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Designed by Foster+Partners 

 “This was one of those projects where we 
gladly demonstrate the power of automation. 
We developed optimization methods (usually 
used in the field of Artificial Intelligence) in 
order to automate the generation of complex 
steel details for the atrium of the building. 
The elements were optimized and the whole 
process from 3D geometry generation, over 
blueprint creation to the CNC machine ready 
files was completely automated. “ 
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Some problems are too difficult 
to solve-1 

Reason 1: The size of the search space or the 
complexity of the objective function may preclude 
classical optimisation methods 
 
Examples: Optimise f(x1, x2, …, x100) where f is 
complex and xi is 0 or 1. The size of the search space 
is 2100  1030. It is not possible to perform an 
exhaustive search 
 
TSP: find the shortest path through each city and 
return home 
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Some problems are too difficult 
to solve-2 

A 10 city TSP has 181,000 possible solutions 

A 20 city TSP has 10,000,000,000,000,000 possible 
solutions 

 

 

A 50 city TSP has 

100,000,000,000,000,000,000,000,000,000,000,000, 
000,000,000,000,000,000,000,000,000 

i.e. 1022 possible solutions 
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Some problems are too difficult 
to solve-3 

Reason 2: Global 
optimisation problems  

Example: The notorious 
Levy No. 5  has 760 local 
minima; 1 global 
minimum at (-1.3068,-
1.4248) 
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Some problems are too difficult 
to solve-4 
Reason 3: Many real-world problems are heavily 
constrained 
 
Examples: Optimise f(x1, x2, …, xn) with bounds  
li ≤ xi ≤ ui  for 1 ≤ i ≤ n and subject to constraints:  
gi(x) ≤ 0 ( i = 1, …, q )  and hj(x) = 0 ( j = q+1, …, m ) 

 

• Time tabling problems 
• Design optimisation problems 
(http://www.programmingarchitecture.com/ 
• Urban planning; Energy Efficiency  
• Antennas; evolution of a 2D car) 

• Machine learning (neural networks) 

http://www.grasshopper3d.com/page/architecture-projects
http://www.grasshopper3d.com/page/architecture-projects
http://www.programmingarchitecture.com/
http://www.grasshopper3d.com/video/generative-design-in-urban-planning-walkability-optimized-city-1
http://www.grasshopper3d.com/video/generative-design-in-urban-planning-walkability-optimized-city-1
https://www.youtube.com/watch?v=f0QkDzTHngA
https://en.wikipedia.org/wiki/Evolved_antenna
https://en.wikipedia.org/wiki/Evolved_antenna
https://www.youtube.com/watch?v=FKbarpAlBkw
https://www.youtube.com/watch?v=qv6UVOQ0F44
https://www.youtube.com/watch?v=B7KdN4PRgj4


Bio-inspired machine learning 

 In biological evolution, learning and evolution 
are two principal forms of adaptation that 
differ in time and space.  

 Evolution is a process involving selective 
reproduction and substitution based on presence 
of population of individuals displaying some 
variability.  

 Learning is a set of adjustments taking place 
within each individual in the population during its 
own lifetime.  
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https://www.youtube.com/watch?v=oDvzbBRiNlA&list=PLKortajF2dPBWMIS6KF4RLtQiG6KQrTdB


Evolution and learning 

 Evolution is a type of adaptation that 
captures relatively slow environmental 
changes that involves several generations, 
i.e. evolution operates at the phylogenetic 
level.  

 Learning includes various set of mechanisms 
that lead to adaptive changes in an individual 
during its lifetime, i.e. learning operates on 
the ontogenetic level.  
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The idea of interaction between learning and 
evolution was first proposed by Baldwin 
(1896) and Lloyd Morgan (1896) and is 
commonly referred to as the Baldwin Effect. 
Waddington (1942) also proposed a similar 
kind of interaction which is called canalisation 
or genetic assimilation.  
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Evolution and learning 

https://en.wikipedia.org/wiki/Genetic_assimilation


 The key concept in all the aforementioned 
theories is that what a species must initially 
learn during each individual’s lifetime, 
can overtime become part of the genetic 
makeup of that species, i.e. what is initially 
learned eventually becomes innate 

 The structure of all cognitive abilities that we 
possess like language acquisition, reasoning 
arise from the interactions between learning 
and evolution.  
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Evolution and learning 



Bio-inspired machine learning 
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Changes in the environment might be slow and subtle as in 
concept drift or they might occur abruptly as in concept shift. 

https://en.wikipedia.org/wiki/Concept_drift
https://en.wikipedia.org/wiki/Concept_drift
https://www3.nd.edu/~dial/publications/moreno2012unifying.pdf


Bio-inspired machine learning 
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1. Randomly create an initial population of different artificial 

genotypes, each of which encodes machine learning 

models configurations (e.g. free parameters) 

2. Train (i.e. learning) and evaluate each individual of the 

population to determine the fitness (based on 

performance). 

3. Based on chosen selection criterion, the selected models 

reproduce by creating copies of their genotypes with 

addition of changes introduced by genetic operators like 

cross over. 

4. Repeat steps 1-3 for number of generations till the models 

satisfy performance/termination criterion set by user 



 Simulating evolution on a computer.  The 
result of such a simulation is a series of 
optimisation algorithms, usually based on a 
simple set of rules.  Optimisation iteratively 
improves the quality of solutions until an 
optimal, or at least feasible, solution is found. 

Evolution and computation 



 The evolutionary approach is based on 
computational models of natural selection 
and genetics.  We call them evolutionary 
computation, an umbrella term that 
combines genetic algorithms, evolution 
strategies and genetic programming. 

 The behaviour of an individual organism is an 
inductive inference about some yet unknown 
aspects of its environment.  If, over 
successive generations, the organism 
survives, we can say that this organism is 
capable of learning to predict changes in its 
environment. 

 

https://www.youtube.com/watch?v=0ZGbIKd0XrM&list=PLKortajF2dPBWMIS6KF4RLtQiG6KQrTdB&index=5


 On 1 July 1858, Charles Darwin presented 
his theory of evolution before the Linnean 
Society of London.  This day marks the 
beginning of a revolution in biology.   

 Darwin’s classical theory of evolution, 
together with Weismann’s theory of natural 
selection and Mendel’s concept of genetics, 
now represent the neo-Darwinian paradigm. 

 Have a look 
at:https://en.wikipedia.org/wiki/Modern_synthesis_(20th_century) 

Some history 

https://en.wikipedia.org/wiki/Modern_synthesis_(20th_century)
https://en.wikipedia.org/wiki/Modern_synthesis_(20th_century)


 Evolution can be seen as a process leading 
to the maintenance of a population’s ability 
to survive and reproduce in a specific 
environment.  This ability is called 
evolutionary fitness. 

 Evolutionary fitness can also be viewed as a 
measure of the organism’s ability to 
anticipate changes in its environment.   

 The fitness, or the quantitative measure of 
the ability to predict environmental changes 
and respond adequately, can be considered 
as the quality that is optimised in natural life. 



How is a population with increasing 
fitness generated? 
 Let us consider a population of rabbits.  Some 

rabbits are faster than others, and we may say 
that these rabbits possess superior fitness, 
because they have a greater chance of 
avoiding foxes, surviving and then breeding. 

 If two parents have superior fitness, there is a 
good chance that a combination of their genes 
will produce an offspring with even higher 
fitness.  Over time the entire population of 
rabbits becomes faster to meet their 
environmental challenges in the face of foxes. 



 All methods of evolutionary computation 
simulate natural evolution by creating a 
population of individuals, evaluating their 
fitness, generating a new population through 
genetic operations, and repeating this process 
a number of times.   

 We will start with Genetic Algorithms (GAs) 
as most of the other evolutionary algorithms 
can be viewed as variations of genetic 
algorithms. 

Simulation of natural evolution 



 In the early 1970s, John Holland introduced 
the concept of genetic algorithms. 

 Holland was concerned with algorithms that 
manipulate strings of binary digits. 

 Each artificial “chromosome” consists of a 
number of “genes”, and each gene is 
represented by 0 or 1: 

Genetic Algorithms 

1 10 1 0 1 0 0 0 0 0 1 0 1 10



 Two mechanisms link a GA to the problem it 
is solving: encoding and evaluation. 

 The GA uses a measure of fitness of 
individual chromosomes to carry out 
reproduction.  As reproduction takes place, 
the crossover operator exchanges parts of 
two single chromosomes, and the mutation 
operator changes the gene value in some 
randomly chosen location of the 
chromosome.   
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Basic principles and key concepts-1 

1. Randomly generate an initial population of 
chromosomes 

2. Compute the fitness of every member of the 
current population 

3. Make an intermediate population by extracting 
members out of the current population by means 
of the selection operator 

4. Generate the new population by applying the 
genetic operators (crossover, mutation) to 
this intermediate population 

5. If there is a member of the current population that 
satisfies the problem requirements then stop, 
otherwise go to step (2) 
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Basic principles and key concepts-2 

Population: The maximum number of search points; 
collection of chromosomes that evolves from generation 
to generation 

x 2

x 1

x 2

x 1

Generation 1 Generation 10 
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Basic principles and key concepts-3 

Fitness: the measure of the performance of an 
individual on the actual problem; the function value of 
the search points 
Example: Fitness function for steel works plant  
Total_Monthly_Cost = Investment_cost + waste_monthly_cost 
TMC = 2.1*Nt + 8.3*Nc +16.7*Sf +Waste 

Variable Variable Type Range Number of

Possibilities

1. Number of Torpedoes Integer 1-12 12

2. Number of Cranes Integer 1-2 2

3. Number of Steel Furnaces Integer 1-6 6

4. Volume of the torpedo (in tonnes) Real 50-350 300

Table 1 - Range of component values

Blast Furnaces

Torpedo

Steel Furnaces

Pit

Crane

Waste

Area

Waste

Area
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Basic principles and key concepts-4 

Encoding: Discretisation of the variable values; 
allows manageability in the population of the search 
points 

 Binary 

 Real-valued 
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Basic principles and key concepts-5 

real-valued problem: ]1,0[321 xxx

000000000;  
111111111;  
000000011/256=0.0039 

 

)101100010010100000000001(x

Binary encoding 

binary problems: x=(a1, ....,al),  aiϵ{0,1} 
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Basic principles and key concepts-6 

Real-valued encoding 

bounded values:   maxmin,max],[min,ia

advantages: increased precision; shorter strings; 
freedom to use special genetic operators 

x=(a1, ....,al),   aiϵ 



Basic principles and key concepts-7 
Selection of the parent strings 

Key step that creates a sub-population for reproduction 

A subsequent generation is created from the chromosomes in 
the current population. To this end: 

• a group of chromosomes, generally called "parents", are 
selected via a specific selection routine.  

• the genes of the parents are to be mixed and recombined for 
the production of offspring in the next generation. 

It is expected that from this process of evolution 
(manipulation of genes) the better chromosome will create a 
larger number of offspring and thus it has a higher chance of 
surviving in the subsequent generation, emulating the 
survival-of-the-fittest mechanism in nature. 29 



Basic principles and key concepts-8 
Selection schemes 

 Proportionate reproduction: this 
scheme selects individuals based on their 
fitness relative to the rest of the 
population 

 Tournament selection: in this process 
a number of individuals, set by the 
tournament size, is selected from the 
population at random. 

30 



Selection schemes 

 Roulette wheel selection: this is the most 
commonly used technique of the proportionate 
selection mechanism 
  Sum the fitness of all the population members; named 

as total fitness N 

  Generate a random number n between 0 and the total 

fitness N 

  Return the first population member whose fitness 

added to the fitness of the preceding population 

members, is greater than or equal to n. 

31 



Selection schemes 

 Deterministic tournament selection: the best-fit 
individual of the tournament is chosen to reproduce. 
The simplest version, binary tournament selection, 
has a tournament size of two.  

32 

The winner of each tournament (the one with the best 
fitness) is selected for crossover 

func tournament_selection(population, tournament size k)  

best = null  

for i=1 to k  

ind = population[random(1, N)]  

if (best == null) or fitness(ind) > fitness(best)  

best = ind 

return best  
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Basic principles and key concepts-9 

Mutation operator: determines the probability 
with which the data structures are modified 
 
 
 

-Binary encoding: bit mutation is applied to each 
offspring individually. It alters each bit randomly 
with a small probability, called mutation rate, with 
a typical value of <0.1 
- Real encoding: Gaussian mutation: 

 
),0( Nxx ii 

where N(0,σ) is a random Gaussian number with 
mean zero and standard deviation σ (mutation 

stepsize) 



Mutation 

 Aims at maintaining diversity within the 
population and control premature 
convergence. 

 With small probability, a portion of the new 
individuals will have some of their bits flipped. 

 Mutation alone induces a random walk through 
the search space 

34 



Mutation 

 Random mutate: bit positions are chosen 
randomly and the corresponding bit negates. 

35 

Random 
mutation 
points 



Mutation 

 Inorder mutate: two bit positions are randomly 
selected and only bits between these positions 
are mutated.  

36 

Inorder 
mutation 
points 



37 

Mutation 

(i) Binary encoding mutation  
 
 
Example: Bit mutation on the 4th bit 

Original chromosome 1 0 0 1 1 0 1 0 

         

New chromosome 1 0 0 0 1 0 1 0 
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Mutation 

(ii) Real valued encoding mutation 
Gaussian mutation when each individual x is a vector of 

floating-point numbers, i.e. x = < x1, …, xn> 
),0( Nxx ii 

where N(0,σ) is a random Gaussian number with mean zero and 

standard deviation σ (mutation stepsize) 

Changing the mutation stepsize: 
T

t
t 9.01)( 

where 0 ≤ t  ≤T  is the current generation number  

Assign a personal stepsize to each individual: 
),0( 0 N

e
 and  ),0(   Nxx ii

Assign a personal stepsize to each variable of each individual:  

),0( 0 N

ii e  and  ),0( iii Nxx  
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Basic principles and key concepts-10 

Crossover or recombination operator: 
exchange subparts of two chromosomes, roughly 
mimicking biological recombination between two 
single-chromosome organisms 
 

1-point crossover with crossover site = 3 

Chromosome Crossover site=3 Resulting offspring 

001101011 001 | 101011 001001101 

111001101 111 | 001101 111101011 

One-point crossover: crossover point can be set randomly. 
The probability of crossover: crossover rate takes values 0.6-1.0 
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Multi-point crossover: m=3 

       

      

        

      

    

Parents 

  

Offspring 
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Uniform crossover 

  

Parents                 

                 

                 

Mask 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 

                 

               

Offspring                 
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Examples: 
 
1-point crossover with 
crossover site = 3 
 

Chromosome Crossover site=3 Resulting offspring 

001101011 001 | 101011 001001101 

111001101 111 | 001101 111101011 

2-point crossover 
with crossover 
site = {4,7} 

Chromosome Crossover site={4,7} Resulting offspring 

001101011 0011 |010 | 11 0011 011 11 

111001101 1110 | 011 | 01 1110 010 01 

2-point crossover 
with crossover site 
= {7,4} 

Chromosome Crossover site={7,4} Resulting offspring 

001101011 0011 |010 | 11 1110 010 01 

111001101 1110 | 011 | 01 0011 011 11 
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Typical values used in practice 
 
For large population size (100+) 
Crossover rate = 0.6 
Mutation rate = 0.001 
 
For small population size (e.g. 30) 
Crossover rate = 0.9 
Mutation rate = 0.01 

Basic principles and key concepts-11 
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Elitism is an optional characteristic of a GA that makes sure 
that the fittest chromosome of a population of N 
chromosomes is passed on to the next generation 
unchanged; it can never be replaced by another 
chromosome.  
 
Without elitism this chromosome may be lost.  
Extended forms of elitism are also possible where the best m 
chromosomes of the population are retained.  
Simple elitism is the case where m=1.  
The effect of elitism is that the number of offspring that are 
generated each generation is reduced from N to N-m 
replacing the worst N-m individuals in the population 

Basic principles and key concepts-12 
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GENETIC  
ALGORITHM  
MODEL AND  
MAIN STAGES  

General GA Model 
{ 

//start with an initial time 

 t:=0; 

//initialise a usually random population of 

//individuals 

STAGE 1: initpopulation P(t); 

//evaluate fitness of all individuals of population  

STAGE 2: evaluate P(t); 

//test for termination criterion (time, fitness, 

//etc.) 

 while not done do 

  //increase the time counter 

  t:=t+1; 

//select a sub-population for offspring production 

STAGE 3: P':=selectparents P(t); 

  //recombine the "genes" of selected parents 

STAGE 4: recombine P'(t); 

  //perturb the mated population stochastically 

STAGE 5: mutate P'(t); 

  //evaluate the new fitness 

STAGE 6: evaluate P'(t); 

  //select the survivors from actual fitness 

STAGE 7: P:=survive P,P'(t); 

 end 

} 



Convergence of genetic 
algorithms 
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 How likely is it that the better bit patterns 
survive from one generation of a genetic 
algorithm to another? 

 

 This depends on the probability with which 
they are selected for the generation of new 
child strings and with which they survive the 
recombination and mutation steps.  

 



GAs convergence problem 
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  John Holland (1975) suggested the notion of 
schemata for the convergence analysis of GAs.  

 Schemata are bit patterns which function as 

representatives of a set of binary strings. The bit patterns 

can contain each of the three symbols 0, 1 or *.  

 

  Example: The schema **00** is a representative of 

all strings of length 6 with two zeros in the central 
positions, such as: 100000, 110011, 010010, etc. 



schema 
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H = * 1 0 * 0 1 0 0 1 

This schema describes the following subset of 
the search space: 

H={(0 1 0 0 0 1 0 0 1),(0 1 0 1 0 1 0 0 1), 
(1 1 0 0 1 0 0 1),(1 1 0 1 0 1 0 0 1)} 



The schema theorem 

In the long run the best bit patterns will diffuse to the whole 
population 
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The schema theorem 
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This means that strings with higher fitness are more likely to be selected than 
strings with lower fitness 



The schema theorem 
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The schema theorem 
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The schema theorem 
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The schema theorem 
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The schema theorem 
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The schema theorem 
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If in each generation N new strings are produced, the expected value of the 

number of strings which contain H in the generation t+1 is NWnew, i.e. 
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This results states that in the long run the best bit patterns will diffuse to the 

whole population; when the mutation rate is too high (p1) schemata are 

destroyed. 



Evolutionary Algorithms 
Evolution strategies – 1  

 Each individual is represented by its genetic 
material/characteristics and a set of strategy 
parameters, which model the behaviour of this 
individual in its environment.  

 Evolution consists of evolving both genetic 
characteristics and the strategy parameters, where 
the evolution of genetic characteristics is controlled by 
the strategy parameters.  

 Mutation changes are only accepted if successful, i.e. 
they produce an individual that possess better fitness.  

 Offspring can also be produced from more than one 
set of parents.  57 



Evolution strategies – 2  

Multi-membered ES are denoted by (μ+λ) and (μ, λ) 

the so-called PLUS STRATEGY and COMMA 
STRATEGY, respectively 

 in the plus case, the parental generation is taken 
into account during selection, while  

 in the comma case only the offspring undergoes 
selection, and the parents die off.   

 μ denotes the population size, and  λ denotes the 

number of offspring produced per generation. 

58 



Evolution strategies – 3  

Step 1 of the evolution process: Crossover 

 Local crossover: where one offspring is generated from 
two parents using randomly selected components of the 
parents.  

or  

 Global crossover: where the entire population of 
individuals takes part in producing one offspring. 
Components are randomly selected from randomly selected 
individuals and used to generate offspring.   

 ES can also work without crossover- this is how ES were 
initially proposed. 

59 



Evolution strategies - 4 

Step 2 of the evolution: Mutation applied in two-stages 

 STAGE 1: Mutate the standard deviation for current 
generation and each individual (strength of mutation) 

   

 

 

 

  or    

 

N: the standard normal distribution (usually independent 
random samples extracted from N) 
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Evolution strategies - 5 

 STAGE 2: Mutate the genetic material for each individual  

   

 

 
 

 Mutated individuals are accepted only if the fitness of the 
mutated individual is better than the original individual.  

 ES do not model mutation as a purely random process. A 
random process would mean that a child is completely 
independent of its parents. 
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Evolution strategies -6  

Step 3 of the evolution: Selection 

 (μ+λ) selection: λ offspring from μ parents,            

Next generation consists of μ best individuals selected 
from the μ parents (of the previous generation) and the λ 

offspring. It needs to implement a form of elitism in case 
the fittest parents must survive to the next generation.   

or 

 (μ, λ) selection: next generation consists of the μ best 
individuals selected from the λ offspring. Their parents are 

“forgotten”,  

62 
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Evolution strategies -7 

The (μ, λ) selection scheme is more realistic and 

therefore more successful in several applications, 
because no individual may survive forever (which 
could at least theoretically occur using the plus 
strategy). Only by forgetting highly fit individuals 
can a permanent adaptation of the stepsizes take 
place and one can avoid long stagnation phases 
due to misadapted σi ’s. This means that these 

individuals have built an internal model that is no 
longer appropriate for further progress, and thus 
should better be discarded. 63 
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EA Model 
{ 

//initialise the time counter 

     t := 0; 

//initialise the population of individuals 

     InitPopulation(P(t)); 

//evaluate fitness of all individuals 

     F_P(t):= Evaluate(P(t)); 

//test for termination criterion (time, 

//fitness, etc.) 

     while not done do 

       t := t + 1; 

//some methods use selection for offspring 

//production like in Gas. Not general 

       Q(t) := SelectParents(P(t)); 

//recombine the ``genes'' of selected parents 

//like in GAs. Not general 

       R(t) := Recombine(Q(t)); 

//perturb the population stochastically; more 

//important than recombination 

       M(t) := Mutate(R(t)); 

//evaluate the new fitness 

       F_M(t):= Evaluate(M(t)); 

//select the survivors for the next generation. 

//Not general 
 

       P(t + 1) := Survive(F_P(t), F_M(t)); 

     end  

} 
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Application examples - simple 
numeric example 

A simple GA with population size 4, single-point crossover 
and bitwise mutation is applied on the fitness function:  

xxf  stringbit  in ones ofnumber )( 

where x is chromosome of length 8. The initial, randomly 

generated, population is: 

Chromosome 
label 

Chromosome 
string 

Fitness 

A 00000110 2 

B 11101110 6 

C 00100000 1 

D 00110100 3 
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Simple numeric example 
-Two pairs of chromosomes are chosen as parents: 
chromosomes B and D constitute the first pair, and 
chromosomes B and C the second pair of parents.  
-- Parents B and D cross over after the first bit position to 
form offspring E and F, and parents B and C do not cross over, 
instead forming offspring that are exact copies of B and C.  

E = 10110100 

F = 01101110 

-Offspring E is mutated at the sixth bit position to form Em, 
offspring F and C are not mutated at all, and offspring B is 
mutated at the first bit position to form Bm.  

Em = 10110000 

Bm = 01101110 
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What will the population be after one generation?  
  

What is the fitness of each member of the new population? 
  

Chromosome label Chromosome string Fitness 

Em 10110000 3 

F 01101110 5 

C 00100000 1 

Bm 01101110 5 

GA: simple numeric example 



 Let us find the maximum value of the 
function (15x  x2) where parameter x varies 

between 0 and 15.  For simplicity, we assume 
that x takes only integer values.  Thus, 

chromosomes can be built with only four 
genes: 

Integer Binary code Integer Binary code Integer Binary code

1 0 0 0 1 6 0 1 1 0 11 1 0 1 1

2 0 0 1 0 7 0 1 1 1 12 1 1 0 0

3 0 0 1 1 8 1 0 0 0 13 1 1 0 1

4 0 1 0 0 9 1 0 0 1 14 1 1 1 0

5 0 1 0 1 10 1 0 1 0 15 1 1 1 1

GA- Maximise a function 



 Suppose that the size of the chromosome 
population N is 6, the crossover probability pc 
equals 0.7, and the mutation probability pm 
equals 0.001. The fitness function in our 
example is defined by 

 
 

f(x) = 15 x  x2 

Maximising a function 



The fitness function and chromosome locations 

Chromosome

label

Chromosome

string

Decoded

integer

Chromosome

fitness

Fitness

ratio, %

X1 1 1 0 0 12 36 16.5

X2 0 1 0 0   4 44 20.2

X3 0 0 0 1   1 14   6.4

X4 1 1 1 0 14 14   6.4

X5 0 1 1 1   7 56 25.7

X6 1 0 0 1   9 54 24.8

x
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10

0
0 5 10 15

f(x)

(a) Chromosome initial locations.

x
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(b) Chromosome final locations.

ratio of the 
individual 

chromosome’s 
fitness to the 
population’s 
total fitness.  

This ratio 
determines the 
chromosome’s 

chance of 
being selected 

for mating. 
The 

chromosome’s 
average 
fitness 

improves from 
one 

generation to 
the next. 



Roulette wheel selection 

 The most commonly used chromosome 
selection techniques is the roulette wheel 
selection. 

100  0

16.5

36.7
43.149.5

75.2

X1: 16.5%

X2: 20.2%

X3:   6.4%

X4:   6.4%

X5: 25.3%

X6: 24.8%



Crossover operator 

 In our example, we have an initial population 
of 6 chromosomes.  Thus, to establish the 
same population in the next generation, the 
roulette wheel would be spun six times. 

 Once a pair of parent chromosomes is 
selected, the crossover operator is applied. 



 First, the crossover operator randomly 
chooses a crossover point where two parent 
chromosomes “break”, and then exchanges 
the chromosome parts after that point.  As a 
result, two new offspring are created. 

 If a pair of chromosomes does not cross over, 
then the chromosome cloning takes place, 
and the offspring are created as exact copies 
of each parent. 



X6i 1 00 0 01 0 X2i

0 01 0X2i 0 11 1 X5i

0X1i 0 11 1 X5i1 01 0

0 1
0 0

11 1
01 0

Crossover 



 Mutation represents a change in the gene.  

 Mutation is a background operator.  Its role is 
to provide a guarantee that the search 
algorithm is not trapped on a local optimum. 

 The mutation operator flips a randomly 
selected gene in a chromosome.  

 The mutation probability is quite small in 
nature, and is kept low for GAs, typically in 
the range between 0.001 and 0.01. 

Mutation operator 



Mutation 



The genetic algorithm cycle 

https://www.youtube.com/watch?v=C4MUTIc-NB8
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Appendix 
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A design problem: configuration of a 
steelworks plant 

Blast Furnaces

Torpedo

Steel Furnaces

Pit

Crane

Waste

Area

Waste

Area

There are two blast furnaces, which melt 
iron at certain daily volumes, in a plant 
that blows and fills as many torpedoes 
as available; these are used to transport 
molten iron. If no torpedo is available, 
the molten iron is dropped on the floor 
and waste is produced. Each torpedo 
can hold a fixed quantity of molten iron. 
All torpedoes with molten iron travel to a 
pit, where cranes-carrying ladles are 
filled from torpedoes, one at a time. The 
ladle holds 100 tons of molten iron, 
which is exactly the volume of a steel 
furnace that is fed from the crane. There 
are five steel furnaces, which produce 
the final product of the steelworks 
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Variable Variable Type Range Number of

Possibilities

1. Number of Torpedoes Integer 1-12 12

2. Number of Cranes Integer 1-2 2

3. Number of Steel Furnaces Integer 1-6 6

4. Volume of the torpedo (in tonnes) Real 50-350 300

Table 1 - Range of component values

TMC = 2.1*Nt + 8.3*Nc +16.7*Sf +Waste 

Total_Monthly_Cost = Investment_cost + waste_monthly_cost 
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Method                           SA                    GA 
 
#Torpedo                        6                       4 
#Cranes                          2                       2 
#Furnaces                       5                       5 
Torpedo Volume            260                   235 
Objective function (£K) 112.70              108.5 

Comparative results for Simulated Annealing (SA) and Genetic algorithms (GA) 
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Simulated Annealing-1 

 The name comes from the analogy to the 
behavior of physical systems by melting a 
substance and lowering its temperature 
slowly until it reaches freezing point (physical 
annealing).  

 SA is based on random evaluations of the 
objective function, in such a way that 
transitions out of a local minimum are 
possible.  
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Simulated Annealing-2 

)1(,
1

xxx
kk




x

Candidate solutions are updated following the relation 
 

where  is random noise from a uniform distribution.  

SA applies the Metropolis criterion, i.e. it either accepts or rejects a 
candidate solution depending on the probability 
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Simulated Annealing-3 
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This, if the sign of  

 is negative, then the new point can be accepted with probability 1; 
otherwise, it depends on the probability value and the threshold 
value  

i.e.  

The effectiveness of the method depends the parameter T that is called 
temperature; it controls the noise reduction rate: 
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With high values of T, SA behaves like a random search 
Low T values make it work like a hill climbing procedure 
Start with a high temperature value and gradually reduce it 


