
1

(Concepts of) Machine
Learning

Lecture 6: Advanced learning schemes &
evolution

George Magoulas
gmagoulas@dcs.bbk.ac.uk

2

Contents

 Generalisation of machine learning models/the over-
fitting thriller

 Ensemble learning

 Neuro-evolution

 Hybrid GA

 Differential evolution

 Swarm intelligence - Particle swarm

https://www.youtube.com/watch?v=DQWI1kvmwRg
https://www.youtube.com/watch?v=DQWI1kvmwRg
https://www.youtube.com/watch?v=DQWI1kvmwRg

3

Generalisation

 How does the classifier perform on a problem with
respect to both seen and unseen data?

 How many training instances are required for good
generalisation?

 What size network gives the best generalisation?

 What kind of neural architecture is best for
modelling the underlying problem?

 What learning algorithm can achieve the best
generalisation?

Generalisability

 Generalisation theory aims at providing general bounds that relate the
error performance of a classifier with the number of training points, N, on

one hand, and some classifier dependent parameters, on the other. So
far, the classifier dependent parameters that we considered were the
number of free parameters of the classifier and the dimensionality of the
subspace, in which the classifier operates.

 Generalisability is the ability of a model to generalise on unseen data
points (not used during training). A model is not effective if it is too
specific to the training data, i.e., “too specific” means it is over-fitting and
its performance on unseen data cannot be guaranteed.

 Let the classifier be a binary one, i.e.,

 Let F be the set of all functions f that can be realised by

the adopted classifier (e.g., changing the weights of a
given neural network different functions are implemented).

 The Vapnik – Chernovenkis (VC) dimension of a class F is
the largest integer k for which S(F,k) = 2k. If S(F,N)=2N,

 we say that the VC dimension is infinite. However, NOT
ALL dichotomies can be realised by the set of functions
in F.

 That is, VC is the largest integer for which the class of
functions F can achieve all possible dichotomies, 2k.

5

 1,0: f

 Let the classifier be a binary one, i.e.,

 Let F be the set of all functions f that can be realised by

the adopted classifier (e.g., changing the weights of a
given neural network different functions are implemented).

 The Vapnik – Chernovenkis (VC) dimension of a class F is
the largest integer k for which S(F,k) = 2k. If S(F,N)=2N,

 we say that the VC dimension is infinite. However, NOT
ALL dichotomies can be realised by the set of functions
in F.

 That is, VC is the largest integer for which the class of
functions F can achieve all possible dichotomies, 2k.

6

 1,0: f

The VC dimension can

be considered as an
intrinsic capacity of
the classifier, and only if
the number of training
vectors exceeds this
number sufficiently, we
can expect good
generalisation
performance.

7

 The dimension may or may not be related to the

Input dimension and the number of free parameters.

 Perceptron:

 Multilayer network with hard limiting activation function

 where is the total number of hidden layer nodes, the
total number of nodes, and the total number of
weights; e is the base of the natural logarithm; is the

number of input nodes.

 A useful heuristic in practice is that the number of training
patterns is about 10 times the VC or 10 times the number of

weights, , in the case of a multilayer network.

)(log2
2

2 2 nw

h

n ekkVC
k











h

nk nk

wk

VC

1 VC



Floor operation: returns
the largest integer less

than its argument



wk

8

 Generalisation Performance

 Let be the error rate of classifier f, based on
the N training points, also known as empirical

error.

 Let be the true error probability of f (also
known as generalisation error), when f is

confronted with data outside the finite training set.

 Let be the minimum error probability that can
be attained over ALL functions in the set F.

 for a large N :

º is close to , with high probability.

º is close to , with high probability.

 Let be the function resulting by minimising the
empirical (over the finite training set) error
function.

 fPN

e)(

)(fPe

 eP

)(fPN

e

)(*

e fP

)(fPe

 eP
*f

9

 One systematic method to check for this is cross-validation. Cross-
validation is a strategy where the model-building process is applied on a
subset of the data such that the model has not “seen” all the data
available. This learning process is then followed by an evaluation step on
the “unseen” portion of the data. This is an approach to ensure that the
model is not over-fitted to the data and an acceptable degree of
generalisability is ensured.

 One approach is the holdout method where the data set is separated
into two random sets, called the training set and the testing set. And the
model is trained on the former and evaluated on the latter.

 Another version is the k-fold cross-validation approach, where the data
set is divided into k subsets, and the holdout method is repeated k times.
Each time, one of the k subsets is used as the test set and the other k-1
subsets are put together to form a training set. Then the average error
across all k trials is computed.

Evaluating generalisability

10

The goal is to estimate the error probability of the designed
classification system

 Error Counting Technique
 Let classes
 Let data points in class for testing.

 the number of
 test points.
 Let Pi the probability error for class ωi

 The classifier is assumed to have been designed using
another independent data set

 Assuming that the feature vectors in the test data set are
independent, the probability of ki vectors from ωi being in
error follows the binomial distribution
http://en.wikipedia.org/wiki/Binomial_distribution





M

i

i NN
1

  iii kN

i

k

i

i

i

ii PP
k

N
k











)1(classified wrongly in prob 

Validation of a learning system

iiN
M

http://en.wikipedia.org/wiki/Binomial_distribution

11

 Since the Pi ‘s are not known, estimate Pi by

maximising the above binomial distribution
which gives

 Thus, count the errors and divide by the total
number of test points in class

 A theoretically derived estimate of a sufficient
number N of the test data set is

i

i
i

N

k
P̂ 

P
N

100


3000 ,03.0For .10000 ,01.0for Thus,  NPNP

12

 Exploiting the finite size of the data set.

 Resubstitution method:

 Use the same data for training and testing. It
underestimates the error. The estimate improves
for large N (data set size) and large ratios.

(dimension of feature space)

 Holdout Method: Given N divide it into:

 N1: training points

 N2: test points

 N=N1+N2

 Problem: Less data both for training and
test

l

N

13

 Leave-one-out Method

 The steps:

 Choose one sample out of the N.

Train the classifier using the
remaining N-1 samples. Test the

classifier using the selected sample.
Count an error if it is misclassified.

 Repeat the above by excluding a
different sample each time.

 Compute the error probability by
averaging the counted errors

14

 Advantages:

uses all data for testing and
training

ensures independence between
test and training samples

 Disadvantages:

Complexity in computations high

 Variants of it exclude k>1 points
each time, to reduce complexity

15

Improving generalisation in
Neural Networks

(i) Network pruning: remove weights without hurting network’s
performance. This leads to better generalisation and faster
learning.

 Eliminate small weights: determine what is “small”; what
happens if the solution is sensitive to some small weights?

 Delete weights that have the least effect on the
solution

 First train with backpropagation

 Then delete the weights with the smallest saliency

 The reduced network is retrained to obtain final solution.

 Remove nodes with lower relevance: define relevance as
the difference in the value of the cost function without the
node and with the node in the network.

16

Optimal Brain Damage (OBD)

Saliency for weight wji, where δΕ

measures sensitivity of the cost
function to small perturbations in wji

Sensitivity measure is approximated by
second derivative.

2

2

2

ji

ji

jiji

w

E
E

wEsaliency












17

Improving generalisation

(ii) Weight decay and elimination: Improve generalisation by
favouring simple structures. Add a term to the cost function to
penalise complex structures.

 In the weight decay approach the number of weights is
reduced by encouraging near zero weights in the learning
process. This is achieved by adding a term to penalise
nonzero weights

 The weight is decayed in an amount proportional to its magnitude.

Not all weights are decayed to small values. Only those weights
which are not reinforced do so.

 
i

j

j

j i
wytE 22

2
)(

2

1 

Small positive constant

18

Improving generalisation

 In the weight elimination the cost function is formulated as

 When wi>>w0 , the penalty terms is close to unity and this
criterion essentially counts the number of weights

 When wi<<w0 , the penalty term is proportional to wi
2 and the

criterion behaves like the weight decay criterion.





i

j

j

j
ww

ww
ytE

i

i

)(1
)(

2

1
2

0

2

2

0

2

2 

Small positive constant
Fixed weight

normalisation factor

19

Ensemble learning

• Ensemble based methods enable an increase
in generalisation performance by combining
several individual models trained on the same
task.
• Approach has been justified both theoretically
and empirically.
• The creation of an ensemble is often divided
into two steps : (i) generate individual ensemble
members and (ii) appropriately combine
individual members outputs to produce the
output of the ensemble.

Weak learnability
 Schapire in [The strength of weak learnability.

Mach. Learn. 5, 197–227 (1990)] showed that a
model of learnability in which the learner is only
required to perform slightly better than guessing is
as strong as a model in which the learner's error can
be made arbitrarily small.

 The proof of this result was based on the filtering of
the distribution in a manner causing the weak
learning algorithm to eventually learn nearly the
entire distribution.

 Strong theory for boosting in binary classification
and multiclass settings in batch and online learning
and group models.

21

Ensembles of Multilayer Networks

22

Approaches to create neural
ensembles

 Simple Network Ensemble (SNE): consists of n
networks where each network uses the full training set
and differs only in its random initial weight settings.

 More advanced approach: train networks on different
subsets of the training set, e.g. using bagging, where
each training set is created by resampling and
replacement of the original one with uniform probability,
or boosting, which also uses resampling of the training
set, but the data points previously poorly classified,
receive a higher probability

 Diverse Network Ensemble (DNE): use networks that
disagree partially on their decisions.

Boosting

Technique first introduced in [Schapire (1990),
JML; Schapire, Freund (1996), Experiments with
a new boosting algorithm, 13th ICML]

 Learners (models) are trained sequentially, using
a sample from the original dataset, with the
prediction error from the previous round
affecting the sampling weight for the next
round.

 After each round of boosting, the decision can
be made to terminate and use a set of
calculated weights to apply as a linear
combination of the newly created set of
learners.

Generic boosting method

The main differences between each boosting
variant are in how the getError,
learnerCoefficient, nextDistribution

and aggregate functions are implemented.

Each boosting variant
builds a distribution of
weights Dt, which is
used to sample from

the training set...

Re-sampled dataset is
used to train a new
classifier ht, which is

then incorporated in the
group, with a weight αt,

based on its classification
error ϵt.

 is updated at each
iteration to increase the

importance of the
examples that are
harder to classify

correctly.

25

Diversity

Networks belonging to an ensemble are thought
to be diverse with respect to a test set if they
make different generalisation errors on that test
set. Different patterns of generalisations can be
produced when networks are trained either on
different training sets, or from different initial
conditions, or with different numbers or hidden
nodes, or using different algorithms.

26

Diverse neural ensemble

A simple implementation of the DNE-based method:

Step1: Create n MNs where each one uses the same training
set and differs only in its random initial weights.
Step2: Select the k Networks (k<n), which when they do fail
to classify the data, they fail on different inputs patterns so
that failures on one network can be compensated by
successes of others.
Step3: Combine the ensemble members’ outputs using
majority voting to get ensemble’s output.

27

Proteins localisation

 Problem Description: In
order to function properly,
proteins must be transported
to various localisation sites
within a particular cell.
Description of protein
localisation provides
information about each protein
that is complementary to the
protein sequence and structure
data. (Ref. 7 for details)

 Characteristics: The datasets
of the proteins are drastically
imbalanced.

Patterns Class

463 cyt

5 erl

35 exc

44 me1

51 me2

163 me3

244 mit

429 nuc

20 pox

30 vac

Yeast Dataset

28

Results in the Yeast Problem
Patterns Class HN KNN FNN DNE

463 cyt 74.3% 70.7% 66.7% 80.5%

5 erl 60.0% 0.0% 99.6% 100%

35 exc 45.7% 62.9% 62.7% 74.3%

44 me1 63.6% 75.0% 82.9% 100%

51 me2 15.7% 21.6% 47.8% 70.6%

163 me3 85.3% 74.9% 85.6% 92.65%

244 mit 47.1% 57.8% 61.3% 71.4%

429 nuc 35.7% 50.7% 57.7% 70.1%

20 pox 0.0% 55.0% 54.6% 55.0%

30 vac 10.0% 0.0% 4.1% 20.0%

Mean 43.7% 46.8% 62.3% 73.5%

 Although neural networks are used for solving a
variety of problems, they still have some
limitations.

 One of the most common is associated with neural
network training. The back-propagation learning
algorithm cannot guarantee an optimal solution.
In real-world applications, the back-propagation
algorithm might converge to a set of sub-optimal
weights from which it cannot escape. As a result,
the neural network is often unable to find a
desirable solution to a problem at hand.

Neuro-evolution

29

Hybrid Genetic Algorithms- 1

 Darwinian and Lamarckian principles are
combined into hybrid genetic algorithms:

The elements of the population are
selected in “Darwinian” fashion from
generation to generation, but can become
better by modifying their parameters in
”Lamarckian” way, that is, by performing
some hill-climbing steps before
recombining.

 Thus the use of GA is related to the
concept of "evolution" of a population of
individuals and that of hill-climbing
methods to the concept of "life" of each
individual.

30

{

//start with an initial time

 t:=0;

//initialise a usually random population of

//individuals

STAGE 1: initpopulation P(t);

//evaluate fitness of all individuals of population

STAGE 2: evaluate P(t);

//test for termination criterion (time, fitness,

//etc.)

 while not done do

 //increase the time counter

 t:=t+1;

//select a sub-population for offspring production

STAGE 3: P':=selectparents P(t);

 //recombine the "genes" of selected parents

STAGE 4: recombine P'(t);

 //perturb the mated population stochastically

STAGE 5: mutate P'(t);

 //evaluate the new fitness

STAGE 6: evaluate P'(t);

 //select the survivors from actual fitness

STAGE 7: P:=survive P,P'(t);

 end

}

Hybrid Genetic Algorithms - 2

Algorithmic description
a) Randomly generate an initial population of chromosomes

b) Compute the fitness of every member of the current
population. For example, this can be used to initialise the hill-
climbing method

c) Make an intermediate population by extracting members out
of the current population by means of a Lamarckian strategy

d) Generate the new population by applying the genetic
operators (crossover, mutation) to this intermediate
population (for example the termination points of the hill-
climbing method)

e) If there is a member of the current population that satisfies
the problem requirements then stop, otherwise go to step
(b) 31

Hill-climbing method -1

32

 Technique applied on a single point (current point)
in the search space aiming at iterative
improvement.

 During each iteration a new point is selected from
the neighbourhood of the current point. If the new
point provides better value in light of evaluation
function, the new point becomes the current point.

 Otherwise, some other neighbour is selected and
tested against the current point.

 Terminates if no further improvement is possible.

Hill-climbing method – 2:
Stochastic version

33

 Instead of checking all points in the neighbourhood
of a current point and selecting the best one,
select only one point from this neighbourhood.

 Accept this point with some probability that
depends on the relative merit of these points.

T

ffkk
kk

e

P
)()(1

1

1

1
)(






xx

xx

34

Evolving populations of neural networks
with GA

Algorithmic description
1. Choose an appropriate error measure
2. Choose strings corresponding to all the weights and

biases
3. Generate a pool of such strings, chosen randomly
4. Evaluate the error for each string
5. Convert the error to fitness
6. Apply the GA operators to obtain next generation
7. Repeat until find a string with sufficiently low error (high

fitness)

y

0.9
1

3

4

5

6

7

8

x1

x3

x2
2

-0.8

0.4

0.8

-0.7

0.2

-0.2

0.6

-0.3 0.1

-0.2

0.9

-0.60.1

0.3

0.5

From neuron:

To neuron:

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0.9 -0.3 -0.7 0 0 0 0 0

 -0.8 0.6 0.3 0 0 0 0 0

0.1 -0.2 0.2 0 0 0 0 0

0.4 0.5 0.8 0 0 0 0 0

0 0 0 -0.6 0.1 -0.2 0.9 0

Chromosome: 0.9 -0.3 -0.7 -0.8 0.6 0.3 0.1 -0.2 0.2 0.4 0.5 0.8 -0.6 0.1 -0.2 0.9

Encoding a set of weights in a
chromosome

35

 The second step is to define a fitness function
for evaluating the chromosome’s performance.
This function must estimate the performance
of a given neural network. We can apply here
a simple function defined by the sum of
squared errors.

 The training set of examples is presented to
the network, and the sum of squared errors is
calculated. The smaller the sum, the fitter the
chromosome. The genetic algorithm attempts
to find a set of weights that minimises the sum
of squared errors.

36

 The third step is to choose the genetic
operators – crossover and mutation. A
crossover operator takes two parent
chromosomes and creates a single child with
genetic material from both parents. Each gene
in the child’s chromosome is represented by
the corresponding gene of the randomly
selected parent.

 A mutation operator selects a gene in a
chromosome and adds a small random value
between 1 and 1 to each weight in this gene.

37

Crossover in weight optimisation

3

4

5

y
6

x2
2

-0.3

0.9

-0.7

0.5

-0.8

-0.6

Parent 1

x1
1

-0.2

0.1

0.4

3

4

5

y
6

x2
2

-0.1

-0.5

0.2

-0.9

0.6

0.3

Parent 2

x1
1

0.9

0.3

-0.8

0.1 -0.7 -0.6 0.5 -0.8-0.2 0.9 0.4 -0.3 0.3 0.2 0.3 -0.9 0.60.9 -0.5 -0.8 -0.1

0.1 -0.7 -0.6 0.5 -0.80.9 -0.5 -0.8 0.1

3

4

5

y
6

x2
2

-0.1

-0.5

-0.7

0.5

-0.8

-0.6

Child

x1
1

0.9

0.1

-0.8

38

Mutation in weight optimisation

Original network
3

4

5

y
6

x2
2

-0.3

0.9

-0.7

0.5

-0.8

-0.6x1
1

-0.2

0.1

0.4

0.1 -0.7 -0.6 0.5 -0.8-0.2 0.9

3

4

5

y
6

x2
2

0.2

0.9

-0.7

0.5

-0.8

-0.6x1
1

-0.2

0.1

-0.1

0.1 -0.7 -0.6 0.5 -0.8-0.2 0.9

Mutated network

0.4 -0.3 -0.1 0.2

39

Evolving Neural Networks through Augmenting Topologies-NEAT

PyTorch version of NEAT (UberAI Lab)

https://www.youtube.com/watch?v=H4WnRLEG73Q
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
https://github.com/uber-research/PyTorch-NEAT
https://github.com/uber-research/PyTorch-NEAT
https://github.com/uber-research/PyTorch-NEAT
https://github.com/uber-research/PyTorch-NEAT

Differential Evolution

 Stochastic, population based, real-valued
algorithm

 Designed for challenging continuous
problems where the objective/cost function
could be non-differentiable, nonlinear and/or
multimodal

 Few control parameters and good
convergence behaviour.

40

Differential Evolution
 DE was introduced in 1996 by Storn (PhD

student) and Price (supervisor).

 The algorithm uses a population of size NP

 Each vector xi,g ϵ Rn is of size n, g denotes generations

 variables are drawn from uniform random distribution

 xij ϵ [a, b], i,j where a and b depend on the function

 If an initial solution xnom,0 already exists, then

population members are normally distributed random
deviations of the initial solution

 41

Basic steps of the algorithm:

 Generate new vector by adding weighted
difference of two vectors to third (mutation-type
operation); original vectors are called target vectors

 Mix new vector with target vector to yield trial
vector (crossover-type operation)

 Replace target vector with trial vector if the latter
is better in terms of fitness value (selection-type
operation)

Let’s see how these steps are implemented...
42

Differential Evolution

Differential Evolution
 For all target vectors xi,g , a mutant vector

vi,(g+1) is generated:

vi,(g+1) =xr1 +F (xr2,g - xr3,g)

 are chosen randomly

 F ∈ (0, 2] is a real and constant factor
 It controls the amplification of the differential variation
 (xr2 − xr3)

 Other implementations impose different limits on F

 Unlike typical evolutionary algorithms, in DE mutation
involves at least two other individuals from the
population. 43

},,{
321

rrri

Mutation-type
operation

 NPrrr ,,2,1
321

 ...

Differential Evolution

44

Differential Evolution

Generate a trial vector ui :

ui,(g+1) = [ui1,(g+1), ui2(g + 1), . . . , uin,(g + 1)]

where for each element j = 1, 2, . . . , n

 vij, (g +1) if (rnd([0, 1]) ≤ pc) or j= δ

uij, (g + 1) = xij,(g) if (rnd([0, 1]) > pc) and j ≠ δ

pc ∈ [0, 1] is a crossover constant/rate

 δ ∈ 1, 2, . . . , n is a randomly chosen index (ensures
ui,(g+1) gets at least one parameter from vi, (g +1)

45

Crossover-type
operation to
produce diversity

Differential Evolution

46

Differential Evolution

 Selection: Decide if trial vector enters the
population at g+1

 Trial vector ui ,(g) is compared to target vector
xi,(g)

 Use greedy criterion:

 if ui,(g) is better than xi,(g), replace xi,(g) with ui,(g)

 otherwise xi,(g) “survives" and ui,(g) is discarded

47

48

DE application in neural network training

Frames of a video sequence showing a polypoid
tumor of the colon

The environment changes dynamically: shadows,
reflections, various perceptual angles of physician,
endoscope tip movements

Ref. 11 for details

49

Generalisation results for three batch-training algorithms

0

100

200

300

400

500

600

700

N
u

m
b

e
r

o
f
tr

a
in

e
d

 n
e

tw
o

rk
s

50-59 60-69 70-79 80-89 90-100

Percentage of classification succes in testing

Rprop

L-M

SCG

50

DE implementation

Step 0: Initialize the population

Step 1: Evaluate fitness of all individuals

Step 2: Repeat

Step 3: For i = 1 to NP

Step 4: MUTATION(
k

i
w)  Mutant_Vector.

Step 5: CROSSOVER(Mutant_Vector) 

Trial_Vector.

Step 6: If E(Trial_Vector)  E(
p

i
w), accept

Trial_Vector for the next generation.

Step 7: EndFor

Step 8: Until the termination condition is met.

i = 1, …., NP (members of population);
j = 1, …., d (number of elements of the vector);
k = iteration (generation);

51

Technical details for key steps

ρ = crossover constant; rj = random number; μ = mutation constant

Step 4: mutant vector
(mutation type operation)

 
21

1

rr

k

i

k

best

k

i

k

i
wwwwwv 



 NPiirr ,,1,1,,2,1,
21

 

Step 5: trial vector
(“crossover” type
operation)














ij

k

ji

ij

k

jik

ji
randjrw

randjrv
u

and if

or if

,

1

,1

,




1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

target vector, mutant vector, trial vector,
k

i
w k

i
v k

i
u


j

r

Step 6: selection
















)()(if

)()(if
1

11

1

k

ip

k

ip

k

i

k

ip

k

ip

k

ik

i
wEuEw

wEuEu
w

...

52

Step 0a: Initialize weights
0w , learning rate ,0 meta-learning rates 21, .

Step 1a: Repeat

Step 2a: Set iteration 1 kk

Step 3a: Pattern presentation

Step 4a: Calculate)(k
p wE and then)(k

p wE .

Step 5a: Update the weights:

)(1 k
p

kkk wEww   .

Step 6a: Adapt the learning rate

)(),()(),(1
1

2
22

1
11

1 








  k
p

k
p

k
p

k
p

kk
wEwEwEwE 

Step 7a: Until Termination_Condition_1 is met.

O
n

-l
in

e
le

a
rn

in
g

 p
h

a
se

Step 8a: Return weights
1kw .

Step 0b: Initialize population in the neighborhood of
1kw ,]1,0[ , 0

1
 , 0

2
 .

Step 1b: Repeat

Step 2b: Set generation counter 1 kk

Step 3b: Pattern presentation

Step 4b: For i = 1 to NP

Step 5b:

 MUTATION(
k
iw)  Mutant_Vector

  )(
21

21
1

rr

k
i

k
best

k
i

k
i wwwwwv   ,  NPiirr ,,1,1,,2,1,

21
 

Step 6b: CROSSOVER(
1k

iv)  Trial_Vector
















ij
k

ji

ij
k

jik
ji

randjrw

randjrv
u

andif

orif

,

1
,1

,



, j = 1,2,…, n

Step 7b:

 SELECTION(
1k

iv)weights of next generation


















)()(if

)()(if
1

11

1

k
ip

k
ip

k
i

k
ip

k
ip

k
ik

i
wEuEw

wEuEu
w

Step 8b: EndFor

E
v

o
lu

ti
o

n
 p

h
a

se

Step 9b: Until Termination_Condition_2 is met.

Best
approach

is a

Hybrid
Scheme

Online learning
produces an
initial solution,
then population
members are
normally
distributed
random
deviations of the
initial solution.

Control
contribution of
the terms

Improves
stability and
learning speed

...

53

Some results

Method Frame 1 Frame 2 Frame 3 Frame 4

Rprop 92% 91% 92% 93%

ABP 81% 85% 83% 81%

Method Frame 1 Frame 2 Frame 3 Frame 4

On-line learning 83% 84% 77% 88%

Online learning+DE 93% 92% 84% 90%

Results when training a dedicated neural network for each frame

Results when employing a neural network for all frames

54

Swarm Intelligence

 A swarm can be defined as a structured collection
of interacting organisms or agents.

 Within the computational study of swarm
intelligence, individual organisms have included ants,
bees, wasps, termites, fish (in schools) and birds (in
flocks).

 Individuals in these swarms are relatively simple in
structure, but their collective behaviour can become
quite complex.

 The global behaviour of a swarm of social organisms
emerges in a nonlinear manner from the behaviour
of individuals in that swarm.

https://www.youtube.com/watch?v=dDsmbwOrHJs

Swarm Intelligence

 Interaction among individuals aids in refining
experiential knowledge about the
environment and enhances the progress of
the swarm towards optimality.

 Interaction or cooperation among individuals
is determined genetically or through social
interaction (it depends on the particular
method).

55

Swarm Intelligence

Example: ACO- Ant Colony Optimisation

 In the Ant Colony method, individuals
specialise in one of a set of simple tasks.

 Collectively, the actions and behaviours of
the ants ensure the building of optimal nest
structures, protecting the queen, cleaning
nests, finding food sources etc.

56

Swarm Intelligence

 Anatomical differences (genetics) may dictate the
tasks performed by individuals. Minor ants
(smaller and morphologically different from major
ants) clean the nest, whereas major ants cut
large prey and defend the nest.

 Social interaction can be direct or indirect. Direct
interaction is through visual, audio or chemical
contact. Indirect interaction occurs when one
individual changes the environment and the other
individuals respond to the new environment.

57

58

Particle Swarm Optimisation

• Originally designed by Kennedy (social psychologist)

and Eberhart (electrical engineer) to simulate social

behaviour (1995)

• Basic idea: social interaction is able to find

optimal solutions to hard problems

Particle Swarm Optimisation

• Social behaviour: it increases the ability of
an individual to adapt;

• Individual’s adaptability leads to
intelligence: There is a relationship between
adaptability and intelligence. Intelligence
emerges from interactions among the
individuals of the swarm.

60

Some notation

- A particle in the swarm:

- The particle’s best:

- “Simple nostalgia” (tendency of organisms to repeat past

behaviours that have been reinforced or return to past

successes):

- Emulate the success of others:

(the best particle of the swarm)

 
iniii

xxxx ,,,
21


 
iniii

pppp ,,,
21


iiii
xpthenpfxfif )()(

 )1()1()( txpctvtv
iiii

 
gnggg

pppp ,,,
21


...

...

Particle Swarm Optimisation –
The basic algorithm

1.Initialise population in hyperspace

2.Evaluate fitness of individual particles

3.Modify velocities based on previous best and global
(or neighborhood) best

4.Terminate on some condition

5.Go to step 2

62

PSO Velocity Update Equations

THE HEURISTICS

• r1, r2 random values in [0,1]

• Upper limit to

• Inertia weight: w

• Maximum velocity of change:

}2,1{, kc
k

max
V

   )1()1()1()(

where

)()1()(

2211 



txprctxprctvwtv

tvtxtx

igiiii

iii
individual best (pbest)

global best
(gbest)

63

PSO parameters

De Jong's test functions (F1 and F5) in two dimensions

De Jong’s F1: NP = 20,

Max velocity = 0.5,

c1= c2 = 2

t =0 t =47 t =146

t =267

64

De Jong’s F5: NP = 50, Max velocity = 4,

c1= c2 = 2

t =0 t =71 t =257

t =342 t =585 t =1,142

65

PSO parameters

De Jong’s F1: NP = 20, c1= c2 = 2

Max velocity = 2 (left), 10 (right)

t =22

t =921

t =24

max velocity=the maximum distance a particle can
travel

 The role of maximum velocity

t =932

66

PSO parameters

Upper limit of c: “any time the sum of the two coefficients
exceeds the value 4.0, both the velocities and positions explode
toward infinity” [Kennedy & Eberhart, 1999]
 - The golden numbers:

Maximum velocity: “reducing by too much impedes the
ability of the Swarm to search” [Carlisle & Dozier, 2001]
- Constriction factor:
[Clerc, 1999;
Carlisle & Dozier, 2001]

Inertia weight: “influences the trade-off between global and
local exploration abilities of the particle” [Shi & Eberhart, 1998]

k
c

3.1 8.2
21
 cc

max
V

]1,0(and421

,
)(4)(2)(2

21

2

2121






kcc

cccccc

k
K

Evolving Neural Networks with Particle
Swarm Optimisation-1

• Eberhart, Dobbins, and Simpson (1996) first used
PSO to evolve network weights (replaced
backpropagation learning algorithm)

• PSO can also be used to indirectly evolve the
structure of a network. An added benefit is that the
preprocessing of input data is made unnecessary.

Evolving Neural Networks with Particle
Swarm Optimisation-2

• Evolve both the network weights and the slopes of
sigmoid activation functions of hidden and output nodes.

• If activation function now is: output = 1/(1 + e -k*input) then
we are evolving k in addition to evolving the weights.

• The method is general, and can be applied to other
topologies and other activation functions (does not require
derivatives of activation functions to be calculated).

• Flexibility is gained by allowing slopes to be positive or
negative. A change in sign for the slope is equivalent to a
change in signs of all input weights.

69

Useful reading-1
Hybrid
1. Negnevitsky, “Artificial Intelligence: a Guide to Intelligent Systems”, section 8.5.

Generalisation
2. Theodoridis S., Koutroumbas K. (2009), sections 10.1-10.3, Pattern Recognition,

Academic Press. Available online at:
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing

3. Reed R. (1993), Pruning algorithms: a survey, IEEE Transactions Neural Networks.
Available online at:
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Reed_PruningSurvey.pdf

4. Gupta A., Lam S.M., Weight decay backpropagation for noisy data (1998), Neural
Networks, 11 (6), pp. 1127-1138. Available at the BBK Library:
https://doi.org/10.1016/S0893-6080(98)00046-X

Ensemble learning

5. Z.-H. Zhou. Ensemble learning. In: S. Z. Li ed. Encyclopedia of Biometrics, Berlin:
Springer, 2009, pp. 270-273.
https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/springerEBR09.pdf

6. Sharkey, A.J.C. and Sharkey, N.E. (1997) Combining diverse neural nets. The
Knowledge Engineering Review, 12 (3). pp. 231-247.
http://eprints.whiterose.ac.uk/1630/1/sharkey.a.j.c1.pdf

7. Anastasiadis A. and Magoulas G.D., Analysing the Localisation Sites of Proteins through
Neural Networks Ensembles, Neural Computing & Applications, vol. 15(3), 277 – 288,
2006. http://www.dcs.bbk.ac.uk/~gmagoulas/proteins.pdf

https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
https://drive.google.com/file/d/0By995HEqDrWQbnBfTGJEVXZrRkE/view?usp=sharing
http://axon.cs.byu.edu/~martinez/classes/678/Papers/Reed_PruningSurvey.pdf
https://doi.org/10.1016/S0893-6080(98)00046-X
https://doi.org/10.1016/S0893-6080(98)00046-X
https://doi.org/10.1016/S0893-6080(98)00046-X
https://doi.org/10.1016/S0893-6080(98)00046-X
https://doi.org/10.1016/S0893-6080(98)00046-X
https://doi.org/10.1016/S0893-6080(98)00046-X
https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/springerEBR09.pdf
http://eprints.whiterose.ac.uk/1630/1/sharkey.a.j.c1.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/proteins.pdf

70

Useful reading-2
Hybrid Genetic Algorithms

8. El-Mihoub T. A., Hopgood A. A., Nolle L., Battersby A. (2006), Hybrid Genetic
Algorithms: A Review, Engineering Letters, 13:2, EL_13_2_11
http://www.engineeringletters.com/issues_v13/issue_2/EL_13_2_11.pdf

Differential evolution

9. Storn R. M., Price K. V. (1997) Differential Evolution – A Simple and Efficient Heuristic
for Global Optimization over Continuous Spaces, Journal of Global Optimization 11: 341–
359. Available online at: http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf

10. Magoulas G.D., Plagianakos V.P., and Vrahatis M.N., Neural Network-based Colonoscopic
Diagnosis Using On-line Learning and Differential Evolution, Applied Soft Computing,
Vol. 4(4), 369-379, 2004. Available online at:
http://www.dcs.bbk.ac.uk/~gmagoulas/ApplSoftComp.pdf

Swarms

11. Poli R., Kennedy J., Blackwell T. (2007), Particle Swarm Optimisation: an overview,
Swarm Intelligence Journal, vol. 1, no. 1, 33-57. Available online at:

 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.206.2896&rep=rep1&type=pdf

http://www.engineeringletters.com/issues_v13/issue_2/EL_13_2_11.pdf
http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/ApplSoftComp.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.206.2896&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.206.2896&rep=rep1&type=pdf

71

Useful reading-3

Differential evolution

12. Storn R. M., Price K. V. (1997) Differential Evolution – A Simple and Efficient Heuristic
for Global Optimization over Continuous Spaces, Journal of Global Optimization 11:
341–359. Available online at: http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf

13. Magoulas G.D., Plagianakos V.P., and Vrahatis M.N., Neural Network-based
Colonoscopic Diagnosis Using On-line Learning and Differential Evolution, Applied Soft
Computing, Vol. 4(4), 369-379, 2004. Available online at:
http://www.dcs.bbk.ac.uk/~gmagoulas/ApplSoftComp.pdf

http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www1.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://www.dcs.bbk.ac.uk/~gmagoulas/ApplSoftComp.pdf

Next week

 Lab: Malet St, MAL 109 (ITS)

72

