
1

(Concepts of) Machine
Learning

Lecture 4: Neural networks and
deep learning

George Magoulas
gmagoulas@dcs.bbk.ac.uk

2

Contents

 Neural networks and deep learning

 Multilayer Networks and back-propagation

 Backpropagation variants for training

 Recurrent Networks

 Backpropagation through time

What is a
neural
network?

https://www.youtube.com/watch?v=aircAruvnKk&t=120s

Neural networks and deep
learning

3

https://sites.jamanetwork.com/machine-learning/

Neural networks and deep
learning
1980s-1990s: Artificial neural networks (ANNs) with 2 or 3 hidden layers
(or more) and with many units in the hidden layers. Researchers couldn’t
train larger and deeper networks on the serial, single-core computers used
at the time. Now these are called “shallow” neural networks.

Geoff Hinton moves from CMU to Uni Toronto. Uses the term “deep
network” in the papers
Reducing the Dimensionality of Data with Neural Networks, 28 JULY 2006,
Vol. 313 SCIENCE
Learning multiple layers of representation, TRENDS in Cognitive Sciences
Vol.11 No.10, 2007

Collaboration of Ng’s group at Stanford with Google. Use the term
“deep learning” in the paper
Building High-level Features Using Large Scale Unsupervised Learning,
Proceedings of the 29 h International Conference on Machine Learning,
Edinburgh, Scotland, UK, 2012

Neural networks and deep
learning

Lecture 4 5

Learning by weight change: If the response of an output unit is incorrect
then the network can be changed so that it is more likely to produce the
correct response the next time that the stimulus is presented. This is
achieved by changing the connection weights.

ij

old

ij

new

ij
www 

 
ij

obtained

i

desired

i

ij

ij
dw

aad

dw

dE
w

2


 

is the change in the connection weight from unit j to unit i wij wij

Bias: There is one special input unit, which is called bias unit. The bias unit
receives no input itself, and its activity is always set at +1. The weight
from the bias unit to the unit of interest can be positive or negative and
changes just like any other weight during learning.

Unit iUnit j

αj
wij

Integrate input
from previous

layer

Transform netinput to
activity level

(αi)

Transmit
activity level to

units in next
layer

Netinputi

αi

netinputi

1

αi

Neural networks and deep
learning

Activation functions of a neuron

Step function Sign function

+1

-1

0

+1

-1

0 X

Y

X

Y

+1

-1

0 X

Y

Sigmoid function

+1

-1

0 X

Y

Linear function










0 if ,0

0 if ,1

X

X
Y step










0 if ,1

0 if ,1

X

X
Y sign

X

sigmoid

e
Y




1

1
XY linear 

Neural networks and deep
learning

Activation functions of a neuron

Step function Sign function

+1

-1

0

+1

-1

0 X

Y

X

Y

+1

-1

0 X

Y

Sigmoid function

+1

-1

0 X

Y

Linear function










0 if ,0

0 if ,1

X

X
Y step










0 if ,1

0 if ,1

X

X
Y sign

X

sigmoid

e
Y




1

1
XY linear 

The perceptron and the perceptron rule: can a single neuron
learn a task?

 In 1958, Frank Rosenblatt introduced a
training algorithm that provided the first
procedure for training a simple ANN: a
perceptron.

 The perceptron is the simplest form of a neural
network. It consists of a single neuron with
adjustable synaptic weights and a hard limiter.

8

Multilayer Networks and
back-propagation

Threshold

Inputs

x1

x2

Output

Y

Hard

Limiter

w2

w1

Linear

Combiner



Single-layer two-input perceptron

9



 


 otherwise 0

 0 if 1
)(

netinput
netinputlimhard

b

10

The node divides the input space into two regions because it
can only be in one of two states (i.e. 1 or 0)

(1) Assume a node with only two inputs :
(2) Assume the node has a bias term b:

0
212111
 xwxw

0
212111

 bxwxw

10

(2)

+1

+1

(1) α=hardlim(netinput) =1

α=hardlim(netinput) =0
x1

x2

(3) Assume w11=1; w12=1; b=-1

Then:
These are line equations

2121
0 xxxx 

101
2121
 xxxx

(1) No bias

(2) With a bias

The line defines the boundary
between regions where the input
pattern produces a positive
response (output) and regions
where the response will be
negative or zero. A line of this
kind is also called decision
boundary

 The aim of the perceptron is to classify inputs,

 x1, x2, . . ., xn, into one of two classes, say

 A1 and A2.

 For an elementary perceptron, the n-
dimensional space is divided by a hyperplane
into two regions en.wikipedia.org/wiki/Hyperplane)

 The hyperplane is defined by the linearly
separable function:

0

1




n

i

iiwx

11

Linear separability in the perceptrons

x1

x2

Class A2

Class A1

1

2

x1w1 + x2w2   = 0

(a) Two-input perceptron. (b) Three-input perceptron.

x2

x1

x3
x1w1 + x2w2 + x3w3   = 0

1
2

Decision boundary

Decision boundary

 This is done by making small adjustments in
the weights to reduce the difference between
the actual and desired outputs of the
perceptron. The initial weights are randomly
assigned, usually in the range [0.5, 0.5], and
then updated to obtain the output consistent
with the training examples.

How does the perceptron learn its
classification tasks?

13

 If at iteration p, the actual output is Y(p) and
the desired output is Yd (p), then the error is
given by:

 where p = 1, 2, 3, . . .

 Iteration p here refers to the pth training
example presented to the perceptron.

 If the error, e(p), is positive, we need to
increase perceptron output Y(p), but if it is
negative, we need to decrease Y(p).

)()()(pYpYpe d 

14

The perceptron learning rule

where p = 1, 2, 3, . . .

 is the learning rate, a positive constant less
than unity.

The perceptron learning rule was first proposed
by Rosenblatt in 1960. Using this rule we
can derive the perceptron training algorithm
for classification tasks.

)()()()1(pepxpwpw iii  

15

Step 1: Initialisation
 Set initial weights w1, w2,…, wn and

threshold  to random numbers in the range
[0.5, 0.5].

 If the error, e(p), is positive, we need to
increase perceptron output Y(p), but if it is
negative, we need to decrease Y(p).

Perceptron’s training algorithm

Step 2: Activation
 Activate the perceptron by applying inputs

x1(p), x2(p),…, xn(p) and desired output Yd (p).
Calculate the actual output at iteration p = 1

 where n is the number of the perceptron

inputs, and step is a step activation function.

Perceptron’s training algorithm (continued)












 



n

i

ii pwpxsteppY

1

)()()(

17

Step 3: Weight training
 Update the weights of the perceptron

 where wi(p) is the weight correction at iteration

p.

 The weight correction is computed by the delta
rule:

Step 4: Iteration
 Increase iteration p by one, go back to Step

2 and repeat the process until convergence.

)()()1(pwpwpw iii 

Perceptron’s training algorithm (continued)

)()()(pepxpw ii 

19

Perceptron and the perceptron rule
(the limitations)

Linear separable problems:
Learning Boolean functions

Input Output

x1 x2 AND OR

0 0 0 0

1 0 0 1

0 1 0 1

1 1 1 1

x1

x2

0,1

0,0 1,0

1,1

0,1

0,0 1,0

1,1

OR

0,1

0,0 1,0

1,1

AND

20

Numeric example: A single node with two
weights

A single node with two weights is trained using the following rule:

2,1,
1

1  


 iyxww
p

P

p
ip

t

i

t

i ,

where t denotes iterations, P is the number of patterns in the training set

and the inputs, ip
x , and outputs, p

y , for each pattern, p=1,…,4, are shown

in the following truth table
p x1p x2p yp

1 0 0 0
2 0 1 0
3 1 0 0
4 1 1 1

The weights are all zero at the start, i.e. 2,1 allfor ,00  iw
i . The node is

trained by presenting it with input and output pairs in the same order as
the truth table, starting form the top, then the first input pattern that is
used (p=1) is [0, 0] and the corresponding output pattern is 0.

w1

w2

x1p

x2p

yp 
i

ipi
xw

21

Numeric example: A single node with
two weights

What would the weights be after the presentation of
each pattern?

p=1: w1=0+x1y=0; w2=0+x2y=0

p=2: w1=0+x1y=0; w2=0+x2y=0

p=3: w1=0+x1y=0; w2=0+x2y=0

p=4: w1=0+x1y=1; w2=0+x2y=1

22

Numeric example: A single node with
two weights

What output values are produced with a threshold of 1.1?

x1 x2 w1x1+ w2x2 y

0 0 0 0
0 1 1 0
1 0 1 0
1 1 2 1

w1

w2

x1p

x2p

yp 
i

ipi
xw

23

Non linear separable problems: Training patterns
belonging to one output class cannot be separated from
training patterns belonging to another class by a straight
line, plane or hyperplane.

Linear separable Nonlinear separable

Multilayer networks and
backpropagation

Multilayer neural networks

 A multilayer perceptron is a feedforward neural
network with one or more hidden layers.

 The network consists of an input layer of
source neurons, at least one middle or hidden
layer of computational neurons, and an
output layer of computational neurons.

 The input signals are propagated in a forward
direction on a layer-by-layer basis.

24

Multilayer perceptron with two (or
more) hidden layers

Input

layer

First

hidden

layer

Second

hidden

layer

Output

layer

O
 u

 t
 p

 u
 t

 S

 i
 g

 n
 a

 l
 s

I
n

 p
 u

 t

 S
 i

 g
 n

 a
 l
 s

25

What does the middle layers hide?

 A hidden layer “hides” its desired output.
Neurons in the hidden layer cannot be observed
through the input/output behaviour of the
network. There is no obvious way to know what
the desired output of the hidden layer should be.

 Shallow ANNs incorporate three and sometimes
four layers, including one or two hidden layers.
Each layer can contain from 10 to 1000 neurons.
Deep ANNs may have five or more layers and
utilise millions of neurons.

26

Back-propagation neural network

 Learning in a multilayer network proceeds the
same way as for a perceptron.

 A training set of input patterns is presented to
the network.

 The network computes its output pattern, and
if there is an error  or in other words a
difference between actual and desired output
patterns  the weights are adjusted to reduce
this error.

27

28

This form of training is called Supervised learning: The
response that the backpropagation network is required to
learn is presented to the network during training. The
desired response of the network acts as an explicit teacher
signal.

Comparison

y

αj
wij

__

d

E=y-d

Supervised
Learning Algorithm

External signal

(teacher)

 In a back-propagation neural network, the
learning algorithm has two phases.

 First, a training input pattern is presented to the
network input layer. The network propagates
the input pattern from layer to layer until the
output pattern is generated by the output layer.

 If this pattern is different from the desired
output, an error is calculated and then
propagated backwards through the network
from the output layer to the input layer. The
weights are modified as the error is propagated.

29

Three-layer back-propagation neural
network

Input

layer

xi

x1

x2

xn

1

2

i

n

Output

layer

1

2

k

l

yk

y1

y2

yl

Input signals

Error signals

wjk

Hidden

layer

wij

1

2

j

m

30

Backpropagation

https://www.youtube.com/watch?v=Ilg3gGewQ5U

Formulation as a minimisation
of the error

min ().
w

wE

w w dk k k k  1  ,

 k

 General weight update rule:

dk : search direction

 : stepsize

F x 

x1


F x 

x2


F x 



xn


F x 

=

F x  xi

F x 
x x=

0=

Gradient vector

of function F(x):

First derivative of F(x) with respect

to xi (ith element of gradient vector):

Optimality Condition

Formulation as a minimisation
of the error

F

F x k 1+  F xk 

x
k 1+

x
k


k
g

k
–=

g k F x 
x xk=



Gradient descent

Choose the next x so that:

 Maximise the decrease by choosing:

where

Steepest Descent

Steepest Descent
F x  x1

2
2 x1x

2
2x 2

2
x1+ + +=

x 0
0.5

0.5
=

F x 
x1


F x 

x2


F x 

2x 1 2x2 1+ +

2x 1 4x 2+
= =

g0 F x 
x x0=

3

3
= =

 0.1=

x 1 x 0 g 0– 0.5

0.5
0.1 3

3
– 0.2

0.2
= = =

x2 x1 g1– 0.2

0.2
0.1 1.8

1.2
– 0.02

0.08
= = =

35

Nonlinear neuron

      

   1,1,03.0,01.0,99.0,97.0,0,0_

)1,1.6(),1,6(),1,1.4(),1,4(),1,4(),1,1.4(),1,1.6(),1,6(,
8

121






outputdesired

xxinput
ppx1

x2

__

desired_output

output

e= output - desired_output

w1

w2

)(22111

1
xwxw

e
output










p

i

ieE
1

2

Sum squared error function

W 2

W 1

Output

Amount

spent

Gender

Age

group

Previous

history

1

2

3

4

5

6

7

-5

6

3

-1

2

-2

4

5

-1

2

Effective backpropagation training with variable step size, Neural Networks, 1997

https://www.dcs.bbk.ac.uk/~gmagoulas/neurnet.pdf
https://www.dcs.bbk.ac.uk/~gmagoulas/neurnet.pdf
https://www.dcs.bbk.ac.uk/~gmagoulas/neurnet.pdf
https://www.dcs.bbk.ac.uk/~gmagoulas/neurnet.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0893608096000524

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

 0.37=  0.39=

 α = learning rate

The Chain Rule
f n w  d

wd

f n d

nd

n w d

wd
---------------=

f n  n cos= n e
2w

= f n w   e
2w

 cos=

f n w  d

wd

f n d

nd

n w d

wd
--------------- n sin–  2e

2w
  e

2w
 sin–  2e

2w
 = = =

Example

Application to Gradient Calculation

F̂

w i j

m


F̂

n i

m


n i

m


wi j

m

------------= F̂

b i

m


F̂

n i

m


n i

m


b i

m

---------=

f n w  d

wd

f n d

nd

n w d

wd
---------------=

f n  n cos= n e
2w

= f n w   e
2w

 cos=

f n w  d

wd

f n d

nd

n w d

wd
--------------- n sin–  2e

2w
  e

2w
 sin–  2e

2w
 = = =

Example

Application to Gradient Calculation

F̂

w i j

m


F̂

n i

m


n i

m


wi j

m

------------= F̂

b i

m


F̂

n i

m


n i

m


b i

m

---------=

 composite function

Step 1: Initialisation
 Set all the weights and threshold levels of the

network to random numbers uniformly
distributed inside a small range:

 where Fi is the total number of inputs of

neuron i in the network. The weight
initialisation is done on a neuron-by-neuron
basis.

The back-propagation training
algorithm













ii FF

4.2
 ,

4.2

38

Step 2: Activation
 Activate the back-propagation neural network

by applying inputs x1(p), x2(p),…, xn(p) and
desired outputs yd,1(p), yd,2(p),…, yd,n(p).

 (a) Calculate the actual outputs of the
neurons in the hidden layer:

 where n is the number of inputs of neuron j in

the hidden layer, and sigmoid is the sigmoid
activation function.












 



j

n

i

ijij pwpxsigmoidpy

1

)()()(

39

 (b) Calculate the actual outputs of the
neurons in the output layer:

 where m is the number of inputs of neuron k

in the output layer.














 



k

m

j

jkjkk pwpxsigmoidpy

1

)()()(

Step 2: Activation (continued)

40

Step 3: Weight training
 Update the weights in the back-propagation

network propagating backward the errors
associated with output neurons.

 (a) Calculate the error gradient for the neurons
in the output layer:

 where

 Calculate the weight corrections:

 Update the weights at the output neurons:

 )()(1)()(pepypyp kkkk 

)()()(, pypype kkdk 

)()()(ppypw kjjk  

)()()1(pwpwpw jkjkjk 
41

 (b) Calculate the error gradient for the
neurons in the hidden layer:

 Calculate the weight corrections:

 Update the weights at the hidden neurons:

)()()(1)()(

1

][p wppypyp jk

l

k

kjjj 


 

)()()(ppxpw jiij  

)()()1(pwpwpw ijijij 

Step 3: Weight training (continued)

Step 4: Iteration
 Increase iteration p by one, go back to Step 2

and repeat the process until the selected
error criterion is satisfied.

44

Multilayer networks and
backpropagation

Input Output
x1 x2 XOR

0 0 0

1 0 1

0 1 1

1 1 0

0,1

0,0
1,0

1,1

XOR

+1

a

+1

+1

-1

-1

+1

+1

+1

h2

h1

Hidden layer

+1

Let’s see how a
trained network
operates on a
nonlinear
separable
problem



 


 otherwise 0

 1 if 1
)(

netinput
netinputstep

Each node in a trained MLP will have
its own decision boundary

A single node can classify input
vectors into two categories.

x1

x2

45

Input Hidden Targets

x1 x2 h1 h2

0 0 0 0 0

1 0 1 0 1

0 1 0 1 1

1 1 0 0 0

+1

a

+1

+1

-1

-1

+1

+1

+1

h2

h1

Hidden layer

+1

Hidden nodes' activities for the XOR problem

h1= step[(+1) * x1 + (-1) * x2 + 1]

h2= step[(-1) * x1 + (+1) * x2 + 1]



 


 otherwise 0

 1 if 1
)(

netinput
netinputstep

x1

x2

>

46

)(1 kkk wEww  

Backpropagation
rule: wnew= wold + Δw

F x 

x1


F x 

x2


F x 



xn


F x 

=

Consists of the first derivatives of
F(x) with respect to xi (ith element

of gradient vector):

In multilayer networks is:

F x  xi

Notation:

i

P

p

p

i w

e

w

wE























1

2

)(

 11)(  kkkkk wwmwEww Backpropagation rule
with momentum:

Output

Amount

spent

Gender

Age

group

Previous

history

1

2

3

4

5

6

7

-5

6

3

-1

2

-2

4

5

-1

2

Backpropagation variants

Gradient-based algorithms for
supervised learning

 The Rprop method : help to eliminate harmful influences of
derivatives' magnitude on the weight updates.

 Basic Idea: the sign of the derivative is used to determine the
direction of the weight update; the magnitude of the
derivative has no effect on the weight update.

The Resilient propagation update rule:

 )(},,,{ 1

1 kk

n

k

i

kkk wgsigndiagww   ... ...

Rprop

for each kw do{

if 1* 0T

k kg g   then{

 1 maxmin , ;k k  

    

 sign ;k k kw g    }

elseif 1* 0T

k kg g   then{

 1 minmax , ;k k  

    

1;k kw w   

0;kg  }

elseif 1* 0T

k kg g   then{.

1;k k  

 sign ;k k kw g    }

1 ;k k kw w w   

}

F

For deep networks- see Adapting Resilient
Propagation for Deep Learning by Alan
Mosca.

https://arxiv.org/pdf/1509.04612.pdf
https://arxiv.org/pdf/1509.04612.pdf
https://arxiv.org/pdf/1509.04612.pdf

49

GRprop

Included in R neuralnet-
the R neural networks
package by Frauke Günther

and Stefan Fritsch.

https://www.sciencedirect.com/science/article/abs/pii/S0925231204005168

Monotone convergence

k

T

kkkkkk dgawfdawf )()(

Convergence condition: convergence requires that
the search direction dk is a descent direction:
 d E wk k

T () ,0

Monotone condition

It can be shown that if the learning rate satisfies the monotone condition then
any algorithm of the form converges to a local
minimiser.

w w dk k k k  1  ,

51

Recurrent Networks

model of a linear neuron

Consider a node with linear
activation function

starting with a0= 0.

Compare it with the
difference equation in
example-1

28.0
1


 nnn

abwaa

b

a0

+1

output an+1

w

delay

an

52

example 1

0
0
x

22.0
1


 nn

xx

22
1


 nn

xx

paxx
nn


1

1a 1a

Investigate the sequence obtained by iterating the following two difference
equations starting with

(i)

(ii)

n 0 1 2 3 4 5 6 7 8 9

(i) xn 0 2 2.4 2.48 2.496 2.4992 2.49984 2.49996 2.5 2.5

(ii) xn 0 2 6 14 30 62 126 254 510 1022

Equation (i) converges to the value of 2.5
Equation (ii) diverges
In general: the relation

converges to a limit if and diverges if

53

Discrete dynamic systems:
definitions and examples

 These are systems in which the models are difference
equations (also called recurrence relations). Because
the dependent variable is found at discrete values of
the independent variable, these are called discrete
models.

 The difference equation is used repeatedly to
generate a sequence of numbers once the initial term
is known. The process of continually repeating an
equation of this type is called iteration.

54

example 1

0
0
x

22.0
1


 nn

xx

22
1


 nn

xx

paxx
nn


1

1a 1a

Investigate the sequence obtained by iterating the following two difference
equations starting with

(i)

(ii)

n 0 1 2 3 4 5 6 7 8 9

(i) xn 0 2 2.4 2.48 2.496 2.4992 2.49984 2.49996 2.5 2.5

(ii) xn 0 2 6 14 30 62 126 254 510 1022

Equation (i) converges to the value of 2.5
Equation (ii) diverges
In general: the relation

converges to a limit if and diverges if

55

example 2

 Andrew, aged 18.5, won £20000 on the
National Lottery. He invested it in the XTC
Building Society at a fixed rate of interest of
6.5% compounded annually. How much
would Andrew have on his 25th birthday?

56

example 2

 At the end of first year:

x1 = initial amount + interest

x1 = 20000 + (6.5/100) * 20000 = 21300

 At the end of second year:

x2 = 21300 + (6.5/100) * 21300 = 22684.5

 At the end of the nth year

xn = xn-1 + (6.5/100) * xn-1

57

example 2

n 0 1 2 3 4 5 6

xn 20000 21300 22684.5 24158.99 25729.33 27401.73 29182.85

In this case we can say that

xn+1 = xn + (6.5/100) * xn = 1.065 xn

In general the equation model for a discrete dynamical
system is:

xn+1 = F(xn)

The function F is called map or iteration function of the system. If F

is linear the difference equation is linear; otherwise it is nonlinear.

58

Linear discrete systems

 The general form of a linear difference
equation is:

where a, b are constants and the linear
map is: F(x) = a + bx

abxx
nn


1

59

 Consider the sequence
generated by the
equation

28.01  nn aa

00 a

The sequence of points generated by the difference equation with

initial value a0 is called orbit of an under mapping F. The orbit of a

dynamical system is at a fixed point af if af = F(af). At the fixed point

the system is fixed, it never moves.

Linear recurrent neuron

The fixed points are clearly important in describing the
motion of the system. If the initial state is at a fixed point
then the system does not change.

b

a0

+1

output an+1

w

delay

an

60

Linear discrete systems

 If the system is given a small displacement
from the fixed point then it will tend to return
to the fixed point. The fixed point is said to
be stable and is described as an attractor.

 If the system is given a small displacement
from the fixed point then it will tend to move
away from the fixed point. The fixed point is
said to be unstable and is described as a
repellor.

61

Linear discrete systems
Breaking Deep
Learning with
Adversarial
examples using
Tensorflow by R.
Awasthi

https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/
https://cv-tricks.com/how-to/breaking-deep-learning-with-adversarial-examples-using-tensorflow/

62

Nonlinear neuron with
recurrent connection

xn yn+1

g

f(.)
w

yn+1= f (w xn+ g yn) or alternatively

y(t+1)= f (w x(t)+ g y(t))

delay

yn

The Recurrent Neural Network
architecture

63

Neuron with recurrent connection

y(t+1)= f (w x(t)+ g y(t))

Calculate the node’s forward propagation:

y(1)= f (w x(0)+ g y(0))

y(2)= f (w x(1)+ g y(1))

y(3)= f (w x(2)+ g y(2))

64

 Unfolding the node in time

Neuron with recurrent connection

 t=1 t=2 t=3 t=4

x(0) x(1) x(2) x(3)

 w w w w

y(0) y(1) y(2) y(3) y(4)
 g g g g

y(t+1)= f (w x(t)+ g y(t))

xn
yn+1

g

f(.)
w

delay

yn

65

Neuron with recurrent connection

 t=1 t=2 t=3 t=4

x(0) x(1) x(2) x(3)

 w w w w

y(0) y(1) y(2) y(3) y(4)
 g g g g

Equivalent with a feedforward neural network!

How many layers? a new layer is created for each time step of an input
sequence processed by the network.

66

Neuron with recurrent connection

 t=1 t=2 t=3 t=4

x(0) x(1) x(2) x(3)

 w w w w

y(0) y(1) y(2) y(3) y(4)
 g g g g

Train it like a feedforward neural network

Given the sequence x(0), x(1), x(2), x(3) presented at the

input and the initial condition y(0) compute y(1), y(2)…

67

Neuron with recurrent connection

 t=1 t=2 t=3 t=4

x(0) x(1) x(2) x(3)

 w w w w

y(0) y(1) y(2) y(3) y(4)
 g g g g

Calculate errors e(1) = y(1) – d(1); e(2)= y(2) – d(2); …

–– –– ––
d(1) d(2)

e(1) e(2) e(3)

Backpropagation
calculus

https://www.youtube.com/watch?v=tIeHLnjs5U8

b

a0

+1

output an+1

w

delay

an

68

Let’s see how a trained recurrent
neural network operates

Linear

input neurons Binary threshold

hidden neuron

Binary threshold

output neurons

1

1

1

1

-2

-2

0.5

0.5
0

0

1

1

-3.5

Feedback

loop

1.Predict the sequence AAAB, where A=(1,1) and B=(0,0)

2. Neurons are at 0 state. The input neurons receive an initial input
(0,0) which is then removed;

3.Processing consists of allowing the network to fold its response
back to the input units; neurons are activated when their input is ≥0.

Initial
input

Bias of node

69

t Input 1 Input 2 Hidden Output 1 Output 2 Response

In Out In Out In Out In Out In Out

1 0+0 0 0+0 0 0-3.5 0 0+1 1 0+1 1 A

2 1+0 1 1+0 1 2-3.5 0 0+1 1 0+1 1 A

3 1+0.5 1.5 1+0.5 1.5 3-3.5 0 0+1 1 0+1 1 A

4 1+0.75 1.75 1+0.75 1.75 3.5-3.5 1 -2+1 0 -2+1 0 B

5 0+0.875 0.875 0+0.875 0.875 1.75-3.5 0 0+1 1 0+1 1 A

Linear

input neurons Binary threshold

hidden neuron

Binary threshold

output neurons

1

1

1

1

-2

-2

0.5

0.5
0

0

1

1

-3.5

Feedback

loop

70

The Recurrent Neural Network
architecture

 The network can produce indefinitely long
sequences of actions in a deterministic
fashion.

 Given an initial state only one sequence of
actions is produced.

 Can we make it learn more complex
sequences?

71

RNN architecture 1

State unit

State unit

Plan units

The plan units modulate the effects of the state units
The network is capable of learning more complex

sequences

72

RNN architecture 2

Input units

Output units

Context units Fixed

connections

 The context units store the hidden
unit activities for one time step

 The network can learn any
sequence that is given as input

 The measure of learning
performance is the ability to predict
the next item in the sequence, i.e
learning to predict

 Identical inputs are treated
differently depending on the current
status of the context

ELMAN'S RECURRENT NETWORK

73

RNN architecture 3
..
. ..

.

D

b

b

b

..
.

b

b

b

x
1
(t)

x
2
(t)

x
N
(t)

y
1
(t)

y
2
(t)

y
M

(t)

z
2
(t)

z
H
(t)

z
1
(t)

 1

 1

 1

 2

 2

 2

Input

Layer

Hidden

Layer

Output

Layer

W
I

W
II

z(t-1)

..
. ..

.

D

b

b

b

..
.

b

b

b

Input

Layer

Hidden

Layer

Output

Layer

D

x
1
(t)

x
2
(t)

x
N
(t)

y
1
(t)

y
2
(t)

y
M

(t)

z
2
(t)

z
H
(t)

z
1
(t)

 1

 1

 1

 2

 2

 2

x(t-1)

y(t-1)

W
I

W
II

LRN

NARX

74

Backpropagation through
time

Backpropagation rule: wnew= wold + Δw

F x 

x1


F x 

x2


F x 



xn


F x 

=

Consists of the first
derivatives of F(x) with
respect to xi (i th element

of gradient vector)

In multilayer networks is:

Notation:

i

P

p

p

i w

e

w

wE























1

2

)(

The recurrent version of the rule: Backpropagation
Through Time - BPTT

75

Example: Neuron with recurrent
connection

 t=1 t=2

x(0) x(1)

 w w

y(0) y(1) y(2)
 g g

Calculate errors e(1) = y(1) – d(1); e(2)= y(2) – d(2); …

–– ––
d(1) d(2)

e(1) e(2)

76

Example: Neuron with recurrent
connection

 t=1 t=2

x(0) x(1)

 w w

y(0) y(1) y(2)
 g g

Calculate errors e(1) = y(1) – d(1); e(2)= y(2) – d(2); …

–– ––
d(1) d(2)

e(1) e(2)

1. Present data to the network

as a time sequence of input

and output pairs.

2. Unroll the network then

calculate and accumulate

errors across each time-step.

3. Roll-up the network and

update weights.

4. Repeat.

77

 Δw2=η e(2) y(2) [1- y(2)] x(1)

 Δg2=η e(2) y(2) [1- y(2)] y(1)

(for neurons with sigmoid activation functions) and

e(2)= y(2) – d(2)

 Δw1=η δ1 x(0)

 Δg1=η δ1 y(0)

where δ1 = y(1) [1- y(1)] {e(1) + e(2) y(2) [1- y(2)] g}

Example: Neuron with recurrent
connection

Layer number

Backpropagation through
time

 BPTT can be computationally expensive as the
number of time-steps gets higher.

 If input sequences are comprised of 1000s of
time-steps, then this will be the number of
derivatives required for a single weight update.
This can cause weights to vanish or explode
(go to zero or overflow) and make slow
learning- the so-called vanishing gradient
and exploding gradient problems-
https://en.wikipedia.org/wiki/Vanishing_gradient_problem

78

https://en.wikipedia.org/wiki/Vanishing_gradient_problem

79

Sliding window of length 256 with 128-overlap applied on the recorded signals
along the three acceleration axes to create the data set used by the recurrent
network. Left side shows the data set in a 256 × 3 matrix form to feed the RCNN.
Right side shows the same data in a 768 × 1 vector form.

Reduce number of
time-steps
Define sliding window

length w and feed

network shorter
sequences of length w

with predefined overlap

80

Useful Reading

 Negnevitsky, Artificial Intelligence: a Guide to Intelligent Systems,
6.1-6.5. Available at the BBK Library.

 Rprop

Anastasiadis A., Magoulas G.D., and Vrahatis M.N., New Globally
Convergent Training Scheme Based on the Resilient Propagation
Algorithm, Neurocomputing, vol. 64, 253-270, 2005.

Backpropagation neural networks and learning algorithms

 Rojas R. (1996), Neural Networks-A Systematic Introduction,
chapters 7-8. Available online at:

 Ronald J. Williams and Jing Peng (1990), An Efficient Gradient-Based
Algorithm for On-Line Training of Recurrent Network Trajectories.

 Werbos, P.J., (1990) Backpropagation through time: What it does and
How to do it, Proceedings of the IEEE, vol. 78, 10.

 Hagan Martin T., Demuth Howard B., Beale Mark H. (1996), Neural
Network Design, chapter 2, 9, 12, 14.

http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/New globally convergent training scheme.pdf
http://page.mi.fu-berlin.de/rojas/neural/
http://page.mi.fu-berlin.de/rojas/neural/
http://page.mi.fu-berlin.de/rojas/neural/
http://page.mi.fu-berlin.de/rojas/neural/
http://page.mi.fu-berlin.de/rojas/neural/
http://page.mi.fu-berlin.de/rojas/neural/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7941&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7941&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7941&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7941&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7941&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7941&rep=rep1&type=pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Werbos_BPTT.pdf
https://hagan.okstate.edu/NNDesign.pdf
https://hagan.okstate.edu/NNDesign.pdf

Next

 Genetic and evolutionary algorithms

81

