy on Image classification, we'll need massive
amount of data, large compute power, and lots of time on our hands. This I'm
sure most of us don’t have. Knowing this would be a problem For people with
little or no resources, some smart researchers built models, trained on large
image datasets like ImageNet, COCO, Open Images, and decided to share
their models to the general public for reuse. This means you should never
have to train an Image classifier from scratch again, unless you have a very,
very large dataset different from the ones above or you want to be an hero
or thanos.

Why does transfer learning work?

Well Transfer learning works for Image classification problems because
Neural Networks learn in an increasingly complex way. i.e The deeper you go
down the network the more image specific features are learnt. A neural
network learns to detect objects in increasing level of complexity. Let’s build
some intuition to understand this better. In a neural network trying to detect
faces, we notice that the network learns to detect edges in the first layer,
some basic shapes in the second and complex features as it goes deeper.

Page 1 of 12

output lmoer

.II . % o

input laver

So the idea here is that all Images have shapes and edges and we can only
identify differences between them when we start extracting higher level
features like-say nose in a face or tires in a car. Only then can we say, okay;
this is a person, because it has a nose and this is an automobile because it has

four tires.

Low-Level
Feature

Mid-Level
Feature

» High-Level__

Feature
|

Trainable
Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Ferqus 2013]

Page 2 of 12

The takeaway here is that the earlier layers of a neural network will always
detect the same basic shapes and edges that are present in both the picture
of a car and a person.

Now, taking this intuition to a problem of differentiating images of dogs
from cats, it means we can use models that have been trained on huge
dataset containing different types of animals. This works because these
models have learnt already the basic shape and structure of animals and
therefore all we need to do, is teach it (model) the high level features of our
new images.

All I'm trying to say is that we need a network already trained on a large
image dataset like ImageNet (contains about 1.4 million labeled images and
1000 different categories including animals and everyday objects). Since this
model already knows how classify different animals, then we can use this
existing knowledge to quickly train a new classifier to identify our specific
classes (cats and dogs).

Deep neural network architectures and pretrained models

Now that we have an understanding/intuition of what Transfer Learning is,
let's talk about pretrained networks. There are different variants of
pretrained networks each with its own architecture, speed, size, advantages
and disadvantages. Keras comes prepackaged with many types of these
pretrained models. Some of them are:

VGGNET : Introduced by Simonyan and Zisserman in their 2014 paper, Very
Deep Convolutional Networks for Large Scale Image Recognition.

RESNET : First introduced by He et al. in their 2015 paper, Deep Residual
Learning for Image Recognition

INCEPTION: The “Inception” micro-architecture was First introduced by
Szegedy et al. in their 2014 paper, Going Deeper with Convolutions:

XCEPTION: Xception was proposed by Francois Chollet , the creator of the
Keras library.

and many more. Detailed explanation of some of these architectures can be
found here.

We will be using the InceptionResNetV?2 in this tutorial, feel free to try other
models.

Page 3 of 12

https://www.pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-inception-xception-keras/

l 10x 20 l I 10%

J 0 i i
il il
1R e 1l Bl | S | CN B
il (3
(] i i il
0 i

B comvolution) Residual
B iopool W Fully connccted

Avgpool Softmax l I l
B concn Dropout

The InceptionResNetV?2 is a recent architecture from the INCEPTION family.
It works really well and is super fast for many reasons, but for the sake of
brevity, we'll leave the details and stick to just using it in this post.

If you're interested in the details of how the INCEPTION model works then
go here.

Kaggle.com

Kaggle is an online community of data scientists and machine learners,
owned by Google. Kaggle allows users to find and publish data sets,
explore and build models in a web-based data-science environment,
work with other data scientists and machine learning engineers, and
enter competitions to solve data science challenges. Kaggle got its
start by offering machine learning competitions and now also offers a
public data platform, a cloud-based workbench for data science, and
short form Al education.

In kaggle you have the concept of a Kernel which represents the
environment where you will execute the code on kaggle’s own
infrastructure. This means that you will not run that code locally,
instead you will run it on their servers. As you can imagine this means
that you have to either use data which is made available by kaggle or
upload your own. We will be using existing data as uploading new data
is beyond the scope of this tutorial.

Page 4 of 12

https://medium.com/@sh.tsang/review-inception-v3-1st-runner-up-image-classification-in-ilsvrc-2015-17915421f77c

We will also work with Notebook kernels instead of Script as these are
interactive and easier to debug on the fly, without the need of an IDE.

Please head over to https://www.kaggle.com and register.

Keras

Keras is a high-level neural networks API, written in Python and capable of
running on top of TensorFlow, CNTK, or Theano. It was developed with a
focus on enabling fast experimentation. Being able to go from idea to result
with the least possible delay is key to doing good research.

Use Keras if you need a deep learning library that:

Allows for easy and fast prototyping (through user friendliness, modularity,
and extensibility).

Supports both convolutional networks and recurrent networks, as well as
combinations of the two.

Runs seamlessly on CPU and GPU.

Read the documentation at https://keras.io.

Notebooks on Kaggle.com

Login to https://www.kaggle.com and head to Kernels > New Kernel, where
you should select Notebook.

Next you should click on Settings and enable the GPU and Internet access if
they are not already enabled. If you get popups, please select Accept for all
cases.

Cats vs Dogs data

As a toy problem we will try to classify whether images contain either a dog
or a cat. This is easy for humans, dogs, and cats. Your computer will find it a
bit more difficult. This was an old Kaggle competition, if you want more
information about it please visit: https://www.kaggle.com/c/dogs-vs-cats

We need to add the data to our workspace (kernel)

Page 5 of 12

https://www.kaggle.com/
https://keras.io/
https://www.kaggle.com/
https://www.kaggle.com/c/dogs-vs-cats

Click on + Add dataset (top right corner), select Competition data and
search for Dogs vs. Cats Redux: Kernels Edition. Finally press ADD and the
data will be added to your kernel.

We can see three files, in the right hand side, under:
Workspace > input > Dogs vs Cats:
sample submission.csv

This is a csv (comma seperated value) file that is used for making submission
after training your model and testing it on the test files given to you. Since
this competition is over, we cannot make submissions, so we’ll ignore this
file.

test.zip

This file contains the Images we're going to test our models on after training,
to know if our model has learnt to differentiate dogs from cats.

train.zip

This is the food for our model. It contains the data we're going to use to
teach our model what a dog or a cat looks like.

Now to access our training Images, please create a new cell (press the + Code
button)

import numpy as np # linear algebra

import pandas as pd & data pro zing, €SV file I/0 (e.g. pd.read_csv

import os
print{es.listdir{"../1nput™})

and add type the following lines of code in the newly created cell, like in the
image below:

Page 6 of 12

This Python 3 environment comes with many helpful analytics libraries installed
It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-pytheon
For example, here's several helpful packages to load in

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/0 (e.g. pd.read_csv)

Input data files are available in the "../input/" directory.
For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory

#
#
import os

print(os.listdir("../input"})

B

Any results you write to the current directory are saved as output.

’ import cv2
import random

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
%matplotlib inline

tr_dir = '../input/train’
ts_dir = '../input/test

tr_imgs = [f'{tr_dir}/{i}’" for i in os.listdir(tr_dir)]
ts_imgs = [f'{ts_dir}/{i}' for i in os.listdir(ts_dir)]

def process_imgs(imgs, width=158, height=158):
import cv2
import random
import os

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

%matplotlib inline

tr_dir = '../input/train’

ts_dir = '../input/test’

tr_imgs = [f'{tr_dir}/{i}"' for i in os.listdir(tr_dir)]

ts_imgs [f'{ts_dir}/{i}' for i in os.listdir(ts_dir)]

def process_imgs(imgs, width=150, height=150):

x =[]

Page 7 of 12

y =[]
for i in imgs:
x.append(cv2.resize(cv2.imread(i, cv2.IMREAD_COLOR),
(width, height),

interpolation=cv2.INTER_CUBIC))

label = 1 if 'dog' in i else ©

y.append(label)

return np.array(x), np.array(y)

tr_x, tr_y = process_imgs(tr_imgs)

plt.figure(figsize=(20, 10))
cols =5
for i in range(cols):
plt.subplot(5 / cols+l, cols, i+1)

plt.imshow(tr_x[i])

from keras.preprocessing.image import ImageDataGenerator

from keras.preprocessing.image import img_to_array, load_img

tr_data = ImageDataGenerator(rescale=1/255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,

horizontal_flip=True)

tr_gen = tr_data.flow(tr_x, tr_y, batch_size=32)

Page 8 of 12

| will not walk you through all the code but what it does is get the images
from the local folders we have just imported into the workspace, and process
them into numpy arrays. We are also resizing all the images to 150x150, and
creating Image Generators so we can use image augmentation. You can find
more details on image generators and all the methods used on the Keras
documentation page.

Run the code by pressing the play button (on the left of the cell) or hold Shift
and press Enter.

Import a pretrained model from Keras

Click on + Code (below the last added cell), to add a new code cell and write
the following lines of code:

from keras.applications import InceptionResNetV2
base=InceptionResNetV2(weights="imagenet',
include_top=False,

input_shape=(150, 150, 3))

We import the InceptionResNetV2 model.

Next, we tell keras to download the model’s pretrained weights and save it in
the variable base.

To configure what we actually download, we pass in some important
parameters such as:

weights [imagenet]: We tell keras to fetch InceptionReNetV2 that was
trained on the imagenet dataset.

include_top [False]: This tells Keras not to download the fully connected
layers of the pretrained model. This is because the top layer (Fully connected
layers) does the final classification. l.e After the convolution layers extract
basic Features such as edges, blobs or lines from the input images, the Fully
connected layer then classifies them into categories.

Since all we need is 2 class (dogs and cats) classifier, we are going to remove
the former and add our own.

input_shape [(150, 150, 3)]: Here we specify our input dimension, this means
we have a square image of 150 by 150 pixels and it has 3 color channels, RGB.

Page 9 of 12

If you get any errors when running the code you have forgotten to activate
the internet connection. This is needed as we have to download the
pretrained weights.

Run the code by pressing the play button (on the left of the cell) or hold Shift
and press Enter.

Next, we create our fully connected layers (classifier) which we add on-top of
the model we downloaded. This is the classifier we are going to train. l.e
after connecting the InceptionResNetV2 to our classifier, we will tell keras to
train only our classifier and freeze the InceptionResNetV2 model.

Click on + Code (below the last added cell), to add a new code cell and write
the following lines of code:

from keras import layers, models

model = models.Sequential()

model.add(base)

model.add(layers.Flatten())
model.add(layers.Dense(256, activation='relu'))
model.add(layers.Dense(1, activation="sigmoid'))

base.trainable = False

Here we import layers and models from keras, and create a Sequential
model.

We then add the pretrained base to our model and start adding new layers to
tailor for the cats and dogs dataset we will use.

We flatten the output from the base because we want to pass it to our fully
connected layer (classifier).

To keep things simple, | added a Dense network with an output of 256
(number not fixed) and used the popular ReLU activation.

Page 10 of 12

We use a sigmoid for our final layer like we did last time.
The last layer has just 1 output. (Probability of classes)

Lastly we freeze our pretrained base so we can only train the new weights,
which we have just added.

Run the code by pressing the play button (on the left of the cell) or hold Shift
and press Enter.

Next we need to get and optimizer and compile the model before we
fine-tune it.

Click on + Code (below the last added cell), to add a new code cell and write
the following lines of code:

from keras import optimizers

batch_size = 32

epochs = 20

model.compile(loss="binary_crossentropy’,
optimizer=optimizers.RMSprop(lr=2e-5),

metrics=['acc'])

hist = model.fit_generator(tr_gen,
steps_per_epoch=tr_x.shape[@] // batch_size,

epochs=epochs)

We need to compile the model (this will build the tensorflow computational
graph automatically) and lastly train it on the training data.

After you run this last cell you should see how your model is performing.

You can now try to test the performance on your test data. NB: You should
look at the keras documentation and see how you can evaluate a model on
the test data.

Page 11 of 12

References:

https://www.kaggle.com/kanncaal/machine-learning-tutorial-for-beginners

https://towardsdatascience.com/image-detection-from-scratch-in-keras-f314
872006¢9

https://towardsdatascience.com/transfer-learning-and-image-classification-u
sing-keras-on-kaggle-kernels-c76d3b030649

Page 12 of 12

https://www.kaggle.com/kanncaa1/machine-learning-tutorial-for-beginners
https://towardsdatascience.com/image-detection-from-scratch-in-keras-f314872006c9
https://towardsdatascience.com/image-detection-from-scratch-in-keras-f314872006c9
https://towardsdatascience.com/transfer-learning-and-image-classification-using-keras-on-kaggle-kernels-c76d3b030649
https://towardsdatascience.com/transfer-learning-and-image-classification-using-keras-on-kaggle-kernels-c76d3b030649

