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MEAN-VARIANCE PORTFOLIO OPTIMIZATION

1. Portfolio Return

Let p; be the expected return of asset i, ie.:
u, =ER))

Let e be the n x 1 column vector of (expected) returns, ie.:
e=[u, p, ... pl

Let w be the n x 1 column vector of asset weights, ie:
W:[co1 W, ... mn]T

such that the expected return of a portfolio is:
N T
ER,)=p, =D o.n =w'.e
i1

It is worth noting that w could be a vector of weights in a portfolio or it could be a vector of active weights
(ie. a portfolio’s over/under exposure to assets compared to a benchmark exposure). In the case of the
former, the constraint on this vector is:

wil=1
ie. the weights must sum to 100%. In the case of w being active weights, the constraint is:

w'.1=0
ie. the active weights ("unders and overs”) must sum to 0.

When using active weights L1, represents the expected active return of the portfolio.

2. Portfolio Variance

Let V be the covariance matrix:

01y Op O1n
O O (o2
21 22 2n
V= :
O_n1 O-n2 O_nn

such that the variance of the portfolio’s returns is:
o, =w'.V.w

If active weights are used then G; represents the square of Tracking Error.
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MEAN-VARIANCE PORTFOLIO OPTIMIZATION

3. Optimal Weights

The goal of mean-variance optimization is to determine w such that either:

a) Gf) is minimized for a targeted ., or

. . . 2
b) u, is maximized for a desired G,.
When w represents active weights, either of the above translates into optimizing the Information Ratio, since:

Information Ratio = IR = ﬁ

Op

and minimizing G is the same as minimizing G,,.
The solution to w is:

w= %.[B.V‘l.l ~AV7ie+(CVie-AVIL)y ]

which, for the active weight scenario, simplifies to

w= %.(C.V‘l.e ~AV 1)

where [V is the (given) targeted return and A, B, C and D are the scalars defined as:

A=e' V'l
B=e'V'e
c=1v'1
D=BC-A’

The reader is referred to the Appendices for proofs of the above.

4. Efficient Frontier

One of the paradigms of Mean-Variance Optimization is that, for a given (e, V) combination, there exists a
continuous curve in (GE , up) space (ie. Cartesian co-ordinates) that charts all optimal portfolios. This curve is

called "the Efficient Frontier” and has the equation:

62_2( _észrl
M) TC

which can be rearranged to:
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MEAN-VARIANCE PORTFOLIO OPTIMIZATION

For the active weight analysis, these equations simplify to:

D
Hp =% E'Gp

Again, the reader is referred to the Appendices for proofs.

From these we can see that, in the non-active case, there is no possible w that can give a G; less than:

1
C
and that the return on this “minimum variance” portfolio is:

A

C

5. Practicalities

Despite the above theory being very strong, its application in the workplace becomes problematic for a
number of reasons.

Ex-Ante vs Ex-Poste

It is of little value determining what the historical (ex-poste) efficient frontier was. This is why e was defined
as the vector of expected returns. The problem is that one person’s expectation will most likely differ from
another person’s resulting in different ‘optimal’ weights. Furthermore, actual returns may turn out to be very
different from what was expected ie. with hindsight, W turned out to be sub-optimal. This forecast error is
more a measure of a portfolio manager’s ability to predict the future. Of course, there is nothing to stop a
portfolio manager revising his/her forecasts and rebalancing their portfolio accordingly and this is what is
often done by practitioners of mean-variance optimization.

Large N
The covariance matrix, V, has N x N elements. Since it is symmetric there are (N x N — N)/2 unique co-

variances and N unique variances that must be estimated. Then V must be inverted (to get V™). Obviously,
as N gets large this requires a significant amount of computational effort. Because of this, in practice, it is
usual to see mean-variance optimisation more often used in asset allocation than in stock selection.

Estimation

There are a number of ways to estimate @ and V. Aside from the proverbial ‘thumb suck’, any statistical
estimation requires judgement on a number of matters, eg. what time period to gather historical data for,
whether to give more weight to recent events, less weight or equally weight them. Furthermore, underlying
such an approach is the assumption that the time series data used comes from a stationary distribution.

Short Selling

The analysis performed above assumes short positions can be taken in any security and there is no restriction
on the amount of this shorting. In practice, however, short position on a number of assets may not be
possible and, therefore, the Lagrange analysis done in the Appendices needs to be expanded to incorporate
additional constraints.
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MEAN-VARIANCE PORTFOLIO OPTIMIZATION

Appendix A
Let p, be the expected return of asset |, ie.:
u =ER,)
Let e be the n x 1 column vector of (expected) returns, ie.:
e=[n, n, . opJ

Let V be the covariance matrix:

2
6,; Oy ... Oy, 6; Oy ... Oy,
2
G,y Oy ... Oy, G,y G5 ... Oy,
V= : ; e . .
G, © c 2
nl n2 nn Gn1 Gn2 cTr’n

Let w be the n x 1 column vector of asset weights, ie:
T
w:[co1 ®, ... con]

such that the expected return of a portfolio is:
N T
ER,)=p, =D o =w'.e
i1

and the variance of the portfolio’s returns is:

Gé =w'.V.w

G11 Op GCi1n || O
_[ 1521 O2 Oon || O
=lo, o, o, f )
cSnl GnZ cSnn (’On
®
O,
=[0,65, +©,6,, +...4®.G; ©,6p, +©,00 +...+®,C,) ... ©;6, +0,0, +...4+®,0,. ] .
Q)

=®;®;6;; T®;0,6,; +...+®;®,6,; +©,0,;G;, +®,O,G,, +...+0,0,6,, +©,0,5,, +®,®,C,, +

et ®,0,6,,

[
e
e
a
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MEAN-VARIANCE PORTFOLIO OPTIMIZATION

To find the optimal portfolio we want to find w that minimises 6’2] for a given p, (or maximises i, for a

. 2 .
given G ), ie.:

Minimise Gs subjectto wW'.e =, and wil=1

Since Gf) =w'.V.w, and minimising E.WT.V.W is the same as minimising w'.V.w, our problem can be

rewritten as:
e 1 T . T _ T _
Minimise E.w V.w subjectto w .e—p, =0and w .1-1=0
Using Lagrangian multipliers we set our objective function as:

L(w, X, &,) :%.WT.V.W kg (Wie—p)- A, (w'1-1)

Taking first partial derivatives:

Simplifying equation (3):

Vw=\e+Ai,1l

ie.  VIVw=xrV'ie+a,V1'1

ie. VT V- S VN Ve (3)
e W = (Vie) +a, (V1)

ie. w =1e’ V'+a,1' VT

Substituting equation (4) into equation (1):

(e viin,1TVvte—p =0
ie. M@ T V@4 Ay LTV ™0 = L ottt (5)

Substituting equation (4) into equation (2):
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MEAN-VARIANCE PORTFOLIO OPTIMIZATION

(re" V42,17V )1-1=0
ie. /- Y A T U L Y s S S A 6)

Equations (5) and (6) can now be written as the linear system:
e'V'ie 1'Viel|[r | [k,
e'V'l 1'vil| Ay 1
Notice that e'.V".e, 1".V'.e, €' .V .1 and 1".V'.1 areall 1 x 1, ie. they are scalars. Hence, if we
let:
B=e'V'e
A=1V'e=e'V'L
c=1Vv1

Then our linear system becomes:

el

Hence we need to solve:

N

Which requires knowledge of the inverted matrix.

B Al 1 (B A
= Adj
A C Determ A C

(IB A c -A
But the Determinant = BC — A> and Adj[|: :D ={ :| so letting Determ = D = BC — A® gives:

kot e

Ca, —A
o by =

and A, =

If we substitute these values back in to equation (3") we get:

Cu. —A —Au_ +B
w= “H TR V'ie+ e Bikid V'l
D D

Jlcp, ~A)vie+(-Ap, +B)V 1]

O+
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MEAN-VARIANCE PORTFOLIO OPTIMIZATION

= %.[(C.up.vl.e—A.Vl.e)+(— Ap V'1+BV 1)

- %.[c.up.v-l.e ~AV'e-Ap V'1+BV11]

1

- 5.[B.V’1.1—A.V’l.e+C.up.V’1.e—A.up.V’1.1]

e w= %.[B.V‘l.l—A.V‘l.e+(C.V‘1.e—A.V‘l.l)up] .................................................................................... @)

Hence, we have w in terms of [ ie.w = f(up). To get G; in terms of u, ie.Gé = f(up), we substitute

equation (7) into the portfolio variance equation:

csf, =w'.V.w

- WT.V.%.[B.V1.1—A.V1.e+(C.V1.e—A.V1.1)pp]

and remembering that A, B, C and D are all scalars:

= wT.%.[B.V.V‘l.l ~AVVie+(CVVie-AVV i1l ]

= wT.%.[B.l—A.e+(C.e—A.1)pp]

now, grouping by like (vector) terms:

= WT.%. B1-Ap, 1)+ (Cp e-Ae)

w'.

[B=Ap, )1+ (Cp, —Ae]

Olr

ie. o’ =wT.%.[(B—A.up)1+(C.up —A)e]

p

If we transpose equation (7) we get:

w' = %.[B.V1.1—A.V1.e+(C.V1.e—

AV 1) [

- %.[B.V‘l.l—A.V‘l.eJr cviep, -Aviig )|

- %.[(B.Vl.l)T ~(Avie) +(cviey,) —(A.V*l.l.up)T]
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MEAN-VARIANCE PORTFOLIO OPTIMIZATION

= %.[B.lT.(V‘l ) -Ae (V1) +Ce (V) —ALT(V? )T.},tp]
and since V' is symmetric:

- %.[B.lT.Vl —Ae"ViiCeViy —ALV Ty |
grouping by like (matrix) terms:

Brvi-AL vy )+(CeV iy —Ae" V)

Olr

e w ==[B-Ap )1V +(Cp, —Ale". V]

O~

Using this transpose in equation (8) gives:

[B-Ap )1V +(Cp, -A)e" V= [B-Ap, )1+(Cu, —Ae]

2 _
Gp—

Olr
Olr

= é.[(s ~Ap )1V 4 (Cp, A"V E[B-Ap, )1+ (Cp, —Ale]

1 [B-Au PV B-AR, JCh, ALV e
D’ +B-Ap,lCu, -A)eV 1+(Cp, -AFe Ve

1 [B-Ap, 1V 1+B-Ap )(Cu, -A)L"Vie+e' Vi1
_F'_ +(C.up —A)Z.eT.V’l.e ]]
but we remember that:

1vii=C

1Vie=e'V'li=A

eV'e=8B

SO,

o2 = é.[(B—A.up)z.C+(B—A.up)(C.up ~A)2A+(Cp, ~AFB]

- é.[(s ~Ap, JB-Ap, )C+B-Ap, )Cu, ~A)2A+(Cp, —A)(C, ~A)B]

1 [B%-2.ABp, +A%12)C+[BCp, —~AB-ACHZ +AZp J2.A

D>’ +(Cp2—2ACH, +A%)B
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MEAN-VARIANCE PORTFOLIO OPTIMIZATION

1

=57

=57

=57

[(B>.C—2.ABCu, +A2.Cp?)+(2ABCp, —2A7B-2.A%.Cp2 +2.A% .
+(BC2u2 —2.ABCy, +A’B)

[(B°.C-2.A2B+A?B)+(-2.ABCp, +2ABCp, —2.ABCy, +2.A%
2 2 2 2 2 2
+(AZCp2 —2A2.Cu2 +BC2Y2)

| )}

'B>.C-2.AB.Cp, +A’.Cu’ +2.ABCu, —2.A°B
—2.A*Cpj +2.A% p, +BC2 2 —2.ABCp, +A’ B

7

[B2.C—A?B)+(-2.ABCu, +2.A% )+ (-A%.Cp? +BC2 12|

L [B2c-A2B)-(2ABCH, —2.A% )+ B.CEu2 —A2Cp2)]

L [Bc-A2)B-(BC-A%)2A4, +(BC-A?)Cp?]

but B.C—A? =D so:

2

(¢

1

oln gln gln

gln
1

gln

gln

"or

12 pB-D2AY, +DCy?]

é.D.[B ~2Ap, +Cp2]

S B-2Ap, +Cp?]

B _A 1
E_Z.E'Hp_'_“z_
A B
“5_2'6'“P+E
e
fem o e e e) Tl |
5 (AJE(AJ
" ""c) Teld) |
R
fomc) T lc
AY B A?
woc)tee
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MEAN-VARIANCE PORTFOLIO OPTIMIZATION

e GZ—E( _éj2+l
' »~pl'rTc) "¢

2 . .2
Hence, we have G, interms of n, ie.o, = f(up).

. 2 . . .
To get p, interms of G, we simply re-arrange equation (9):

L . 2
which is L1, in terms of G,.
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MEAN-VARIANCE PORTFOLIO OPTIMIZATION

Appendix B
Active Analysis

The previous analysis required the constraint:
wil=1

which, for an active analysis, should be:
w'.1=0

Therefore, to find the optimal portfolio we want to:

Minimise GFZ, subject to W' .e =, and w'.1l=0
1
ie. Minimise E.WT.V.W subject to WT.e—},tp =0and w'.1=0
Our Lagrange objective function then becomes:
L _ 1 T V T T 1
(w, &y, A,) -E.w Vw-21 (w.e—p)-%,.(w.1)

Taking first partial derivatives:

aa—}i‘l=wT.e—pp R (B.1)
% e R S (B.2)
%:v.w—xle—x;:o ...................................................................... (B.3)
Simplifying equation (B.3):
Vw=\e+Ai,1l
ie.  VVw=2V'ie+a,V1i1
ie. VT V- S N Ve (B.3)
ie.  w' =x,(V%ie) +a,(V11)
ie. T - Ve e L VS (B.4)

Substituting equation (B.4) into equation (B.1):

eV Ve, =
(" V142,17V e . =0

Page 12



MEAN-VARIANCE PORTFOLIO OPTIMIZATION

ie. 7€ V@ + A, 1TV ™0 = Lt

Substituting equation (B.4) into equation (B.2):

(he" V4,17V 1)1=0

ie. 2@ T V1421V 71 =0 s

Equations (B.5) and (B.6) can now be written as the linear system:

e'Vie 1.Viel|[r | [k,
e'V'1l 1"vi1(|r,| | O

Notice that e'.V*.e, 1"V '.e, e .V .1 and 1.V .1 areall 1 x 1, ie. they are scalars. Hence, if we

let:
B=e'V'e
A=1V'e=e'V'L
c=1Vv"1

Our linear system becomes:

el

where, as before:
A=1V'e=e'V'1
B=e'V'e
c=1v1

Hence we need to solve:

R

Which, again, requires knowledge of the inverted matrix and leads to the equation:

bt e s

C
ie. Ay = ;p and A, =

Substituting these values back in to equation (B.3') we get:
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MEAN-VARIANCE PORTFOLIO OPTIMIZATION

Hence, we have w in terms of [ ie.w = f(up). To get Gf) in terms of [V ie.Gé = f(up), we substitute

equation (B.7) into the portfolio variance equation:

o, =w'.V.w
- wT.V.[%.(C.Vl.e - A.Vl.l)}

. %.WT.[(C.V.V‘l.e ~AVV1)

Mo
=—.w (Ce-Al
= w' (Ce-Al)

If we transpose equation (B.7) and substitute it in, we get:
[ !
== .B’.(c.v-1 e—AV? .1)} (Ce—A1)

2
e (cervioA1V)(Ce-AL)

D?’

2
_ %,(Cz.eT.V‘l.e—A.C.eT.V‘l.l—A.C.1T.V‘l.e+A2.1T.V‘1.1)

2

~ o (B-ACA-ACA+A’C)
D

2
- %.(CZ.B ~ALQ)
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