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Outline 

 Selecting features for machine learning 

 Feature selection based on statistical testing 

 Class separability measures 

 Features subset selection 

 Feature generation/selection through learning 

 Summary 
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 Large l has a three-fold disadvantage: 

 High computational demands 

 Low generalization performance 

 Poor error estimates 

Selecting features for ML 

General case: 

is in the d-dimensional domain of 
the feature vectors  




















d
x

x

x



2

1

x
.  
. 
. 



4 

 Given N training patterns 

 l must be large enough to learn 

 what makes classes different (e.g. apples/bananas) 

 what makes patterns in the same class similar 

 l must be small enough not to learn what makes 

patterns of the same class different (e.g. red/green 
apple) 

 In practice,  l < N/a, a in [2, 10] has been reported to 

be a sensible choice for a number of cases 

 

 Once l has been decided, choose the l most informative 

features 

 Best:   Large between class distance,  
  Small within class variance  



5 

 Given N training patterns 

 l must be large enough to learn 

 what makes classes different (e.g. apples/bananas) 

 what makes patterns in the same class similar 

 l must be small enough not to learn what makes 

patterns of the same class different (e.g. red/green 
apple) 

 In practice,  l < N/a, a in [2, 10] has been reported to 

be a sensible choice for a number of cases 

 

 Once l has been decided, choose the l most informative 

features 

 Best:   Large between class distance,  
  Small within class variance  



6 

Feature selection (apply after preprocessing) 
 
 Discard individual features with poor 
information content, i.e. select most 
promising features 
 
 The remaining information rich features 
are examined jointly as vectors, i.e. test 
feature combinations discrimination ability 
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 The Goal:  For each individual feature, find whether 
the values, which the feature takes for the different 
classes, differ significantly. 
That is, answer 

                 : The values differ significantly 

                 : The values do not differ significantly 

 If they do not differ significantly reject feature from 
subsequent stages. 

 Hypothesis Testing Basics- 
http://en.wikipedia.org/wiki/Statistical_hypothesis_testing  
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Feature Selection based on statistical 
hypothesis testing 

http://en.wikipedia.org/wiki/Statistical_hypothesis_testing


example 

 A feature x is 

measured N times 
and we calculate  

 

 

Test the hypothesis 

  

Why is that useful? 
 

If the values that the 
feature takes do not 
differ significantly 
from the mean, one 
may decide not to 
measure this feature in 
subsequent data 
processing stages. 
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example 

 A feature x is 

measured N times 
and we calculate  

the mean value it 
takes in each class 

Test the hypothesis 

  

Why is that useful? 
 

If the zero hypothesis is 
rejected, this feature is 
important 
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 The steps: 

 N measurements 

are known 

 

 Define a function of them 
 

          test statistic 
http://en.wikipedia.org/wiki/Test_statistic  

  so that      is easily parameterised in terms of θ. 

 

 Let D be an interval, where q has a high probability to 
lie under H0, i.e., pq(q׀θ0) 

 

 Let D  be the complement of D 
D  Acceptance Interval 
D  Critical Interval 

 

 If q, resulting from  
lies in D we accept H0, otherwise we reject it. 
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 Probability of an error 

 

 

 

 

 

 

 

 

 In practice, ρ is preselected and it is 

known as the significance level. 

 )( 0HDqpq

1-ρ 

Most likely measurement 

the probability 
density of each 
outcome, 
computed under 
the null 
hypothesis. 

Very unlikely measurement 

D D D 

http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Probability_density_function
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Application to features:  The known variance case 

 Let x be a random variable and the experimental 

samples,                 , are assumed mutually 
independent. Also let 

 

 

 Compute the sample mean 
 
 
 

 This is also a random variable with mean value 
 
 
     

That is, it is an Unbiased Estimator of the mean of x 
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 The variance 

 

 

 

 
 

 Due to independence of the samples 

                  i.e. largest the no of measurements, the smaller the variance 

                     around the true mean 

 That is, it is Asymptotically Efficient 
 

 Hypothesis test 

 

 
 

 Test Statistic: Define the variable 
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(as N gets larger, the distribution of the difference 
between the sample average and its limit µ, when 
multiplied by the factor √N, approximates the normal 
distribution with mean 0 and variance σ2. ) 
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under H0 the probability density function is 

approximated by a Gaussian 
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 The decision steps 

 Compute q from xi, i=1,2,…,N 

 Choose significance level ρ 

 Compute from N(0,1) tables D=[-xρ, xρ] 

 

 

 
 

 

   
 

 

 An example:  A random variable x has variance 
σ2=(0.23)2.  Ν=16 measurements are obtained giving             
           . The significance level is ρ=0.05.   
 

   Test the hypothesis 
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 Since σ2 is known,                 is N (0,1).   
 

 From tables, we obtain the values with acceptance 
intervals [-xρ, xρ] for normal N (0,1) 

 

 

 

 

 

 Thus 
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 Since            lies within the above acceptance 
interval, we accept H0, i.e., 

 

 

 The interval [1.237, 1.463] is also known as 
confidence interval at the 1-ρ=0.95 level. 

  

 We say that:  there is no evidence at the 5% level 
that the mean value is not equal to  

 
Thus, the values, which the feature takes do not 

differ significantly from the mean. 
If they do not differ significantly one may decide 
not to measure this feature in subsequent data 
processing stages. 
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The Unknown Variance Case 

 

 Estimate the variance.  The estimate 

 

 
 

 is unbiased (independence of data samples), i.e. 

 

 

 Define the test statistic 
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 This q is no longer N(0,1) distribution.  If x is 

Gaussian, then 

 q follows a t-distribution, with N-1 degrees of 

freedom 

 

 

 An example: 
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Table of acceptance intervals for  

t-distribution 
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1-ρ 

 
0.9 

 
0.95 

 
0.975 

 
0.99 

12 1.78 2.18 2.56 3.05 

13 1.77 2.16 2.53 3.01 

14 1.76 2.15 2.51 2.98 

15 1.75 2.13 2.49 2.95 

16 1.75 2.12 2.47 2.92 

17 1.74 2.11 2.46 2.90 

18 1.73 2.10 2.44 2.88 
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Application of t-test in Feature Selection 
 

 The goal here is to test against zero the difference 
μ1-μ2 of the respective means in  
classes ω1, ω2 of a single feature. Assume statistical 

independence 
 

 Let xi i=1,…,N , the values of a feature in ω1 
 

 Let yi i=1,…,N , the values of the same feature in ω2 
 

 Assume in both classes  

 (unknown or not) 
 

 The test becomes 
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 Define 

 z=x-y 

 

 Obviously 

 E[z]=μ1-μ2 

 

 Define the average 

 

 

 

 Known Variance Case:  Define 

 

 

 

 

 This is N(0,1) and one follows the procedure as 
before. 
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 Unknown Variance Case: 
Define the test statistic 

 

 

 

 

 

 

 q is t-distribution with 2N-2 degrees of freedom, 

 Then apply appropriate tables as before. 

 

 Example:  The values of a feature in two classes are: 

 ω1:       3.5, 3.7, 3.9, 4.1, 3.4, 3.5, 4.1, 3.8, 3.6, 3.7 

 ω2:       3.2, 3.6, 3.1, 3.4, 3.0, 3.4, 2.8, 3.1, 3.3, 3.6 

 
Test if the mean values in the two classes differ 
significantly, at the significance level ρ=0.05 
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 We have 

 

 

 

 For N=10 

 

 

 

 

 

 

 

 

 From the table of the t-distribution with 2N-2=18 degrees of 
freedom and ρ=0.05, we obtain D=[-2.10,2.10] and since q=4.25 
is outside D, H1 is accepted and the feature is selected. 
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 We have 

 

 

 

 For N=10 

 

 

 

 

 

 

 

 

 From the table of the t-distribution with 2N-2=18 degrees of 
freedom and ρ=0.05, we obtain D=[-2.10,2.10] and since q=4.25 
is outside D, H1 is accepted and the feature is selected. 
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in practice the variances may not be the same in 
the two classes. This becomes the object of  
another hypothesis test that compares variance 
instead of mean- the so-called F-distribution  
and the related tables  
should be used 
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 So far we looked at individual features. What happens if there 
are existing correlations among the features?  

 Two features may be rich in information, but if they 
are highly correlated we need not consider them both.  
To this end, in order to search for possible correlations, we 
consider features jointly as elements of vectors. This can be 
used to: 

 Produce the “best” vector of l features to be used. This is 
dictated by the specific problem (e.g., the number, N, of 

available training patterns and the type of the classifier to 
be adopted). 

 Transform the original data on the basis of an optimality 
criterion in order to come up with features offering high 
classification power. 

 Class separability measures 
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 One can: 

 Use different feature combinations to form the 
feature vector. Train the classifier, and choose the 
combination resulting in the best classifier 
performance. 

 A disadvantage of this approach is the high 
complexity. Also, local minima, may give misleading 
results. 

 Next, we adopt a class separability measure and 
choose the best feature combination against 
this cost- that is independent of the classifier. 
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Let     be the current feature combination vector. 

(i) Divergence cost. To see the rationale behind this 
cost, consider the two – class case.  

 Obviously, if on the average the value of                 is 
close to zero, then     should be a 

 

 poor feature combination (overlapped classes). Define 
mean value over each class: 
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   

 d12 is known as the divergence and can be used as a class 

separability measure. 
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  For the multi-class case, define dij for every pair 
of classes i, j and the average divergence is 

defined as 

 

 

 

 Some properties: 

 

 

 

 

 Large values of d are indicative of good feature 

combination (it means that the particular 
combination allows to separate classes 
accurately). 
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These are used as a measure of the way data are scattered 
in the respective feature space. 

 Within-class  scatter matrix:  

  

 

where 

https://en.wikipedia.org/wiki/Covariance_matrix  

is the scatter matrix of class i ,  and the a priori 
probability of class i  is: 

 

 

 ni the number of training samples in i. 

 

 trace{SW} is a measure of the average variance of 

the features. 
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(ii) Scatter Matrices 

Total number of 
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 Between-class  scatter matrix 

 

  

 

where the global mean vector is: 

 

 trace{SB} is a measure of the average distance of the 

mean of each class from the respective global value. 
 

 Mixture scatter matrix 

 

 

 

 

 

 

which means that: SM = SW + SB 
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Measures based on Scatter Matrices 

 

   

 

 

   

 

 

   

 

 trace{SM} is the sum of variances of the features around their 

respective global mean. 

 trace{SW} is a measure of the average, over all classes, 

variance of the features. 

 Other criteria are also possible, by using various 
combinations of SM, SB, SW, as suggested in the literature.  
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These are measures 
of separability among 
all classes and can be 
used as criteria in 
feature selection, i.e. 
to obtain l from the L 

features to form a sub-
feature space in which 
the separability is 
maximised. 

determinant 

The trace is 
equal to the 
sum of the 
eigenvalues, 
while the 
determinant is 
equal to their 
product. 
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The J1, J2, J3 criteria  take high values for cases where: 

 Data are grouped together within each class (around their 
mean). 

 The means of the various classes are far from each other . 

 OK-ish (medium score)                         poor (low score)                            best (high score) 
J3 example 

164.7 12.5 620.9 
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Feature subset selection:  

how to combine features 
 

 

Trying to form all possible combinations of λ features 
from an original set of m selected features is a 

computationally hard task. Thus, a number of 
suboptimal searching techniques have been derived. 
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(i) Sequential backward selection. Let x1, x2, x3, x4 
be the available features (m=4). The procedure 

consists of the following steps: 

 Adopt a class separability criterion (could also be 
the error rate of the respective classifier). 
Compute its value for ALL features considered 
jointly [x1, x2, x3, x4]

T. 

 

 Eliminate one feature and for each of the possible 
resulting combinations, that is [x1, x2, x3]

T, [x1, x2, 

x4]
T, [x1, x3, x4]

T, [x2, x3, x4]
T, compute the class 

separability criterion value C. Select the best 
combination, say [x1, x2, x3]

T. 
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 From the above selected feature vector eliminate one 
feature and for each of the resulting combinations,          , 
..          ,             compute     and select the best 
combination. 

 

 The above selection procedure shows how one can 
start from       features and end up with the “best”   
ones. Obviously, the choice is suboptimal. The number 
of required calculations is: 

 

 

 In contrast,  a full search  requires: 

 (eg. m=20,λ=5; 15504  combinations) 
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(ii) Sequential forward selection. the reverse  

procedure is followed. 

 Compute C for each feature.  

Select the “best” one, say x1 

 

 For all possible 2-D combinations of x1, i.e., [x1, x2], [x1, x3], 

[x1, x4] compute C and choose the best, say [x1, x3]. 

 

 For all possible 3-D combinations of [x1,x3], e.g., [x1, x3, x2], 
[x1, x3, x4], etc., compute C and choose the best one. 

 

 The above procedure is repeated till the “best” vector with  

 features has been formed. This is also a suboptimal technique, 
requiring: 

 

 operations. 



2

)1( 



m



Feature generation/selection 
through learning 
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https://sites.jamanetwork.com/machine-learning/


Autoencoder 
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When one linear hidden layer 

is used, then is similar to PCA. Upon 
convergence, the weight vectors of the h 
neurons in the hidden layer form a basis for 
the space spanned by the first h principal 
components. Unlike PCA, it will not necessarily 
produce orthogonal vectors (principal 
components can calculated via singular value 
decomposition) 



Depth and abstraction 

 (1) deep architectures promote the re-use of 
features, and 

 (2) deep architectures can potentially lead to 
progressively more abstract features at higher 
layers of representations 
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Parkinson’s tremor measurements  
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The cloudUPDRS app: A medical device for 
 the clinical assessment of Parkinson’s Disease- 
https://doi.org/10.1016/j.pmcj.2017.12.005 

Typical tremor measurement trace  

signal segments along the x, y, z 
acceleration axes 

https://doi.org/10.1016/j.pmcj.2017.12.005
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Compliance with protocol 



Transform EEG activities 
into a sequence of 
topology-preserving multi-
spectral images  

43 

Cognitive 
load 
classification 

Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks- 
https://arxiv.org/abs/1511.06448 



transform EEG activities 
into a sequence of 
topology-preserving multi-
spectral images  
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Cognitive 
load 
classification 

Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks- 
https://arxiv.org/abs/1511.06448 

(1) EEG time series from multiple locations are acquired; 
(2) spectral power within three prominent frequency bands  
is extracted for each location and used to form topographical maps  
for each time frame (Polar Projection, image);  
(3) sequence of topographical maps are combined to  
form a sequence of 3-channel images which are fed into a  
recurrent-convolutional network 

             (1)             (2)      (3)     VGG network (CNN+LSTM) 

 https://www.robots.ox.ac.uk/~vgg/research/very_deep/  

https://www.robots.ox.ac.uk/~vgg/research/very_deep/
https://www.robots.ox.ac.uk/~vgg/research/very_deep/


Multi-task learning 
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Advantageous in areas where it’s natural 
to predict multiple related indicators 
simultaneously (e.g. finance, 
bioinformatics and drug discovery). 
It can reduce the risk of overfitting 
(regularization);  increase the number of 
training data points (data 
augmentation); parallel tasks provide 
evidence for the relevance or irrelevance 
of different features; ‘eavesdropping’ 
across tasks (learn features G through 
task B whilst difficult to learn through 
A); shared representations can help the 
model perform well when learning novel 
tasks (as long as they are from the same 
environment).  

Shared Subsets of factors 

Input data 
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Summary 
 Feature selection methods that are based on statistics. 

These can be used to assess how information rich are 
individual features to help machine learning methods 
discriminate between classes of objects or recognise 
objects.  

 Class separability measures and ways to  combine 
features. These can be used to select good combinations 
of features to be used as input in machine learning 
methods  

 Features learning using neural networks and deep learning 
architectures. Features are generated and selected as part 
of training process. 

 



Useful reading 

 Theodoridis S., Koutroumbas K. (2009), chapter 5.1-5.4, 
5.6.1, 5.6.3, 5.7.2, Pattern Recognition, Academic Press. 
Available online at: 
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJE
VXZrRkE/view?usp=sharing 

 

 Bengio Y., Courville A., Vincent P., Representation 
Learning: A Review and New Perspectives - 
https://arxiv.org/abs/1206.5538v3  

https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
https://arxiv.org/abs/1206.5538v3


Next week 

 Neural networks and deep learning 
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