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Generalisation 

 How does the classifier perform on a problem with 
respect to both seen and unseen data? 

 How many training instances are required for good 
generalisation? 

 What size network gives the best generalisation? 

 What kind of neural architecture is best for 
modelling the underlying problem? 

 What learning algorithm can achieve the best 
generalisation? 



Generalisability 

 

 Generalisation theory aims at providing general bounds that relate the 
error performance of a classifier with the number of training points, N, on 

one hand, and some classifier dependent parameters, on the other. So 
far, the classifier dependent parameters that we considered were the 
number of free parameters of the classifier and the dimensionality of the 
subspace, in which the classifier operates.  

 

 Generalisability is the ability of a model to generalise on unseen data 
points (not used during training). A model is not effective if it is too 
specific to the training data, i.e., “too specific” means it is over-fitting and 
its performance on unseen data cannot be guaranteed.  



 Let the classifier be a binary one, i.e., 

 

 

 Let F  be the set of all functions f  that can be realised by 

the adopted classifier (e.g., changing the weights of a 
given neural network different functions are implemented). 

 The Vapnik – Chernovenkis (VC) dimension of a class F is 
the largest integer k for which S(F,k) = 2k. If S(F,N)=2N, 

 we say that the VC dimension is infinite. However, NOT 
ALL dichotomies can be realised by the set of functions 
in F. 

 That is, VC is the largest integer for which the class of 
functions F can achieve all possible dichotomies, 2k. 
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 1,0: f

The VC dimension can 

be considered as an 
intrinsic capacity of 
the classifier, and only if 
the number of training 
vectors exceeds this 
number sufficiently, we 
can expect good 
generalisation 
performance. 
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 The        dimension may or may not be related to the 

Input  dimension    and the number of free parameters. 

 Perceptron: 

 Multilayer network with hard limiting activation function 

 

 

 

 where      is the total number of hidden layer nodes,    the 
total number of nodes, and      the total number of 
weights; e is the base of the natural logarithm;       is the 

number of input nodes. 

 A useful heuristic in practice is that the number of training 
patterns is about 10 times the VC or 10 times the number of 

weights,      , in the case of a multilayer network.  
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 Generalisation Performance 

 Let          be the error rate of classifier f, based on 
the N training points, also known as empirical 

error. 

 Let        be the true error probability of f (also 
known as generalisation error), when f is 

confronted with data outside the finite training set. 

 Let     be the minimum error probability that can 
be attained over ALL functions in the set F. 

 for a large N : 

º          is close to          , with high probability. 

º           is close to      , with high probability. 

 Let    be the function resulting by minimising the 
empirical (over the finite training set) error 
function. 
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 One systematic method to check for this is cross-validation. Cross-
validation is a strategy where the model-building process is applied on a 
subset of the data such that the model has not “seen” all the data 
available. This learning process is then followed by an evaluation step on 
the “unseen” portion of the data. This is an approach to ensure that the 
model is not over-fitted to the data and an acceptable degree of 
generalisability is ensured. 

 

 One approach is the holdout method where the data set is separated 
into two random sets, called the training set and the testing set. And the 
model is trained on the former and evaluated on the latter.  

 Another version is the k-fold cross-validation approach, where the data 
set is divided into k subsets, and the holdout method is repeated k times. 
Each time, one of the k subsets is used as the test set and the other k-1 
subsets are put together to form a training set. Then the average error 
across all k trials is computed. 

Evaluating generalisability 
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The goal is to estimate the error probability of the designed 
classification system 

 

 Error Counting Technique 
 Let      classes  
 Let      data points in class      for testing. 
 

   the number of 
    test points. 
 Let Pi the probability error for class ωi 

 The classifier is assumed to have been designed using 
another independent data set 

 Assuming that the feature vectors in the test data set are 
independent, the probability of ki vectors from ωi being in 
error follows the binomial distribution 
http://en.wikipedia.org/wiki/Binomial_distribution   
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 Since the Pi ‘s are not known, estimate Pi by 

maximising the above binomial distribution 
which gives 

 

 

 

 Thus, count the errors and divide by the total 
number of test points in class 

 

 A theoretically derived estimate of a sufficient 
number N of the test data set is  
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 Exploiting the finite size of the data set. 

 

 Resubstitution method: 

 Use the same data for training and testing.  It 
underestimates the error.  The estimate improves 
for large N (data set size) and large       ratios. 

(dimension of feature space) 

 Holdout Method:  Given N divide it into: 

 N1:  training points 

 N2:  test points 

 N=N1+N2 

 Problem:  Less data both for training and 
test  

 

l

N
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 Leave-one-out Method 

 

 The steps: 

 Choose one sample out of the N.  

Train the classifier using the 
remaining N-1 samples.  Test the 

classifier using the selected sample.  
Count an error if it is misclassified. 

 Repeat the above by excluding a 
different sample each time. 

 Compute the error probability by 
averaging the counted errors  
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 Advantages: 

uses all data for testing and 
training 

ensures independence between 
test and training samples 

 

 Disadvantages: 

Complexity in computations high 

 

 Variants of it exclude k>1 points 
each time, to reduce complexity 
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Improving generalisation in 
Neural Networks 

(i) Network pruning: remove weights without hurting network’s 
performance. This leads to better generalisation and faster 
learning.  

 Eliminate small weights: determine what is “small”; what 
happens if the solution is sensitive to some small weights? 

 Delete weights that have the least effect on the 
solution 

 First train with backpropagation 

 Then delete the weights with the smallest saliency 

 The reduced network is retrained to obtain final solution. 

 Remove nodes with lower relevance: define relevance as 
the difference in the value of the cost function without the 
node and with the node in the network.  
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Optimal Brain Damage (OBD) 

Saliency for weight wji, where δΕ 

measures sensitivity of the cost 
function to small perturbations in wji 

 

Sensitivity measure is approximated by 
second derivative.  
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Improving generalisation 

(ii) Weight decay and elimination: Improve generalisation by 
favouring simple structures. Add a term to the cost function to 
penalise complex structures.  

 In the weight decay approach the number of weights is 
reduced by encouraging near zero weights in the learning 
process. This is achieved by adding a term to penalise 
nonzero weights  

 

 
 The weight is decayed in an amount proportional to its magnitude. 

Not all weights are decayed to small values. Only those weights 
which are not reinforced do so.  
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Improving generalisation 

  

 In the weight elimination the cost function is formulated as  

 

 

 

 

 

 
 

 

 When wi>>w0 , the penalty terms is close to unity and this 
criterion essentially counts the number of weights 

 When wi<<w0 , the penalty term is proportional to wi
2 and the 

criterion behaves like the weight decay criterion. 
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Ensemble learning 

• Ensemble based methods enable an increase 
in generalisation performance by combining 
several individual models trained on the same 
task.  
• Approach has been justified both theoretically 
and empirically. 
• The creation of an ensemble is often divided 
into two steps : (i) generate individual ensemble 
members and (ii) appropriately combine 
individual members outputs to produce the 
output of the ensemble. 



Weak learnability 
 Schapire in [The strength of weak learnability. 

Mach. Learn. 5, 197–227 (1990)] showed that a 
model of learnability in which the learner is only 
required to perform slightly better than guessing is 
as strong as a model in which the learner's error can 
be made arbitrarily small.  

 The proof of this result was based on the filtering of 
the distribution in a manner causing the weak 
learning algorithm to eventually learn nearly the 
entire distribution. 

 Strong theory for boosting in binary classification 
and multiclass settings in batch and online learning 
and group models. 
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Ensembles of Multilayer Networks  
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Approaches to create neural 
ensembles 

 Simple Network Ensemble (SNE): consists of n 
networks where each network uses the full training set 
and differs only in its random initial weight settings. 

 More advanced approach:  train networks on different 
subsets of the training set, e.g. using bagging, where 
each training set is created by resampling and 
replacement of the original one with uniform probability, 
or boosting, which also uses resampling of the training 
set, but the data points previously poorly classified, 
receive a higher probability 

 Diverse Network Ensemble (DNE): use networks that 
disagree partially on their decisions. 



Boosting 

Technique first introduced in [Schapire (1990), 
JML; Schapire, Freund (1996), Experiments with 
a new boosting algorithm, 13th ICML] 

 Learners (models) are trained sequentially, using 
a sample from the original dataset, with the 
prediction error from the previous round 
affecting the sampling weight for the next 
round.  

 After each round of boosting, the decision can 
be made to terminate and use a set of 
calculated weights to apply as a linear 
combination of the newly created set of 
learners. 



Generic boosting method 

The main differences between each boosting 
variant are in how the getError, 
learnerCoefficient, nextDistribution 

and aggregate functions are implemented.  

Each boosting variant 
builds a distribution of 
weights Dt, which is 
used to sample from 

the training set... 

Re-sampled dataset is 
used to train a new 
classifier ht, which is 

then incorporated in the 
group, with a weight αt, 

based on its classification 
error ϵt.  

 is updated at each 
iteration to increase the 

importance of the 
examples that are 
harder to classify 

correctly.  
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Diversity 
 

Networks belonging to an ensemble are thought 
to be diverse with respect to a test set if they 
make different generalisation errors on that test 
set. Different patterns of generalisations can be 
produced when networks are trained either on 
different training sets, or from different initial 
conditions, or with different numbers or hidden 
nodes, or using different algorithms.  
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Diverse neural ensemble 

A simple implementation of the DNE-based method: 
 
Step1: Create n MNs where each one uses the same training 
set and differs only in its random initial weights. 
Step2: Select the k Networks (k<n), which when they do fail 
to classify the data, they fail on different inputs patterns so 
that failures on one network can be compensated by 
successes of others. 
Step3: Combine the ensemble members’ outputs using 
majority voting to get ensemble’s output. 
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Proteins localisation 

 Problem Description: In 
order to function properly, 
proteins must be transported 
to various localisation sites 
within a particular cell. 
Description of protein 
localisation provides 
information about each protein 
that is complementary to the 
protein sequence and structure 
data. (Ref. 7 for details) 
 

 Characteristics: The datasets 
of the proteins are drastically 
imbalanced.  

Patterns Class 

463 cyt 

5 erl 

35 exc 

44 me1 

51 me2 

163 me3 

244 mit 

429 nuc 

20 pox 

30 vac 

Yeast Dataset 
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Results in the Yeast Problem 
Patterns Class HN KNN FNN DNE 

463 cyt 74.3% 70.7% 66.7% 80.5% 

5 erl 60.0% 0.0% 99.6% 100% 

35 exc 45.7% 62.9% 62.7% 74.3% 

44 me1 63.6% 75.0% 82.9% 100% 

51 me2 15.7% 21.6% 47.8% 70.6% 

163 me3 85.3% 74.9% 85.6% 92.65% 

244 mit 47.1% 57.8% 61.3% 71.4% 

429 nuc 35.7% 50.7% 57.7% 70.1% 

20 pox 0.0% 55.0% 54.6% 55.0% 

30 vac 10.0% 0.0% 4.1% 20.0% 

Mean 43.7% 46.8% 62.3% 73.5% 



 Although neural networks are used for solving a 
variety of problems, they still have some 
limitations.   

 One of the most common is associated with neural 
network training.  The back-propagation learning 
algorithm cannot guarantee an optimal solution.  
In real-world applications, the back-propagation 
algorithm might converge to a set of sub-optimal 
weights from which it cannot escape.  As a result, 
the neural network is often unable to find a 
desirable solution to a problem at hand.  

Neuro-evolution 
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Hybrid Genetic Algorithms- 1 

 Darwinian and Lamarckian principles are 
combined into hybrid genetic algorithms: 

 

The elements of the population are 
selected in “Darwinian” fashion from 
generation to generation, but can become 
better by modifying their parameters in 
”Lamarckian” way, that is, by performing 
some hill-climbing steps before 
recombining. 

 

 Thus the use of GA is related to the 
concept of "evolution" of a population of 
individuals and that of hill-climbing 
methods to the concept of "life" of each 
individual. 

30 

{ 

//start with an initial time 

 t:=0; 

//initialise a usually random population of 

//individuals 

STAGE 1: initpopulation P(t); 

//evaluate fitness of all individuals of population  

STAGE 2: evaluate P(t); 

//test for termination criterion (time, fitness, 

//etc.) 

 while not done do 

  //increase the time counter 

  t:=t+1; 

//select a sub-population for offspring production 

STAGE 3: P':=selectparents P(t); 

  //recombine the "genes" of selected parents 

STAGE 4: recombine P'(t); 

  //perturb the mated population stochastically 

STAGE 5: mutate P'(t); 

  //evaluate the new fitness 

STAGE 6: evaluate P'(t); 

  //select the survivors from actual fitness 

STAGE 7: P:=survive P,P'(t); 

 end 

} 



Hybrid Genetic Algorithms - 2 

Algorithmic description 
a) Randomly generate an initial population of chromosomes 

b) Compute the fitness of every member of the current 
population. For example, this can be used to initialise the hill-
climbing method 

c) Make an intermediate population by extracting members out 
of the current population by means of a Lamarckian strategy 

d) Generate the new population by applying the genetic 
operators (crossover, mutation) to this intermediate 
population (for example the termination points of the hill-
climbing method) 

e) If there is a member of the current population that satisfies 
the problem requirements then stop, otherwise go to step 
(b) 31 



Hill-climbing method -1 
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 Technique applied on a single point (current point) 
in the search space aiming at iterative 
improvement.  

 During each iteration a new point is selected from 
the neighbourhood of the current point. If the new 
point provides better value in light of evaluation 
function, the new point becomes the current point.  

 Otherwise, some other neighbour is selected and 
tested against the current point.  

 Terminates if no further improvement is possible.   



Hill-climbing method – 2: 
Stochastic version  

33 

 Instead of checking all points in the neighbourhood 
of a current point and selecting the best one, 
select only one point from this neighbourhood. 

 Accept this point with some probability that 
depends on the relative merit of these points.  
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Evolving populations of neural networks 
with GA 

 
Algorithmic description 
1. Choose an appropriate error measure 
2. Choose strings corresponding to all the weights and 

biases 
3. Generate a pool of such strings, chosen randomly 
4. Evaluate the error for each string 
5. Convert the error to fitness 
6. Apply the GA operators to obtain next generation 
7. Repeat until find a string with sufficiently low error (high 

fitness) 
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 The second step is to define a fitness function 
for evaluating the chromosome’s performance.  
This function must estimate the performance 
of a given neural network.  We can apply here 
a simple function defined by the sum of 
squared errors.  

 The training set of examples is presented to 
the network, and the sum of squared errors is 
calculated.  The smaller the sum, the fitter the 
chromosome. The genetic algorithm attempts 
to find a set of weights that minimises the sum 
of squared errors. 
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 The third step is to choose the genetic 
operators – crossover and mutation.  A 
crossover operator takes two parent 
chromosomes and creates a single child with 
genetic material from both parents.  Each gene 
in the child’s chromosome is represented by 
the corresponding gene of the randomly 
selected parent. 

 A mutation operator selects a gene in a 
chromosome and adds a small random value 
between 1 and 1 to each weight in this gene. 

37 



Crossover in weight optimisation 
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Mutation in weight optimisation 
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Evolving Neural Networks through Augmenting Topologies-NEAT 

PyTorch version of NEAT (UberAI Lab) 

https://www.youtube.com/watch?v=H4WnRLEG73Q
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
https://github.com/uber-research/PyTorch-NEAT
https://github.com/uber-research/PyTorch-NEAT
https://github.com/uber-research/PyTorch-NEAT
https://github.com/uber-research/PyTorch-NEAT


Differential Evolution 

 Stochastic, population based, real-valued 
algorithm 

 Designed for challenging continuous 
problems where the objective/cost function 
could be non-differentiable, nonlinear and/or 
multimodal 

 Few control parameters and good 
convergence behaviour.  

40 



Differential Evolution 
 DE was introduced in 1996 by Storn (PhD 

student) and Price (supervisor). 

 The algorithm uses a population of size NP 

 Each vector xi,g  ϵ Rn is of size n, g denotes generations 

 variables are drawn from uniform random distribution 

  xij ϵ [a, b], i,j where a and b depend on the function 

 If an initial solution xnom,0 already exists, then 

population members are normally distributed random 
deviations of the initial solution 
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Basic steps of the algorithm: 

 Generate new vector by adding weighted 
difference of two vectors to third (mutation-type 
operation); original vectors are called target vectors 

 Mix new vector with target vector to yield trial 
vector (crossover-type operation) 

 Replace target vector with trial vector if the latter 
is better in terms of fitness value (selection-type 
operation) 

Let’s see how these steps are implemented... 
42 

Differential Evolution 



Differential Evolution 
 For all target vectors xi,g , a mutant vector 

vi,(g+1) is generated: 

vi,(g+1) =xr1 +F (xr2,g - xr3,g)  

                            are chosen randomly  

 F ∈ (0, 2] is a real and constant factor 
 It controls the amplification of the differential variation 
 (xr2 − xr3 ) 

 Other implementations impose different limits on F 

 Unlike typical evolutionary algorithms, in DE mutation 
involves at least two other individuals from the 
population. 43 
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Differential Evolution 
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Differential Evolution 

Generate a trial vector ui : 

ui,(g+1) = [ui1,(g+1), ui2(g + 1), . . . , uin,(g + 1)] 

where for each element j = 1, 2, . . . , n 

                          vij, (g +1)  if (rnd([0, 1]) ≤ pc) or j= δ 

uij, (g + 1) =         xij,(g)      if (rnd([0, 1]) > pc) and j ≠ δ 
 

   

pc ∈ [0, 1] is a crossover constant/rate 

 δ ∈ 1, 2, . . . , n is a randomly chosen index (ensures 
ui,(g+1) gets at least one parameter from vi, (g +1)  

45 

Crossover-type  
operation to  
produce diversity 



Differential Evolution 
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Differential Evolution 

 Selection: Decide if trial vector enters the 
population at g+1 

 Trial vector ui ,(g) is compared to target vector 
xi,(g) 

 Use greedy criterion: 

 if ui,(g) is better than xi,(g), replace xi,(g) with ui,(g) 

  otherwise xi,(g) “survives" and ui,(g) is discarded 

47 
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DE application in neural network training 

  

 

 

Frames of a video sequence showing a polypoid 
tumor of the colon  
 
 
The environment changes dynamically: shadows, 
reflections, various perceptual angles of physician, 
endoscope tip movements 
 
 
Ref. 11 for details 
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Generalisation results for three batch-training algorithms  
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DE implementation 

Step 0: Initialize the population 

Step 1: Evaluate fitness of all individuals 

Step 2: Repeat  

Step 3:  For i = 1 to NP 

Step 4:   MUTATION(
k

i
w )  Mutant_Vector. 

Step 5:   CROSSOVER(Mutant_Vector)  

Trial_Vector. 

Step 6:   If E(Trial_Vector)  E(
p

i
w ), accept 

Trial_Vector for the next generation. 

Step 7: EndFor 

Step 8: Until the termination condition is met. 
 

i = 1, …., NP (members of population);  
j = 1, …., d  (number of elements  of  the vector);  
k = iteration (generation); 
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Technical details for key steps 

ρ = crossover constant;  rj = random number; μ = mutation constant 

Step 4: mutant vector 
(mutation type operation)  
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Step 5: trial vector 
(“crossover” type 
operation)  
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Step 6: selection  
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Step 0a: Initialize weights 
0w , learning rate ,0  meta-learning rates 21, . 

Step 1a: Repeat  

Step 2a:  Set iteration 1 kk  

Step 3a:  Pattern presentation 

Step 4a:  Calculate )( k
p wE and then )( k

p wE . 

Step 5a:  Update the weights:  

  )(1 k
p

kkk wEww   . 

Step 6a:  Adapt the learning rate 

  )(),()(),( 1
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Step 7a: Until Termination_Condition_1 is met. 

O
n
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a
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h

a
se

 

Step 8a: Return weights
1kw . 

Step 0b: Initialize population in the neighborhood of 
1kw , ]1,0[ , 0

1
 , 0

2
 . 

Step 1b: Repeat  

Step 2b:  Set generation counter 1 kk  

Step 3b:  Pattern presentation 

Step 4b:  For i = 1 to NP 

Step 5b: 

  MUTATION(
k
iw )   Mutant_Vector 
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Step 6b:   CROSSOVER(
1k

iv )   Trial_Vector 
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Step 7b: 

  SELECTION(
1k

iv )weights of next generation 
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Step 8b:  EndFor 
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Step 9b: Until Termination_Condition_2 is met. 

 

Best 
approach 

is a 

Hybrid 
Scheme 

 

Online learning 
produces an 
initial solution, 
then population 
members are 
normally 
distributed 
random 
deviations of the 
initial solution.  

Control 
contribution of 
the terms 

Improves  
stability and  
learning speed 

... 
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Some results  

Method Frame 1 Frame 2 Frame 3 Frame 4 

Rprop 92% 91% 92% 93% 

ABP 81% 85% 83% 81% 

Method Frame 1 Frame 2 Frame 3 Frame 4 

On-line learning  83% 84% 77% 88% 

Online learning+DE 93% 92% 84% 90% 

Results when training a dedicated neural network for each frame  

Results  when employing a neural network for all frames  
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Swarm Intelligence 

 A swarm can be defined as a structured collection 
of interacting organisms or agents.  

 Within the computational study of swarm 
intelligence, individual organisms have included ants, 
bees, wasps, termites, fish (in schools) and birds (in 
flocks).  

 Individuals in these swarms are relatively simple in 
structure, but their collective behaviour can become 
quite complex.  

 The global behaviour of a swarm of social organisms 
emerges in a nonlinear manner from the behaviour 
of individuals in that swarm.  

 

https://www.youtube.com/watch?v=dDsmbwOrHJs


Swarm Intelligence  

 Interaction among individuals aids in refining 
experiential knowledge  about the 
environment and enhances the progress of 
the swarm towards optimality.  

 Interaction or cooperation among individuals 
is determined genetically or through social 
interaction (it depends on the particular 
method).  
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Swarm Intelligence 

Example: ACO- Ant Colony Optimisation 

 In the Ant Colony method, individuals 
specialise in one of a set of simple tasks.  

 Collectively, the actions and behaviours of 
the ants ensure the building of optimal nest 
structures, protecting the queen, cleaning 
nests, finding food sources etc. 
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Swarm Intelligence  

 Anatomical differences (genetics) may dictate the 
tasks performed by individuals.  Minor ants 
(smaller and morphologically different from major 
ants) clean the nest, whereas major ants cut 
large prey and defend the nest.  

 Social interaction can be direct or indirect. Direct 
interaction is through visual, audio or chemical 
contact. Indirect interaction occurs when one 
individual changes the environment and the other 
individuals respond to the new environment.  
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Particle Swarm Optimisation 

• Originally designed by Kennedy (social psychologist) 

and Eberhart (electrical engineer) to simulate social 

behaviour (1995) 

• Basic idea: social interaction is able to find 

optimal solutions to hard problems 



Particle Swarm Optimisation 

• Social behaviour: it increases the ability of 
an individual to adapt; 
 
• Individual’s adaptability leads to 
intelligence: There is a relationship between 
adaptability and intelligence. Intelligence 
emerges from interactions among the 
individuals of the swarm. 
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Some notation 

- A particle in the swarm:  
 

- The particle’s best: 

 

- “Simple nostalgia” (tendency of organisms to repeat past 

behaviours that have been reinforced or return to past 

successes): 

 

- Emulate the success of others: 

(the best particle of the swarm) 
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21
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Particle Swarm Optimisation –  
The basic algorithm  

1.Initialise population in hyperspace 
 

2.Evaluate fitness of individual particles 
 

3.Modify velocities based on previous best and global 
(or neighborhood) best 
 

4.Terminate on some condition 
 

5.Go to step 2 
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PSO Velocity Update Equations  

THE HEURISTICS 

• r1, r2 random values in [0,1] 

• Upper limit to 

• Inertia weight:   w 

• Maximum velocity of change:  

}2,1{, kc
k

max
V

   )1()1()1()(
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individual best (pbest) 

global best 
(gbest) 
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PSO parameters 

De Jong's test functions (F1 and F5) in two dimensions 

De Jong’s F1: NP = 20,  

Max velocity = 0.5,  

c1= c2 = 2 

t =0                                        t =47                                      t =146 

t =267 
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De Jong’s F5: NP = 50, Max velocity = 4,  

c1= c2 = 2 

 

t =0 t =71 t =257 

t =342 t =585 t =1,142 
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PSO parameters 

De Jong’s F1: NP = 20, c1= c2 = 2 

Max velocity = 2 (left), 10 (right) 

t =22 

t =921 

t =24 

max velocity=the maximum distance a particle can 
travel 

 The role of maximum velocity 

t =932 
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PSO parameters 

 

Upper limit of c:  “any time the sum of the two coefficients  
exceeds the value 4.0, both the velocities and positions explode  
toward infinity” [Kennedy & Eberhart, 1999] 
                              - The golden numbers: 
 

Maximum velocity: “reducing        by too much impedes the  
ability of the Swarm to search” [Carlisle & Dozier, 2001] 
- Constriction factor:                             
[Clerc, 1999;  
Carlisle & Dozier, 2001] 

 
Inertia weight: “influences the trade-off between global and 
local exploration abilities of the particle” [Shi & Eberhart, 1998] 
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Evolving Neural Networks with Particle 
Swarm Optimisation-1  

•  Eberhart, Dobbins, and Simpson (1996) first used 
PSO to evolve network weights (replaced 
backpropagation learning algorithm) 
 
• PSO can also be used to indirectly evolve the 
structure of a network.  An added benefit is that the 
preprocessing of input data is made unnecessary.  



Evolving Neural Networks with Particle 
Swarm Optimisation-2 

• Evolve both the network weights and   the slopes of 
sigmoid activation functions of hidden and output nodes. 
 

• If activation function now is:  output = 1/(1 + e -k*input ) then 
we are evolving k in addition to evolving the weights. 

 
• The method is general, and can be applied to other 
topologies and other activation functions (does not require 
derivatives of activation functions to be calculated). 
 

• Flexibility is gained by allowing slopes to be positive or 
negative.  A change in sign for the slope is equivalent to a 
change in signs of all input weights.  
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Useful reading-1 
Hybrid  
1.  Negnevitsky, “Artificial Intelligence: a Guide to Intelligent Systems”,  section 8.5. 
 

Generalisation 
2. Theodoridis S., Koutroumbas K. (2009), sections 10.1-10.3, Pattern Recognition, 

Academic Press. Available online at: 
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing 

3. Reed R. (1993), Pruning algorithms: a survey, IEEE Transactions Neural Networks. 
Available online at: 
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Reed_PruningSurvey.pdf    

4. Gupta A., Lam S.M., Weight decay backpropagation for noisy data (1998), Neural 
Networks, 11 (6), pp. 1127-1138. Available at the BBK Library: 
https://doi.org/10.1016/S0893-6080(98)00046-X 
 

Ensemble learning 

5. Z.-H. Zhou. Ensemble learning. In: S. Z. Li ed. Encyclopedia of Biometrics, Berlin: 
Springer, 2009, pp. 270-273. 
https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/springerEBR09.pdf  

6. Sharkey, A.J.C. and Sharkey, N.E. (1997) Combining diverse neural nets. The 
Knowledge Engineering Review, 12 (3). pp. 231-247. 
http://eprints.whiterose.ac.uk/1630/1/sharkey.a.j.c1.pdf  

7. Anastasiadis A. and Magoulas G.D., Analysing the Localisation Sites of Proteins through 
Neural Networks Ensembles, Neural Computing & Applications, vol. 15(3), 277 – 288, 
2006. http://www.dcs.bbk.ac.uk/~gmagoulas/proteins.pdf  

https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Reed_PruningSurvey.pdf
https://doi.org/10.1016/S0893-6080(98)00046-X
https://doi.org/10.1016/S0893-6080(98)00046-X
https://doi.org/10.1016/S0893-6080(98)00046-X
https://doi.org/10.1016/S0893-6080(98)00046-X
https://doi.org/10.1016/S0893-6080(98)00046-X
https://doi.org/10.1016/S0893-6080(98)00046-X
https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/springerEBR09.pdf
http://eprints.whiterose.ac.uk/1630/1/sharkey.a.j.c1.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/proteins.pdf


70 

Useful reading-2 
Hybrid Genetic Algorithms 

8. El-Mihoub T. A., Hopgood A. A., Nolle L., Battersby A. (2006), Hybrid Genetic 
Algorithms: A Review, Engineering Letters, 13:2, EL_13_2_11 
http://www.engineeringletters.com/issues_v13/issue_2/EL_13_2_11.pdf  

 

 

 

Differential evolution 

9. Storn R. M., Price K. V. (1997) Differential Evolution – A Simple and Efficient Heuristic 
for Global Optimization over Continuous Spaces, Journal of Global Optimization 11: 341–
359. Available online at: http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf  

10. Magoulas G.D., Plagianakos V.P., and Vrahatis M.N., Neural Network-based Colonoscopic 
Diagnosis Using On-line Learning and Differential Evolution, Applied Soft Computing, 
Vol. 4(4), 369-379, 2004. Available online at: 
http://www.dcs.bbk.ac.uk/~gmagoulas/ApplSoftComp.pdf   

 

Swarms 

11. Poli R., Kennedy J., Blackwell T. (2007), Particle Swarm Optimisation: an overview, 
Swarm Intelligence Journal, vol. 1, no. 1, 33-57. Available online at: 

 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.206.2896&rep=rep1&type=pdf 

http://www.engineeringletters.com/issues_v13/issue_2/EL_13_2_11.pdf
http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/ApplSoftComp.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.206.2896&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.206.2896&rep=rep1&type=pdf
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Useful reading-3 
 

 

Differential evolution 

12. Storn R. M., Price K. V. (1997) Differential Evolution – A Simple and Efficient Heuristic 
for Global Optimization over Continuous Spaces, Journal of Global Optimization 11: 
341–359. Available online at: http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf  

13. Magoulas G.D., Plagianakos V.P., and Vrahatis M.N., Neural Network-based 
Colonoscopic Diagnosis Using On-line Learning and Differential Evolution, Applied Soft 
Computing, Vol. 4(4), 369-379, 2004. Available online at: 
http://www.dcs.bbk.ac.uk/~gmagoulas/ApplSoftComp.pdf   

 

http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/ApplSoftComp.pdf


Next week 

 Lab: Malet St, MAL 109 (ITS) 
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