Birkbeck o00
UNIVERSITY OF LONDON
oo
| XX)
o0
o

(Concepts of) Machine
Learning

Lecture 4: Neural networks and
deep learning

George Magoulas

ggggggggg @dcs.bbk.ac.uk

Contents

e Neural networks and deep learning

o Multilayer Networks and back-propagation
o Backpropagation variants for training

e Recurrent Networks

o Backpropagation through time

What is a &
neural -
network? |

https://www.youtube.com/watch?v=aircAruvnKk&t=120s

Neural networks and deep
learning

C, s]. CZ S;
input feature maps feature mapsfeature mapsfeature maps
32x32 28x 28 14 x 14 10x 10 5x5

5x5

convolution \

subsampling convolution

(256x32)

[e
seved A== T Eocnaee

//“\‘ . ,"/7\1‘ . . ,/'\\y’
\\/)Linear neuron [A) Batch Normalization neuron —/ ReLU neuron

ny

P
(dln
AN 4

000
0000
0000
o000
| X J
o

n;

output

—RE . e 2 — —

N

bf \\ O fully N\

cted
A I b
feature extraction

classification

) Softmax neuron

https://sites.jamanetwork.com/machine-learning/

Neural networks and deep
learning

1980s-1990s: Artificial neural networks (ANNs) with 2 or 3 hidden layers
(or more) and with many units in the hidden layers. Researchers couldn't
train larger and deeper networks on the serial, single-core computers used
at the time. Now these are called “shallow” neural networks.

Geoff Hinton moves from CMU to Uni Toronto. Uses the term “deep
network” in the papers

Reducing the Dimensionality of Data with Neural Networks, 28 JULY 2006,
Vol. 313 SCIENCE

Learning multiple layers of representation, TRENDS in Cognitive Sciences
Vol.11 No.10, 2007

Collaboration of Ng’s group at Stanford with Google. Use the term
“deep learning” in the paper

Building High-level Features Using Large Scale Unsupervised Learning,
Proceedings of the 29 h International Conference on Machine Learning,
Edinburgh, Scotland, UK, 2012

Neural networks and deep \

Learning by weight change: If the response of an output unit is incorrect
then the network can be changed so that it is more likely to produce the
correct response the next time that the stimulus is presented This is
achieved by changing the connection weights. on

new oId
W, + Aw,
f mIpy tivg)le utnitig ;rlf :e:(:
desired obtained
AW ..:—nd_E:_nd[ai _ai]2
dw;; dw;

Awl.j

Bias: There is one special input unit, which is called bias unit. The bias unit
receives no input itself, and its activity is always set at +1. The weight
from the bias unit to the unit of interest can be positive or negative and
changes just like any other weight during learning.

is the change in the connection weight W; from unit jto unit /

4

Neural networks and deep

learning

Activation functions of a neuron

Step function

Y
+1

ystep _ 1Lif X>0
0,1f X <0

Sign function

Yoy
+1-

Ysign ~ +1if X >0
C=1if X <0

Sigmoid function

Yy

y sigmoid _ 1
1+e

X

Linear function

Yy

YIinear _ X

Neural networks and deep
learning

Activation fu

Step function }X

y Step _

relu function

RELU(x)—{Oifx(‘O
xif x>=0
1 If X >0 71+1 >0
O|fX<O |-1if X <0

__

I

y sigmoid _

1+e

7

YIinear _ X

Multilayer Networks and
back-propagation

The perceptron and the perceptron rule: can a single neuron
learn a task?

m In 1958, Frank Rosenblatt introduced a
training algorithm that provided the first
procedure for training a simple ANN: a
perceptron.

m The perceptron is the simplest form of a neural
network. It consists of a single neuron with
adjustable synaptic weights and a hard limiter.

Single-layer two-input perceptron

1 if netinput>0
|npUtS azhardlim(netinput)z{o 't NEHnpU

otherwise
X1 Linear Hard
\@ Combiner /~ Limiter
Output

pECR IR
e i

b Threshold

The node divides the input space into two regions because it
can only be in one of two states (i.e. 1 or 0)

(1) Assume a node with only two inputs : W X +W, X =0

117 1 127 2

(2) Assume the node has a bias term b: w X +w_X +b=0
(3) Assume wy,=1; w;,=1; b=-1

Then: X, +X,=0= X =—X, (1) No bias
(2) With a bias

These are line equations—> X, +X, —1=0=>X, =—X, +1

The line defines the boundary %
between regions where the input
pattern produces a positive
response (output) and regions
where the response will be
negative or zero. A line of this
kind is also called decision

""1—"7
boundary a=hardlim(netinput) =0 // Xl

(1)

7
y 10

m The aim of the perceptron is to classify inputs,
Xy, X%, . . o X, into one of two classes, say
A, and A..

m For an elementary perceptron, the n-

dimensional space is divided by a Ayperplane
Into two regions en.wikipedia.org/wiki/Hyperplane)

m The hyperplane is defined by the /linearly
separable function: N
D xiw; —6=0
i=1

11

Linear separability in the perceptrons

M X2 A X2

Class Aq

aundary

X1W1 + XoWs — 0=0 X1W1 + XoWs + X3W3 — 0=0

(a) Two-input perceptron. (b) Three-input perceptron.

How does the perceptron learn its
classification tasks?

This is done by making small adjustments in
the weights to reduce the difference between
the actual and desired outputs of the
perceptron. The initial weights are randomly
assigned, usually in the range [-0.5, 0.5], and
then updated to obtain the output consistent
with the training examples.

13

m If at iteration p, the actual output is X(p) an
the desired output is Y,(p), then the error i
given by:

e(p)=Yq(pP)-Y(P) |\where p=1,2,3,...

[teration p here refers to the pth training
example presented to the perceptron.

m If the error, & p), is positive, we need to
increase perceptron output X(p), but if it is
negative, we need to decrease Y p).

14

The perceptron learning rule
Wi (P+1) =w;(p)+a-x(p)-e(p)

where p=1,2,3,...

a is the learning rate, a positive constant less
than unity.

The perceptron learning rule was first proposed
by Rosenblatt in 1960. Using this rule we
can derive the perceptron training algorithm
for classification tasks.

15

Perceptron’s training algorithm

Step 1: Initialisation
Set initial weights w;, w,,..., w,and
threshold 6 to random numbers in the range
[-0.5, 0.5].

If the error, & p), is positive, we need to
increase perceptron output X p), but if it is
negative, we need to decrease Y(p).

Perceptron’s training algorithm (continued)

Step 2: Activation
Activate the perceptron by applying inputs

x(P), X%(P),---, X{p) and desired output Y;(p).
Calculate the actual output at iteration P = 1

Y (p) = step Zx (P) w;(p)—6

where nis the number of the perceptron
inputs, and step is a step activation function.

17

Perceptron’s training algorithm (continued)

Step 3: Weight training
Update the weights of the perceptron

Wi (P +1) =w; (p) +Aw; (p)
where Aw(p) is the weight correction at iteration
D.

The weight correction is computed by the delta
rule: Aw; (p) = a-X; (p) -e(p)

Step 4: Iteration
Increase iteration p by one, go back to Step
Z and repeat the process until convergence.

Perceptron and the perceptron rule o
(the limitations)
Linear separable problems: Input Output
Learning Boolean functions X1 X AND OR
0 0 0 0
10 0 1
0 1 0 1
1 1 1 1
X, A AND OR
Olg o 11 0l @ ® 11

00 @ o0 , 0,00- o 10 0,0 0\ o1’

Numeric example: A single node with two
weights

A single node with two weights is trained using the following rule:
P
t+1 .t 1 —
Wt =w' + pZ:l:xipyp, =12

where t denotes iterations, P is the number of patterns in the training set

and the inputs, X, and outputs, Y,, for each pattern, p=1,...,4, are shown
in the following truth table %

P_Xp Xp |Yp \

1 0 O 0

2 0 1 |0 . R
31 0 0 % -

4 1 1 1 —

The weights are all zero at the start, i.e. Wio =0, foralli =12 . The node is
trained by presenting it with input and output pairs in the same order as
the truth table, starting form the top, then the first input pattern that is

used (p=1) is [0, 0] and the corresponding output pattern is 0. "

Numeric example: A single node with
two weights

What would the weights be after the presentation of
each pattern?

p=1: w;=0+x,y=0; w,=0+x,y=0
p=2: w;=0+x,y=0; w,=0+x,y=0
p=3: w;=0+x,y=0; w,=0+x,y=0

p=4: w,;=0+x,y=1; w,=0+x,y=1

21

Numeric example: A single node with
two weights

What output values are produced with a threshold of 1.1?

X1 X2 WXt waxy |y

o 0 0 0 0
0 1 1 0

W, 1 O 1 0

1 1 2 1

Yo
W, . g
Xop

22

Multilayer networks and sece

backpropagation :

Non linear separable problems: Training patterns
belonging to one output class cannot be separated from
training patterns belonging to another class by a straight
line, plane or hyperplane.

Linear separable Nonlinear separable
23

Multilayer neural networks

m A multilayer perceptron is a feedforward neural
network with one or more hidden layers.

m The network consists of an input layer of
source neurons, at least one middle or hidden
layer of computational neurons, and an
output layer of computational neurons.

m The input signals are propagated in a forward
direction on a layer-by-layer basis.

24

Multilayer perceptron with two (or
more) hidden layers

] ()—
] First Second O——
Input hidden hidden Output

layer layer layer layer

What does the middle layers hlde'}f o

m A hidden layer “hides” its desired output.
Neurons in the hidden layer cannot be observed
through the input/output behaviour of the
network. There is no obvious way to know what
the desired output of the hidden layer should be.

m Shallow ANNSs incorporate three and sometimes
four layers, including one or two hidden layers.
Each layer can contain from 10 to 1000 neurons.
Deep ANNs may have five or more layers and
utilise millions of neurons.

26

Back-propagation neural network

m Learning in @ multilayer network proceeds the
same way as for a perceptron.

m A training set of input patterns is presented to
the network.

m The network computes its output pattern, and
if there is an error — or in other words a
difference between actual and desired output
patterns — the weights are adjusted to reduce
this error.

27

| 906

This form of training is called Supervised learning: The
response that the backpropagation network is required to
learn is presented to the network during training. The
desired response of the network acts as an explicit teacher
signal.

i | d External signal
E) i (teacher)
—> |
i 'y
— > —» — Comparison

Supervised -«
Learning Algorithm

m In a back-propagation neural network, the
learning algorithm has two phases.

m First, a training input pattern is presented to the
network input layer. The network propagates
the input pattern from layer to layer until the
output pattern is generated by the output layer.

m If this pattern is different from the desired
output, an error is calculated and then
propagated backwards through the network
from the output layer to the input layer. The
weights are modified as the error is propagated.

29

Three-layer back-propagation neural
network

Input signals >

< Error signals

https://www.youtube.com/watch?v=Ilg3gGewQ5U

Formulation as a minimisation
of the error

min £ (w).

W

General weight update rule:

Wy =W+, d, L
d, : search direction

o, . stepsize

Formulation as a minimisation

of the error

Gradient vector

of function AX):

VF(X) =

2
S0

0
P

Lk x)

.axn

First derivative of Ax) with respect

to x; (th element of gradient vector):

x sin(1/x)

F)

03}

X

‘ A A A . 4 A A e A
-00.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

OF(X) /0X;

Optimality Condition VF(X)‘ . =0
X=X

Steepest Descent

Gradient descent
Choose the next X so that: F(X, 1) <F(X})

Maximise the decrease by choosing: x, . = x -« g,

where gksVF(x)‘X Y
= Ak

Steepest Descent

_ 2 2
F(X) = Xg +2XX, +2X5+ X

)(0 = [05] a = 0.1
0.5
0
VF(X) _ aX]_F(X) _ |:2X1+ 2X2 + 1] gO
0 2X 1+ 4X
_F X 1 2
| 0% ()

05 3
X, = Xa— 0O = -0.1
1= %o~ *o [0.5] [3]

0.2 18
X, = Xy —oag, = -0.1 =
2 b [0.2] [1.2]

= VF(X)'X:X = [2]

0.2]
0.2

0.02]
0.08

Nonlinear neuron

{input} = {(xl, X,), }il ={(-6,1),(-6.11),(-4.11),(-4.),(4,1),(4.10),(6,2),(6.11)}

X1 W
output {desired _output}={0,0,0.97,0.99,0.01,0.0311}
:I e= output - desired_output
Xo™ Wy
output =
] p 1+ e(W1X1+W2X2)
desired_output
N
& 2 7 N 5
== TN RL TR ARV LA :
E = z 2) DRI NS |
Bl---mmTTT _'7-_-1‘_:;7'_;.%"“-‘-‘!&‘9‘ 3 _ == ;
-_1 "d’dkd’-_‘k ““ = _-". ‘ ' ' ' #’.}?g E"H '
- B NN
: 2] i s saine ERE
Sum squared error function ,%’ Sy :

https://www.dcs.bbk.ac.uk/~gmagoulas/neurnet.pdf
https://www.dcs.bbk.ac.uk/~gmagoulas/neurnet.pdf
https://www.dcs.bbk.ac.uk/~gmagoulas/neurnet.pdf
https://www.dcs.bbk.ac.uk/~gmagoulas/neurnet.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0893608096000524

a = learning rate

The Chain Rule

df(nw)) _ df(n) _ dn(w)
dw dn dw

Third Layer

Example composite function

f(n) = cos(n) n =e

2w f(n(w)) = cos(e”™

df (n(w)) _ df(n) dn(w) _ (—sin(n))(2e2w) _ (—sin(ezw))(ZeZW)

dw dn dw

v=(f@f
Application to Gradient Calculation
= n(f(x))
A A on™ . . m _
oF _ ok oF _ oF o | e
wj on ow; | o o
y = tan(f ()

d—y W @

LI (£
= S

» 1@
dr S

d—y Fi(xheos(£ ()

j—y = — Al e

a
d—y = f'(R)sec?(f(0)

The back-propagation training

algorithm
Step 1: Initialisation

Set all the weig

Nts and t

network to random num
distributed inside a smal

nreshold levels of the
vers uniformly
range:

where F;is the total number of inputs of
neuron /in the network. The weight
initialisation is done on a neuron-by-neuron

basis.

38

Step 2: Activation

Activate the back-propagation neural netwprk

by applying inputs xi(p), X%(p),..., X{p) an
desired outputs y;1(0), Ya2D)r---1 Vo D)-

(g) Calculate the actual outputs of the

neurons in the hidden layer:

yj(p) =sigmoid| > x;(p)-w;j(p)—6;
i=1

where nis the number of inputs of neuron jin
the hidden layer, and sigmoidis the sigmoid

activation function.

39

Step 2: Activation (continued)
(b) Calculate the actual outputs of the
neurons in the output layer:

m
Yk (p) = sigmoid| > X, (p)- Wi, (p) — 6
=1

where m is the number of inputs of neuron k
in the output layer.

40

Step 3: Weight training
Update the weights in the back-propagation
network propagating backward the errors
associated with output neurons.

(a) Calculate the error gradient for the neurons

in the output layer:
Sk (P) = Yk (P)-[1- yk (p)]- e (p)

WRere | e (p) = yqx(p)— vk (p)
Calculate the weight corrections:
Awj(p) =a-Y(P)- 5k (P)
Update the weights at the output neurons:

Wik (P +1) =wj, (p) +Awj (P)

41

Step 3: Weight training (continued)

(b) Calculate the error gradient for the
neurons in the hidden layer:

I
5i(P)=Yyj(P)-[1-y;(P)]- D bk (P) Wik (p)
k=1

Calculate the weight corrections:

Awij(p) =a-X(p)-6;(p)

Jpdate the weig

NS at t

ne hidden neurons:

Wij (P +1) = w;j (p) + Aw;; (P)

Step 4: Iteration
Increase iteration p by one, go back to Step 2
and repeat the process until the selected
error criterion is satisfied.

000

Multilayer networks and sece

I [-: ;0
Let's see how a Input Output XOR
trained network x X2 XOR 0.1

® ®/11

operates on a 2 8 2
nonlinear 0 1 1 /
separable 1 1 0

roblem 1,0
P 00 @ /—®

X1 ‘ +1
\
[2
+1 hy

O "
>
+1
.‘/ h,

+1 Hidden layer
X9

step(netinput) = {O

Each node in a trained MLP will have
its own decision boundary

A single node can classify input
vectors into two categories.

1 if netinput >1
otherwise

1 if netinput >l

step(netinput) = {

0 otherwise

Hidden nodes' activities for the XOR problem

Input Targets
X1 X, hy h,
0 0 0 0 0
1 0 1 0 1
0 1 0 1 1
1 1 0 0 0

h,=step[(+1) * x; + (-1) * %, + 1]

= step[(-1) * X, + (+1) * X, + 1]

45

Backpropagation variant

Backpropagation
rule: wnew= wold+ Aw o (o)

Wk+1 _ Wk . UVE(Wk) | @/
Notation: :

[7 Consists of the first derivatives of
T F(x)with respect to x; (£h element

OX
' of gradient vector): aF(x)/ox.
£ (x) |

P
VFOO = (0%, _— @[Zef)]

In multilayer networks is: =

0
_aan(X)

Backpropagation rule

: Wt =wS —pVE(WF) +m (Wk - wk‘l)
with momentum:

46

Gradient-based algorithms for
supervised learning

e The Rprop method : help to eliminate harmful influences of
derivatives' magnitude on the weight updates.

Basic Idea: the sign of the derivative is used to determine the
direction of the weight update; the magnitude of the
derivative has no effect on the weight update.

The Resilient propagation update rule:
k+1 K A k k KV o Kk
Wt =W —diag{r, - it .. Y- sign (g(w))

if [gm(wk_l) g W)>0) then n' = min(r?f;l -77+,Amax)
if [gm(wk_l) g, (W) <0

then 7, =max(n’™ -7, A)
i (g,00- g, =0

L. . I . —

then n' =n"

Rprop

for each w, dof

if g, *g,, >0 then{

F (x) = x sin(1/x)

1
Q3+
_0‘ A i A — A 3 A i

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Ac=min(A 7" A);

Aw, =-sign(g,)-A;
elseif g, *g, , <0 then{

A =max(A 7 Ay,);

AW, =AW, _;

Ok =0; }

For deep networks- see

Mosca.

by Alan

elseif g; *g,_, =0 then{.
Ay =4,
AW, =—sign (g,)-Ay; }

W, =W, +Aw,;

https://arxiv.org/pdf/1509.04612.pdf
https://arxiv.org/pdf/1509.04612.pdf
https://arxiv.org/pdf/1509.04612.pdf

GRprop

Theorem 1. Suppose that assumptions (i) (i) are fulfilled, then for any w° ¢ R" and
any sequence (WY, generated by the Rprop scheme

whtl =k — FdiaglyF,. b sien(e(r®), k=0,1,. .., (5)

where sign(g(w*)) denotes the column vector of the signs of the components of g(w*) =
(g (W5, go(W5), ..., guW5)), T°>0 satisfving Wolfe's conditions, n(m =
1,2,...,i—=1Li+1,...,n) are small positive real numbers generated by Rprop’s
fearning rates schedule:

if (@ W) - 9, (W) >0) then iy, = min(ny, " - 47, A, (6)
if (W) - g (W) <0) then ny, = max(y," - 07, Amin), ™)

if (@) - g, (W) = 0) then 1y, = 7, ®)

where 0<n~ <l <nt, Any i the learning rate upper bound, Ay is the learning rate
lower bound and

2L g (W) + 9
T aen
it holds that lim;_, o, g(w*) = 0.

0<d<€oo, g(w)£0, 9)

JOF + 7585 — fF) <o) T, 3)

g0 +) 3 z 0290 ", (4)

Included in R neuralnet-
the R neural networks

package by Frauke Giinther
and Stefan Fritsch.

Available online at www.sciencedirect.com
aclzuc:@om:cr-
NEUROCOMPUTING

Neurocomputing 64 (2005) 253-270

www.elsevier.com locate neucom

New globally convergent training scheme based
on the resilient propagation algorithm

Aristoklis D. Anastasiadis™™, George D. Magoulas®,
Michael N. Vrahatis®

*School of Camputer Science and Information Syste
Malet Street, Lo

Computational Intelligence Laboratory, Department of Mathematics, University of Patras Artificial
Intelligence Research Center (UPAIRC), Uniersity of Patras. GR-26110 Patras, Greece

Birkbed: College, University of London
L THX, UK

Available online 22 January 2005

Abstract

In this paper. a new glohally convergent modification of the Resilient Propagation-R prop
algorithm is presented. This new addition to the Rprop family of methods builds on a
mathematical framework for the convergence analysis that ensures that the adaptive local
leaming rates of the Rprop’s schedule generate a descent search direction at each iteration.
Simulation results in six problems of the PROBENI benchmark collection show that the
globally convergent modification of the Rprop algorithm exhibits improved learning speed.
and compares favorably against the original Rprop and the Improved Rprop, a recently
proposed Rrpop modification.

i 2004 Elsevier B.V. All rights reserved.

Keywords: Supervised leaming; Batch learning; First-order training algorithms; Convergence analysis;
Global convergence property; Rprop; IR prop

https://www.sciencedirect.com/science/article/abs/pii/S0925231204005168

Monotone convergence

Convergence condition: convergence requires that

the search direction d is a descent direction.
d VE(w,)<0,

Monotone condition
T
f(w, +a,d,) < f(w)+3,9/d,
It can be shown that if the learning rate satisfies the monotone condition then

any algorithm of the form — converges to a local
mi:l\imiqser. Wit = Wi T&; dk’)

Recurrent Networks

model of a linear neuron

Ag

Consider a node with linear
output Adne1 - - -
h . activation function
+1

a. =wa +b=0.8a +2
‘ delay n+ n n

W a, starting with a,= 0.

51

000
000
:0
example 1
Investigate the sequence obtained by iterating the following two difference
equations starting with X, =0
W'x =02x +2

(i) Xy = 2X, +2

n|ol1]2 |3 |4 5 6 7 8 9
(i) [x |0]2 |24 |2.48 |2.496 |2.4992 |2.49984 |2.49996 |25 |25
(i) [x. |[0]2|6 |14 |30 |62 126 254 510 | 1022

eEquation (i) converges to the value of 2.5
eEquation (ii) diverges
eIn general: the relation X ~=ax +

converges to a limit if \a\ <1 and diverges if \a\ >1 -

Discrete dynamic systems:
definitions and examples

e These are systems in which the models are difference
equations (also called recurrence relations). Because
the dependent variable is found at discrete values of
the independent variable, these are called discrete
models.

e The difference equation is used repeatedly to
generate a sequence of numbers once the initial term
is known. The process of continually repeating an
equation of this type is called iteration.

53

000
000
:0
example 1
Investigate the sequence obtained by iterating the following two difference
equations starting with X, =0
W'x =02x +2

(i) Xy = 2X, +2

n|ol1]2 |3 |4 5 6 7 8 9
(i) [x |0]2 |24 |2.48 |2.496 |2.4992 |2.49984 |2.49996 |25 |25
(i) [x. |[0]2|6 |14 |30 |62 126 254 510 | 1022

eEquation (i) converges to the value of 2.5
eEquation (ii) diverges
eIn general: the relation X ~=ax +

converges to a limit if \a\ <1 and diverges if \a\ >1 54

example 2

e Andrew, aged 18.5, won £20000 on the
National Lottery. He invested it in the XTC
Building Society at a fixed rate of interest of
6.5% compounded annually. How much
would Andrew have on his 25th birthday?

55

example 2

e At the end of first year:

X, = initial amount + interest

X, = 20000 + (6.5/100) * 20000 = 21300
e At the end of second year:

X, = 21300 + (6.5/100) * 21300 = 22684.5
e At the end of the rth year

X, = X, + (6.5/100) * x_,

56

example 2 2
n |0 1 2 3 4 5 6

X, 1 20000 | 21300 |22684.5 |24158.99 |25729.33 |27401.73 |29182.85

In this case we can say that
Xne1 = X, +(6.5/100) * x, = 1.065 X,

In general the equation model for a discrete dynamical
system is:

X1 = F(X,)

The function F is called map or iteration function of the system. If F
Is linear the difference equation is linear; otherwise it is nonlinear.

57

Linear discrete systems

e The general form of a linear difference
equation is:X,., =bX +a

where a, b are constants and the /inear
map is: F(x) =a+ bx

58

000
000
| X J
[
Linear recurrent neuron
e Consider the sequence %0
generated by the output Ani1
equation 4 b "
a . ,=0.8a +2 o
a, =0

The sequence of points generated by the difference equation with
Initial value a, is called orbit of a, under mapping F. The orbit of a
dynamical system is at a fixed point a; If a; = F(a;). At the fixed point
the system is fixed, it never moves.

The fixed points are clearly important in describing the
motion of the system. If the initial state is at a fixed point
then the system does not change. 59

Linear discrete systems

e If the system is given a small displacement
from the fixed point then it will tend to return
to the fixed point. The fixed point is said to
be stable and is described as an attractor.

e If the system is given a small displacement
from the fixed point then it will tend to move
away from the fixed point. The fixed point is
said to be unstable and is described as a
repellor.

60

“pondo"
57.7% confidence

meerkat, mierkat (score =
0.90021)

mongoose (score = 0.02666)
Windsor tie (score =
0.00072)

otter (score = 0.00069)
doormat, welcome mat (score
= 0.00055)

kite (score = 0.07896)

bald eagle, American eagle,
Haliaeetus leucocephalus
(score = 0.04153)

bee eater (score = 0.03940)
parachute, chute (score =
0.02724)

hummingbird (score = 0.02334)

“gibbon”
09.3% confidence

' L 5
":s_?“,.f .'%' T

a4 ».:3' =

doormat, welcome mat (score
= 1.00000)

prayer rug, prayer mat
(score = 0.00000)

manhole cover (score =
0.00000)

miniature poodle (score =
0.00000)

palace (score = 0.00000)

Breaking Deep

Learning with
Adversarial
examples using
Tensorflow by R.
Awasthi

61

https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/

The Recurrent Neural Network
architecture

Xn W >@ yn+1
Nonlinear neuron with

delay recurrent connection

Yn

Voo =T (WX, +gVy,)or alternatively

y(t+1)=1(wx(t)+ g y(1))

Neuron with recurrent connection

y(t+1)=1(wx(t)+ g y(1))

Calculate the node’s forward propagation:
y(1)=1(wx(0)+ g y(0))
y(2)=1(wx(1)+gy(l))
y(3)=1(wx(2)+gy(2))

Neuron with recurrent connection

e Unfolding the node in time

x(0 x(1 X(2) X(3)

0 1 2 3 4
vg) O vg(t@x;(h@g() G

t=1 t=2 t=3 t=4

y(t+1)=f (w x(t)+ g y(t)) —@

—— | delay
Yn

Neuron with recurrent connection

Equivalent with a feedforward neural network!

X(0 X(1 X(2) X(3)

0 1 2 3 4
vg) O vg()Ox;()Oxg/() (M)

How many layers? 65

Neuron with recurrent connection

Train it like a feedforward neural network

X(0 X(1 X(2) X(3)
0 1 2 3 4
vg) O vg();Ox;() =©xg/() G

Given the sequence x(0), x(1), x(2), x(3) presented at the
input and the initial condition y(0) compute y(1), y(2)... _

Neuron with recurrent connection

x(O\ x(l\ XQ xg
0 1 2 3

0L O B YR

t=1 t=2 t=3 t=4
d1) ~ d@)~ ~ '
\ \ \ Balck||3ropagation
calculus
e(1) e(2) e(3)

Calculate errors e(1) = y(1) — d(1); e(2)=y(2) —d(2); ... «

https://www.youtube.com/watch?v=tIeHLnjs5U8

Let’s see how a trained recurrent
neural network operates

1.Predict the sequence AAAB, where A=(1,1) and B=(0,0)

2. Neurons are at 0 state. The input neurons receive an initial input
(0,0) which is then removed;

3.Processing consists of allowing the network to fold its response
back to the input units; neurons are activated when their input is >0.

Feedback Bias of node
Ioop E ... E

....... SO

output An+1
- - b '
Initial
input
~< . - W a
0.5
Linear
Input Neurons Binary threshold Binary threshold o8

hidden neuron output neurons

Feedback 000
K‘ loop 1 000
o0
— j o
OSQCD\]-A /
0.5 >
Linear
INput neurons ginary threshold Binary threshold
hidden neuron output neurons
t Input 1 Input 2 Hidden Output 1 Output2 Response
In Out In Out In Out In Out In Out
1 0+0 0 0+0 0 0-3.5 0 0+1 1 0+1 1 A
2 1+0 1 1+0 1 2-3.5 0 0+1 1 0+1 1 A
3 1+0.5 1.5 1+0.5 1.5 3-3.5 0 0+1 1 0+1 1 A
4 1+0.75 1.75 1+0.75 175 35-35 1 2+1 0 2+1 0 B
5 0+0.875 0.875 0+0.875 0.875 1.75-35 0 0+1 1 0+1 1 Ao

The Recurrent Neural Network
architecture

e The network can produce indefinitely long
sequences of actions in a deterministic
fashion.

e Given an initial state only one sequence of
actions is produced.

e Can we make it learn more complex
sequences?

70

RNN architecture 1

State unit

<O

(O (Oo—O—
Plan units
A DL () —

State unit

The plan units modulate the effects of the state units
The network is capable of learning more complex
sequences 71

RNN architecture 2

\ ﬂzﬁz‘;ﬁm
W\ Lo
\

O og{ O
\

e A‘A ()

Y C

Output units

Context units

Input units

ELMAN'S RECURRENT NETWORK

e The context units store the hidden
unit activities for one time step

e The network can learn any
sequence that is given as input

e The measure of learning
performance is the ability to predict
the next item in the sequence, i.e
learning to predict

e Identical inputs are treated
differently depending on the current
status of the context

72

RNN architecture 3
v X(~-1)

z(t-1)

oW,

\ X/
N
i

_;
A

—_—————— —_—— —_——_——

Backpropagation through
time

Backpropagation rule: wew= wold + Aw

Notation:

VE(X) =

OX

2
Aty

2
Aty

0

~ (X

n

Consists of the first
derivatives of F(x) with
respect to x. (/th element
of gradient vector)

In multilayer networks is: oW, OW.

The recurrent version of the rule: Backpropagation
Through Time - BPTT "

Example: Neuron with recurrent
connection

X(0 X(1

y(0) / N\ y@) / W2
g /. g

t=1 t=2

d(1) >~ d(2) ~ __

\\\N \\\N e(2)

e(1)

Calculate errors e(1) = y(1) — d(1); e(2)=y(2) —d(2); ... =

Example: Neuron with recurrent
connection

1. Present data to the network
as a time sequence of input
x(0 x(1 : P
and output pairs.
2. Unroll the network then

y(0) :/—\ v(1) :m v(2) : calculate and accumulate
g /v g

errors across each time-step.

3. Roll-up the network and

t=1 t=2

update weights.
d1) ~ d@)~ kRepeat. /

\‘ e(1) \ e(2)

Calculate errors e(1) = y(1) — d(1); e(2)=y(2) —d(2); ... =%

Example: Neuron with recurrent

connection
< Layer number >
o Aw?=y e(2) y(2) [1- y(2)] x(1)
o Ag*=ne(2) y(2) [1- y(2)] y(1)
(for neurons with sigmoid activation functions) and
e(2)=y(2) - d(2)

o Aw'=zg 6 x(0)
e Ag'=n d* y(0)

where 8t = y(1) [1- y(1)] {e(1) + e(2) y(2) [1- y(2)] g}

Backpropagation through
time

e BPTT can be computationally expensive as the
number of time-steps gets higher.

o If input sequences are comprised of 1000s of
time-steps, then this will be the number of
derivatives required for a single weight upaate.
This can cause weights to vanish or explode
(go to zero or overflow) and make slow
learning- the so-called vanishing gradient
and exploding gradient problems-

78

https://en.wikipedia.org/wiki/Vanishing_gradient_problem

=
" - e
| e
Reduce number of = =
time-steps P = = =
. . g . T | TRy e - <
Define sliding window i S S
length w and feed 7 Se= W)
network shorter il =
sequences of length w
with predefined overlap —
............... »

Sliding window of length 256 with 128-overlap applied on the recorded signals
along the three acceleration axes to create the data set used by the recurrent
network. Left side shows the data set in a 256 x 3 matrix form to feed the RCNN.

Right side shows the same data in a 768 x 1 vector form. .

Useful Reading

Negnevitsky, Artificial Intelligence: a Guide to Intelligent Syste
6.1-6.5. Available at the BBK Library.

Rprop

, vol. 64, 253-270, 2005.

ms,

Backpropagation neural networks and learning algorithms

. Available online at:
Ronald J. Williams and Jing Peng (1990),

Werbos, P.J., (1990
, Proceedings of the IEEE, vol. 78, 10.

, chapter 2, 9, 12, 14.

80

http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://page.mi.fu-berlin.de/rojas/neural/
http://page.mi.fu-berlin.de/rojas/neural/
http://page.mi.fu-berlin.de/rojas/neural/
http://page.mi.fu-berlin.de/rojas/neural/
http://page.mi.fu-berlin.de/rojas/neural/
http://page.mi.fu-berlin.de/rojas/neural/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7941&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7941&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7941&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7941&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7941&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7941&rep=rep1&type=pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
https://hagan.okstate.edu/NNDesign.pdf
https://hagan.okstate.edu/NNDesign.pdf

Next

e Genetic and evolutionary algorithms

81

