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What is a 
neural 
network? 

https://www.youtube.com/watch?v=aircAruvnKk&t=120s


Neural networks and deep 
learning 
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https://sites.jamanetwork.com/machine-learning/


Neural networks and deep 
learning 
1980s-1990s: Artificial neural networks (ANNs) with 2 or 3 hidden layers 
(or more) and with many units in the hidden layers. Researchers couldn’t 
train larger and deeper networks on the serial, single-core computers used 
at the time. Now these are called “shallow” neural networks. 
 
Geoff Hinton moves from CMU to Uni Toronto.   Uses the term “deep 
network” in the papers 
Reducing the Dimensionality of Data with Neural Networks, 28 JULY 2006, 
Vol. 313 SCIENCE 
Learning multiple layers of representation, TRENDS in Cognitive Sciences 
Vol.11 No.10, 2007 
 
Collaboration of Ng’s group at Stanford with Google. Use the term 
“deep learning” in the paper 
Building High-level Features Using Large Scale Unsupervised Learning, 
Proceedings of the 29 h International Conference on Machine Learning, 
Edinburgh, Scotland, UK, 2012 
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Lecture 4 5 

Learning by weight change: If the response of an output unit is incorrect 
then the network can be changed so that it is more likely to produce the 
correct response the next time that the stimulus is presented. This is 
achieved by changing the connection weights.  
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is the change in the connection weight      from unit j to unit i  wij wij

Bias: There is one special input unit, which is called bias unit. The bias unit 
receives no input itself, and its activity is always set at +1. The weight 
from the bias unit to the unit of interest can be positive or negative and 
changes just like any other weight during learning.  
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Neural networks and deep 
learning 

Activation functions of a neuron 
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Neural networks and deep 
learning 

Activation functions of a neuron 
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The perceptron and the perceptron rule: can a single neuron 
learn a task? 

 In 1958, Frank Rosenblatt  introduced a 
training algorithm that provided the first 
procedure for training a simple ANN: a 
perceptron.   

 The perceptron is the simplest form of a neural 
network.  It consists of a single neuron with 
adjustable synaptic weights and a hard limiter.  
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Multilayer Networks and 
back-propagation  
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The node divides the input space into two regions because it 
can only be in one of two states (i.e. 1 or 0) 

(1) Assume a node with only two inputs :  
(2) Assume the node has a bias term b: 

0
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(2) 

+1 

+1 

(1) α=hardlim(netinput) =1  

α=hardlim(netinput) =0  
x1 

x2 

(3) Assume w11=1; w12=1; b=-1 

 
Then: 
These are line equations  

2121
0 xxxx 

101
2121
 xxxx

(1) No bias 

(2) With a bias 

The line defines the boundary 
between regions where the input 
pattern produces a positive 
response (output) and regions 
where the response will be 
negative or zero. A line of this 
kind is also called decision 
boundary 



 The aim of the perceptron is to classify inputs,  

 x1, x2, . . ., xn, into one of two classes, say  

 A1 and A2.   

 For an elementary perceptron, the n-
dimensional space is divided by a hyperplane 
into two regions en.wikipedia.org/wiki/Hyperplane) 

 The hyperplane is defined by the linearly 
separable function: 
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Linear separability in the perceptrons 

x1

x2

Class A2

Class A1
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x1w1 + x2w2   = 0

(a)  Two-input perceptron. (b)  Three-input perceptron.
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 This is done by making small adjustments in 
the weights to reduce the difference between 
the actual and desired outputs of the 
perceptron.  The initial weights are randomly 
assigned, usually in the range [0.5, 0.5], and 
then updated to obtain the output consistent 
with the training examples. 

How does the perceptron learn its 
classification tasks? 
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 If at iteration p, the actual output is Y(p) and 
the desired output is Yd (p), then the error is 
given by: 

 

        where p = 1, 2, 3, . . . 

  

 Iteration p here refers to the pth training 
example presented to the perceptron. 

 If the error, e(p), is positive, we need to 
increase perceptron output Y(p), but if it is 
negative, we need to decrease Y(p). 

)()()( pYpYpe d 
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The perceptron learning rule 

where p = 1, 2, 3, . . . 

 is the learning rate, a positive constant less 
than unity. 

 

The perceptron learning rule was first proposed 
by Rosenblatt in 1960.  Using this rule we 
can derive the perceptron training algorithm 
for classification tasks. 

)()()()1( pepxpwpw iii  
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Step 1: Initialisation 
 Set initial weights w1, w2,…, wn and 

threshold  to random numbers in the range 
[0.5, 0.5].  

 

 If the error, e(p), is positive, we need to 
increase perceptron output Y(p), but if it is 
negative, we need to decrease Y(p). 

Perceptron’s training algorithm 



Step 2: Activation 
 Activate the perceptron by applying inputs 

x1(p), x2(p),…, xn(p) and desired output Yd (p).  
Calculate the actual output at iteration p = 1 

 
 
 
 where n is the number of the perceptron 

inputs, and step is a step activation function. 

Perceptron’s training algorithm (continued) 
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Step 3: Weight training 
 Update the weights of the perceptron 
 
 
 where  wi(p) is the weight correction at iteration 

p. 
 

 The weight correction is computed by the delta 
rule: 

Step 4: Iteration 
 Increase iteration p by one, go back to Step 

2 and repeat the process until convergence. 

)()()1( pwpwpw iii 

Perceptron’s training algorithm (continued) 
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Perceptron and the perceptron rule 
(the limitations) 

Linear separable problems: 
Learning Boolean functions 
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Numeric example: A single node with two 
weights 

A single node with two weights is trained using the following rule: 

2,1,
1
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where t denotes iterations, P is the number of patterns in the training set 

and the inputs, ip
x , and outputs, p

y , for each pattern, p=1,…,4, are shown 

in the following truth table 
p x1p x2p yp 

1 0 0 0 
2 0 1 0 
3 1 0 0 
4 1 1 1 

The weights are all zero at the start, i.e. 2,1 allfor ,00  iw
i . The node is 

trained by presenting it with input and output pairs in the same order as 
the truth table, starting form the top, then the first input pattern that is 
used (p=1) is [0, 0] and the corresponding output pattern is 0. 
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Numeric example: A single node with 
two weights 

What would the weights be after the presentation of 
each pattern? 

 

p=1: w1=0+x1y=0; w2=0+x2y=0 

p=2: w1=0+x1y=0; w2=0+x2y=0 

p=3: w1=0+x1y=0; w2=0+x2y=0 

p=4: w1=0+x1y=1; w2=0+x2y=1 
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Numeric example: A single node with 
two weights 

What output values are produced with a threshold of 1.1? 

x1 x2 w1x1+ w2x2 y 

0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 2 1 
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Non linear separable problems: Training patterns 
belonging to one output class cannot be separated from 
training patterns belonging to another class by a straight 
line, plane or hyperplane.  

  

Linear separable Nonlinear separable 

 

Multilayer networks and 
backpropagation 



Multilayer neural networks 

 A multilayer perceptron is a feedforward neural 
network with one or more hidden layers.   

 The network consists of an input layer of 
source neurons, at least one middle or hidden 
layer of computational neurons, and an 
output layer of computational neurons.   

 The input signals are propagated in a forward 
direction on a layer-by-layer basis. 
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Multilayer perceptron with two (or 
more) hidden layers 
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What does the middle layers hide? 

 A hidden layer “hides” its desired output.  
Neurons in the hidden layer cannot be observed 
through the input/output behaviour of the 
network.  There is no obvious way to know what 
the desired output of the hidden layer should be.  

 Shallow ANNs incorporate three and sometimes 
four layers, including one or two hidden layers.  
Each layer can contain from 10 to 1000 neurons.  
Deep ANNs may have five or more layers and 
utilise millions of neurons. 
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Back-propagation neural network 

 Learning in a multilayer network proceeds the 
same way as for a perceptron.   

 A training set of input patterns is presented to 
the network.   

 The network computes its output pattern, and 
if there is an error  or in other words a 
difference between actual and desired output 
patterns  the weights are adjusted to reduce 
this error. 
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This form of training is called Supervised learning: The 
response that the backpropagation network is required to 
learn is presented to the network during training. The 
desired response of the network acts as an explicit teacher 
signal.  
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 In a back-propagation neural network, the 
learning algorithm has two phases.   

 First, a training input pattern is presented to the 
network input layer.  The network propagates 
the input pattern from layer to layer until the 
output pattern is generated by the output layer.   

 If this pattern is different from the desired 
output, an error is calculated and then 
propagated backwards through the network 
from the output layer to the input layer.  The 
weights are modified as the error is propagated. 
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Three-layer back-propagation neural 
network 
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Backpropagation 

https://www.youtube.com/watch?v=Ilg3gGewQ5U


Formulation as a minimisation 
of the error 

min ( ).
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 General weight update rule: 

dk : search direction 

 : stepsize 
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Steepest Descent 



Steepest Descent 
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Nonlinear neuron 
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Effective backpropagation training with variable step size, Neural Networks, 1997 

https://www.dcs.bbk.ac.uk/~gmagoulas/neurnet.pdf
https://www.dcs.bbk.ac.uk/~gmagoulas/neurnet.pdf
https://www.dcs.bbk.ac.uk/~gmagoulas/neurnet.pdf
https://www.dcs.bbk.ac.uk/~gmagoulas/neurnet.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0893608096000524
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The Chain Rule 
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Step 1: Initialisation 
 Set all the weights and threshold levels of the 

network to random numbers uniformly 
distributed inside a small range: 

 
 

 
 where Fi is the total number of inputs of 

neuron i in the network.  The weight 
initialisation is done on a neuron-by-neuron 
basis. 

The back-propagation training 
algorithm 
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Step 2: Activation 
 Activate the back-propagation neural network 

by applying inputs x1(p), x2(p),…, xn(p) and 
desired outputs yd,1(p), yd,2(p),…, yd,n(p). 

 

 (a)  Calculate the actual outputs of the 
neurons in the hidden layer: 

 
 
  
 where n is the number of inputs of neuron j in 

the hidden layer, and sigmoid is the sigmoid 
activation function. 
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 (b)  Calculate the actual outputs of the 
neurons in the output layer: 

 
 
  
 where m is the number of inputs of neuron k 

in the output layer. 
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Step 2: Activation (continued) 
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Step 3: Weight training 
 Update the weights in the back-propagation 

network propagating backward the errors 
associated with output neurons. 

 (a) Calculate the error gradient for the neurons 
in the output layer: 

 
 

 where 
 

 Calculate the weight corrections: 

 
 Update the weights at the output neurons: 
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 (b)  Calculate the error gradient for the 
neurons in the hidden layer: 

 
 
 

 Calculate the weight corrections: 
 

 
 Update the weights at the hidden neurons: 
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Step 3: Weight training (continued) 



Step 4: Iteration 
 Increase iteration p by one, go back to Step 2 

and repeat the process until the selected 
error criterion is satisfied. 
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Multilayer networks and 
backpropagation 

Input Output 
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Input Hidden Targets  

x1 x2 h1 h2  

0 0 0 0 0 

1 0 1 0 1 

0 1 0 1 1 

1 1 0 0 0 
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Hidden layer 

+1 

Hidden nodes' activities for the XOR problem 

h1= step[ (+1) * x1 + (-1) * x2 + 1] 

h2= step[ (-1) * x1 + (+1) * x2 + 1] 
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)(1 kkk wEww  

Backpropagation 
rule: wnew= wold + Δw 
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F(x) with respect to xi (ith element 

of gradient vector):  
 

 

In multilayer networks is: 
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p

i w

e

w

wE























1

2

)(

 11 )(   kkkkk wwmwEww Backpropagation rule 
with momentum: 

 

Output 

Amount 

spent 

Gender 

Age 

group 

Previous 

history 

1 

2 

3 

4 

5 

6 

7 

-5 

6 

3 

-1 

2 

-2 

4 

5 

-1 

2 

Backpropagation variants 



Gradient-based algorithms for 
supervised learning 

 The Rprop method : help to eliminate harmful influences of 
derivatives' magnitude on the weight updates. 

 Basic Idea: the sign of the derivative is used to determine the 
direction of the weight update; the magnitude of the 
derivative has no effect on the weight update.  

The Resilient propagation update rule: 

 )(},,,{ 1

1 kk

n

k

i

kkk wgsigndiagww   ... ... 



Rprop 

for each kw  do{ 

if 1* 0T

k kg g    then{ 

 1 maxmin , ;k k  

      

 sign ;k k kw g     } 

elseif 1* 0T

k kg g    then{ 

 1 minmax , ;k k  

      

1;k kw w     

0;kg      } 

elseif 1* 0T

k kg g    then{. 

1;k k    

 sign ;k k kw g     } 

1 ;k k kw w w     

} 

F

For deep networks- see Adapting Resilient 
Propagation for Deep Learning by Alan 
Mosca. 

https://arxiv.org/pdf/1509.04612.pdf
https://arxiv.org/pdf/1509.04612.pdf
https://arxiv.org/pdf/1509.04612.pdf
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GRprop 

Included in R neuralnet- 
the R neural networks 
package by Frauke Günther 

and Stefan Fritsch.  

 

https://www.sciencedirect.com/science/article/abs/pii/S0925231204005168


Monotone convergence 

k

T

kkkkkk dgawfdawf  )()(

Convergence condition: convergence requires that 
the search direction dk is a descent direction: 
 d E wk k

T ( ) ,0

Monotone condition 

It can be shown that if the learning rate satisfies the monotone condition  then 
any algorithm of the form                                    converges to a local 
minimiser. 

w w dk k k k  1  ,



51 

Recurrent Networks 
 

model of a linear neuron 

Consider a node with linear 
activation function 

 

starting with a0= 0. 

 

Compare it with the 
difference equation in 
example-1 

28.0
1


 nnn

abwaa

 

 

 

b 

 

a0 

 

+1 

 

output an+1 

w 

delay 

an 
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example 1 

0
0
x

22.0
1


 nn

xx

22
1


 nn

xx

paxx
nn


1

1a 1a

Investigate the sequence obtained by iterating the following two difference 
equations starting with  

(i)  

(ii)  

n 0 1 2 3 4 5 6 7 8 9 

(i) xn 0 2 2.4 2.48 2.496 2.4992 2.49984 2.49996 2.5 2.5 

(ii) xn 0 2 6 14 30 62 126 254 510 1022 

Equation (i) converges to the value of 2.5 
Equation (ii) diverges 
In general: the relation  

converges to a limit if   and diverges if  
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Discrete dynamic systems: 
definitions and examples 

 These are systems in which the models are difference 
equations (also called recurrence relations). Because 
the dependent variable is found at discrete values of 
the independent variable, these are called discrete 
models. 

 The difference equation is used repeatedly to 
generate a sequence of numbers once the initial term 
is known. The process of continually repeating an 
equation of this type is called iteration. 
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example 1 

0
0
x

22.0
1


 nn

xx

22
1


 nn

xx

paxx
nn


1

1a 1a

Investigate the sequence obtained by iterating the following two difference 
equations starting with  

(i)  

(ii)  

n 0 1 2 3 4 5 6 7 8 9 

(i) xn 0 2 2.4 2.48 2.496 2.4992 2.49984 2.49996 2.5 2.5 

(ii) xn 0 2 6 14 30 62 126 254 510 1022 

Equation (i) converges to the value of 2.5 
Equation (ii) diverges 
In general: the relation  

converges to a limit if   and diverges if  
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example 2 

 Andrew, aged 18.5, won £20000 on the 
National Lottery. He invested it in the XTC 
Building Society at a fixed rate of interest of 
6.5% compounded annually. How much 
would Andrew have on his 25th birthday? 
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example 2 

 At the end of first year:  

x1 = initial amount + interest 

x1 = 20000 + (6.5/100) * 20000 = 21300 

 At the end of second year:  

x2 = 21300 + (6.5/100) * 21300 = 22684.5 

 At the end of the nth year 

xn = xn-1 + (6.5/100) * xn-1 
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example 2 

n 0 1 2 3 4 5 6 

xn 20000 21300 22684.5 24158.99 25729.33 27401.73 29182.85 

In this case we can say that  

xn+1 = xn + (6.5/100) * xn = 1.065 xn 

In general the equation model for a discrete dynamical 
system is: 

xn+1 = F(xn) 

The function F is called map or iteration function of the system. If F 

is linear  the difference equation is linear; otherwise it is nonlinear. 
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Linear discrete systems 

 The general form of a linear difference 
equation is:                        

where a, b are constants and the linear 
map is:  F(x) = a + bx 

 

abxx
nn


1
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 Consider the sequence 
generated by the 
equation 

28.01  nn aa

00 a

The sequence of points generated by the difference equation with 

initial value a0 is called orbit of an under mapping F. The orbit of a 

dynamical system is at a fixed point af  if af = F(af). At the fixed point 

the system is fixed, it never moves. 

Linear recurrent neuron 

The fixed points are clearly important in describing the 
motion of the system. If the initial state is at a fixed point 
then the system does not change.  

 

 

 

b 

 

a0 

 

+1 

 

output an+1 

w 

delay 

an 
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Linear discrete systems 

 If the system is given a small displacement 
from the fixed point then it will tend to return 
to the fixed point. The fixed point is said to 
be stable and is described as an attractor. 

 If the system is given a small displacement 
from the fixed point then it will tend to move 
away from the fixed point. The fixed point is 
said to be unstable and is described as a 
repellor. 
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Linear discrete systems 
Breaking Deep 
Learning with 
Adversarial 
examples using 
Tensorflow by  R.  
Awasthi 

https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
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Nonlinear neuron with 
recurrent connection 

xn yn+1 

g 

f(.) 
w 

yn+1= f ( w xn+ g yn ) or alternatively 

y(t+1)= f ( w x(t)+ g y(t) ) 

delay 

yn 

The Recurrent Neural Network 
architecture 
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Neuron with recurrent connection 

y(t+1)= f ( w x(t)+ g y(t) )  

Calculate the node’s forward propagation: 

y(1)= f ( w x(0)+ g y(0) ) 

y(2)= f ( w x(1)+ g y(1) ) 

y(3)= f ( w x(2)+ g y(2) ) 
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 Unfolding the node in time 

Neuron with recurrent connection 

        t=1                             t=2                      t=3                      t=4 

x(0)          x(1)              x(2)            x(3) 

            w                             w                           w                            w 

y(0)            y(1)          y(2)          y(3)              y(4) 
            g                             g                           g                          g 

y(t+1)= f ( w x(t)+ g y(t) ) 

xn
yn+1

g

f(.)
w

delay

yn
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Neuron with recurrent connection 

        t=1                             t=2                      t=3                      t=4 

x(0)          x(1)              x(2)            x(3) 

            w                             w                           w                            w 

y(0)            y(1)          y(2)          y(3)              y(4) 
            g                             g                           g                          g 

Equivalent with a feedforward neural network! 

How many layers? a new layer is created for each time step of an input 
sequence processed by the network. 
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Neuron with recurrent connection 

        t=1                             t=2                      t=3                      t=4 

x(0)          x(1)              x(2)            x(3) 

            w                             w                           w                            w 

y(0)            y(1)          y(2)          y(3)              y(4) 
            g                             g                           g                          g 

Train it like a feedforward neural network 

Given the sequence x(0), x(1), x(2), x(3)  presented at the 

input and the initial condition y(0) compute  y(1), y(2)… 



67 

Neuron with recurrent connection 

        t=1                             t=2                      t=3                      t=4 

x(0)          x(1)              x(2)            x(3) 

            w                             w                           w                            w 

y(0)            y(1)          y(2)          y(3)              y(4) 
            g                             g                           g                          g  

Calculate errors e(1) =  y(1) – d(1); e(2)= y(2) – d(2); … 

–– –– –– 
d(1) d(2) 

e(1)  e(2)  e(3)  

Backpropagation 
calculus  

https://www.youtube.com/watch?v=tIeHLnjs5U8


b

a0

+1

output an+1

w

delay

an
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Let’s see how a trained recurrent 
neural network operates  

Linear

input neurons Binary threshold

hidden neuron

Binary threshold

output neurons

1

1

1

1

-2

-2

0.5

0.5
0

0

1

1

-3.5

Feedback

loop

1.Predict the sequence AAAB, where A=(1,1) and B=(0,0) 

2. Neurons are at 0 state. The input neurons receive an initial input 
(0,0) which is then removed;  

3.Processing consists of allowing the network to fold its response 
back to the input units; neurons are activated when their input is ≥0. 

Initial 
input 

Bias of node 
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t Input 1 Input 2 Hidden Output 1 Output 2 Response 

In Out In Out In Out In Out In Out 

1 0+0 0 0+0 0 0-3.5 0 0+1 1 0+1 1 A 

2 1+0 1 1+0 1 2-3.5 0 0+1 1 0+1 1 A 

3 1+0.5 1.5 1+0.5 1.5 3-3.5 0 0+1 1 0+1 1 A 

4 1+0.75 1.75 1+0.75 1.75 3.5-3.5 1 -2+1 0 -2+1 0 B 

5 0+0.875 0.875 0+0.875 0.875 1.75-3.5 0 0+1 1 0+1 1 A 

Linear

input neurons Binary threshold

hidden neuron

Binary threshold

output neurons

1

1

1

1

-2

-2

0.5

0.5
0

0

1

1

-3.5

Feedback

loop
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The Recurrent Neural Network 
architecture 

 The network can produce indefinitely long 
sequences of actions in a deterministic 
fashion. 

 Given an initial state only one sequence of 
actions is produced. 

 Can we make it learn more complex 
sequences?  
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RNN architecture 1 

State unit

State unit

Plan units

The plan units modulate the effects of the state units 
The network is capable of learning more complex 

sequences 
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RNN architecture 2 

Input units

Output units

Context units Fixed

connections

 The context units store the hidden 
unit activities for one time step  

 The network can learn any 
sequence that is given as input  

 The measure of learning 
performance is the ability to predict 
the next item in the sequence, i.e 
learning to predict 

 Identical inputs are treated 
differently depending on the current 
status of the context  

ELMAN'S RECURRENT NETWORK  
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RNN architecture 3 
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Backpropagation through 
time 

Backpropagation rule: wnew= wold + Δw 

F x 

x1


F x 

x2


F x 



xn


F x 

=

Consists of the first 
derivatives of F(x) with 
respect to xi (i th element 

of gradient vector) 
 

 

In multilayer networks is: 
 
 

 

Notation: 

i

P

p

p

i w

e

w

wE























1

2

)(

The recurrent version of the rule: Backpropagation 
Through Time - BPTT 
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Example: Neuron with recurrent 
connection 

        t=1                             t=2                     

x(0)          x(1)              

            w                             w                           

y(0)            y(1)          y(2)           
            g                                  g                                                     

Calculate errors e(1) =  y(1) – d(1); e(2)= y(2) – d(2); … 

–– –– 
d(1) d(2) 

e(1)  e(2)  
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Example: Neuron with recurrent 
connection 

        t=1                             t=2                     

x(0)          x(1)              

            w                             w                           

y(0)            y(1)          y(2)           
            g                                  g                                                     

Calculate errors e(1) =  y(1) – d(1); e(2)= y(2) – d(2); … 

–– –– 
d(1) d(2) 

e(1)  e(2)  

1. Present data to the network 

as a time sequence of input 

and output pairs. 

2. Unroll the network then 

calculate and accumulate 

errors across each time-step. 

3. Roll-up the network and 

update weights. 

4. Repeat. 
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 Δw2=η  e(2) y(2) [1- y(2)] x(1)  

 Δg2=η e(2) y(2) [1- y(2)] y(1)  

(for neurons with sigmoid activation functions) and 

e(2)= y(2) – d(2) 

 

 Δw1=η  δ1  x(0)  

 Δg1=η δ1  y(0)  

where δ1 = y(1) [1- y(1)] {e(1) + e(2) y(2) [1- y(2)] g} 

 
 

Example: Neuron with recurrent 
connection 

Layer number 



Backpropagation through 
time 

 BPTT can be computationally expensive as the 
number of time-steps gets higher. 

 If input sequences are comprised of 1000s of 
time-steps, then this will be the number of 
derivatives required for a single weight update. 
This can cause weights to vanish or explode 
(go to zero or overflow) and make slow 
learning- the so-called vanishing gradient 
and exploding gradient problems- 
https://en.wikipedia.org/wiki/Vanishing_gradient_problem 
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https://en.wikipedia.org/wiki/Vanishing_gradient_problem
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Sliding window of length 256 with 128-overlap applied on the recorded signals 
along the three acceleration axes to create the data set used by the recurrent 
network. Left side shows the data set in a 256 × 3 matrix form to feed the RCNN. 
Right side shows the same data in a 768 × 1 vector form. 

Reduce number of 
time-steps 
Define sliding window 

length w and feed 

network shorter 
sequences of length w  

with predefined overlap 
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Useful Reading 

 Negnevitsky, Artificial Intelligence: a Guide to Intelligent Systems, 
6.1-6.5. Available at the BBK Library. 

 Rprop 

Anastasiadis A., Magoulas G.D., and Vrahatis M.N., New Globally 
Convergent Training Scheme Based on the Resilient Propagation 
Algorithm, Neurocomputing, vol. 64, 253-270, 2005. 

   

Backpropagation neural networks and learning algorithms 

 Rojas R. (1996), Neural Networks-A Systematic Introduction, 
chapters 7-8. Available online at: 

 Ronald J. Williams and Jing Peng (1990), An Efficient Gradient-Based 
Algorithm for On-Line Training of Recurrent Network Trajectories. 

 Werbos, P.J., (1990) Backpropagation through time: What it does and 
How to do it, Proceedings of the IEEE, vol. 78, 10.  

 Hagan Martin T., Demuth Howard B., Beale Mark H. (1996), Neural 
Network Design, chapter 2, 9, 12, 14. 

http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://page.mi.fu-berlin.de/rojas/neural/
http://page.mi.fu-berlin.de/rojas/neural/
http://page.mi.fu-berlin.de/rojas/neural/
http://page.mi.fu-berlin.de/rojas/neural/
http://page.mi.fu-berlin.de/rojas/neural/
http://page.mi.fu-berlin.de/rojas/neural/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7941&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7941&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7941&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7941&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7941&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7941&rep=rep1&type=pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
https://hagan.okstate.edu/NNDesign.pdf
https://hagan.okstate.edu/NNDesign.pdf


Next 

 Genetic and evolutionary algorithms 
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