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Estimation of Black-Scholes by Explicit Euler

1. Introduction

Finite differences are a tool used in the physical sciences to find numerical solutions to partial
differential equations (“PDEs”) for which there is no closed-form/analytical solution. They were
first applied to option pricing in the late 1970s when large scale computer power became available
to academic institutions. Their continued popularity is due to the inherent flexibilty in their
application: they can be used to solve (numerically) a wide variety of PDEs.

This paper demonstrates one method of finite differencing — known as the Explicit Euler method —
to solve (numerically) the Black-Scholes PDE. Firstly, this partial differential equation is derived
which is then followed by a discussion of finite differencing. Secondly, the Explicit Euler method is
explained and an algorithm is generated that is coded into Excel VBA. Some numerical results are
then discussed.

2. Deriving the Black-Scholes PDE
Before we begin to derive an option's price we must make a crucial assumption: we must specify the

price process taken by the underlying asset. Black-Scholes makes the assumption that a stock (the
underlying asset) follows a standard Geometric Brownian Motion' process:

%=u.dt+a.@.dz
ie:
AS=S.u.dt+S.0Ndt.AZ ..o Q2.1)

Now consider an option,V, written on the stock, S, that pays no cash return (ie. dividends) during
the option's term. For each option written (ie. sold) we hold a certain quantity,A, of the underlying
stock. Call this combination of option written (ie. sold) + stock held, the Hedge Portfolio, I1. The
value of the Hedge Portfolio at any point in time is, therefore, determined by the formula:

Hence, small® changes in the Hedge Portfolio, ie. d I, can be written as:
AIT=dV —A.dS .o, (2.3)

Now, we know that the value of an option is a function of the value of the underlying (§) and time
(1), ie. V(S,t). Since S is stochastic we use Itd's Lemma to arrive at the expression for dV:

oV oV o'V
av =L dS+<-  dt+—. .
v oS S ot ! 208

(ds)’

Since we already know dS (from equation 2.1 above) we can substitute it into this equation to get:

1 Also called a "Weiner' or 'square-root-of-time' process.
2 'Small' as in infinitesimally small. I shall adhere to the standard convention of using prefix d to refer to
inifinitesimally small changes while A refers to a comparatively, much larger change.
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o'V

1 — 2
dv —. AS.u.dt+S.0.Ndt.dZ
Y (S.u o )

oV ov
=V s udt+S.oNar.dz)+ 2L ar+
g (SH 7 5

Separating out the first term on the RHS and expanding the last term (in the process, recognising
through the rules of 1t6 Calculus that dr. dt=0, dt. dZ= 0 and dZ . dZ= var(dZ) = 1) we arrive at:

oV oV
av=Y (s u.a)+2V (s.o.Ndr.az)+ YV g+ L oV
oy (S d)+me.(S.o 1+ 2 8¢

P
ov 1 0V 2 o2 di

Grouping the df and dZ terms gives:

ov oV 1 0’V
S S u+ 4=,
os Mo T2 eg

dv = LSE ot dt+

g_g.s.o.@].dz

It is worth noting at this point that the second term on the RHS (ie. the dZ term) is the only source
of uncertainty in the value of dV. The first term (the df term) is just a function of the change in
time. Substituting this equation for dV and our equation for dS into equation 2.3 we get:

oV oV 1 0V & oV —
dll=||—.S. u+——+—. Sotdt+ | —=.S.o.Ndt|.dZ|-A.(S.u.dt+S.o.Ndt.dZ
as oM o T a0 Y o5 S0 } (S-n 7 )
Grouping the df and dZ terms separately:
oV oV 13V 2 > oV
dll=|——.5. u+——+—. S0 =A S uldt+|=—=.S.0.Vdt |.dZ—|A.S.0.Vdt|.dZ
os > e T2 e Y H as 7 } 4.8.0.di

Now, to eliminate the dZ terms — and thereby remove the sources of uncertainty in d IT — we choose
a value of A such that the last two terms on the RHS equate, ie. we set:

oV
A=—
oS

Then the equation simplifies to:

2
an=2V L 0V @ 2l

ot 2 582

However, now that there is no uncertainty in d I1, in order for there to be no arbitrage, d IT must
change at the risk-free rate’, ie:

dll=r.II.dt
but we know from equation 1.2 the formula for II so this becomes:

dll=r.(V—AS).dt

3 The astute reader will have noticed that the g¢term carried over from equation 1.1 has disappeared. The
significance of this cannot be overstated: the price of an option does not depend upon what an investor considers the
value of y to be.
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expanding the RHS and substituting in our value for A gives:

ov
V=r.——=.5
r r3s

dIl= .dt

Substituing equation 2.4 for the LHS:

2
V.1 7y Vs 2L s|a

oS

.o dt=

Dividing both sides by dr:

1 0°V o ov
+=. St ot=r.V-r=.5
t 2 08 o= 4 oS

which simplifies to:

ov . oV 1 0*V
ot 0SS 2 a88*

ie:

ov ov S.a® o'V
+7. S+ ) e V4 | N
ot : 0S 2 " o08° ’

which is the Black-Scholes partial differential equation (“PDE”).

3. Approximating Partial Derivatives using Finite Differences

Consider the following diagram which shows V at various levels of S for a given ¢ ie. we have frozen
time at time=¢ and are just looking at how V varies with S:

A%
A

V(S+AS, t)

VS, 1)
V(S-AS, 1)
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Let DE be the tangent to the curve ABC at point B. By definition, the slope of DE is the first
derivative of V with respect to S, ie:

dv
Slope of DE = S

It is this value that we wish to estimate using finite differences and we have three estimators we can
choose from:

V(S,t)-V(S—AS,t)

grad AB = AS = Backward Difference
grad AC = VIS+AS,0)=V(S-AS.1) = Central Difference
2.A8
+AS,1)—
grad BD = VIS+AS, )=V(S,¢1) = Forward Difference

AS

Even from eyeballing the diagram it is easy to see that the central difference appears to be the most
accurate. In the coming discussion we will see that this, is indeed, the case mathematically. We
will also see that even though they are less accurate, in certain circumstances it is preferable to use
either a forward or backward difference estimator.

3.1 Theta

Consider the 1* order Taylor appoximation of V (S, ¢) around :

v(s,z+m)=v(s,;)+%.m.%—‘t’m{(mﬂ

where O {(A t)z}represents all terms of order (A)” and higher. This can be simplified to:

V(S,t+At)—V(S,t)=At.aa—‘t/+0[(At)2]

which, after dividing both sides by At gives:

V(S,t+At)-V(S,t) oV
=—+0|At
At ot [ ]
ie.t
oV _V(S,t+A1)-V(S,1)
= +0O|At
ot At { ]
or.

4 Note that the sign of O [At] does not change as it is implicit within the function O[.].
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oV _VI(S,i+At)-V(S,1)

N T e 3.1
ot At G-
o . . oV
which is a Forward Difference estimate for Theta E) .
A Backward Difference estimate is obtained by expanding with — A instead of +A¢, ie.:
V(S t+=A0)=V(S )+ (=0, Srvo-ar]
ie.
V(s i-a0=v(s,1)--. a0l (ar]
ie.
V(S 1-a0-V(s.)=-a1. 5" +0[(ArY]
which, when dividing both sides by — A ¢t becomes:
V(S,t—At)-V(S,t) oV
=—+O0|At
—At ot a1
ie.
V(S,t)-V(S,t—At) oV
=—+O0|At
At ot a1
ie.
oV _V(S,1)=-V(S,t—Ar)
= +O|At
ot At A1
ie.
-V —-A
OV VIS VIS AZAL) s (3.2)

or At
which is a Backward Difference estimate for Theta.
Note that both the Forward and Backward Difference estimators produce an error of the same order,

0|At].

3.2 Delta




Estimation of Black-Scholes by Explicit Euler

Now consider the 3 order Taylor approximation of V (S, ¢) around S:

oV

S3

2 OV 1 3 4
(ASP. Sty (As) +0[(AS)]

_ 1 ov. 1
V(S+AS,t)—V(S,z)+“.AS. 85+2/

1e.
2 2 3 3
oV (AS) 8V+(AS) 6V+

V(S+AS,1)=V(S,1)+AS. 7=+ : .
( >()5528526853

ol(as)] . (3.3)

Where O {(A S)ﬂrepresents all terms of order (A S)* and higher. Similarly, for — A Swe have:

2 2 3 3
0V, (ZASP @'V, (-AS) o'V

+(—A = +(—A :
V(S+-A8),0=V (S, +(-a8). Ger FSE S RS S0

+0[(-AS)"|

ie:

oV (AS) &’V (AS) &V
V(S—AS,t)=V(S,1)—AS. T+ . — .
( )=V (S,1) Y T

Subtracting equation 3.4 from equation 3.3 gives:

3 ov [(AS) &'V
V(S+AS ,t)-V(S AS,t)—Z.AS.aSJr BT

Simplifying the braced terms to O [(A Sﬂ gives:

V(S+AS ,r)—v(S—AS,t)=2.AS.g—‘;+0{(AS)3}

and dividing both sides by 2. A S:

V(S+AS,1)-V(S—AS,t)_oV

2.AS oS +ol(asy]

ie.

oV _VI(S+AS,t)-V(S—AS, 1)

oS 2.AS +o|(asy]

or:

0V _V(S+AS,1)-V(S—AS,1)
aS 2-AS .........................................

ov
0S|’

which is a Central Difference estimator for Delta
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Note that the central difference estimator has an error of the order O [(A S )2} We could have chosen
to use a central difference estimator for Theta rather than a backward or forward difference (see
previously). This would result in a smaller error for our estimate of Theta as O [( A tﬂ <0 [ A t].

However, for reasons that will become apparent later, it is better to use forward or backward
difference estimators for Theta.

33 Gamma

To find a Central Difference estimator for Gamma we add equation 3.4 to equation 3.3, rather than
subtract it (as for Delta). This gives a different equation:

V(S+AS,)+V(S—AS,1)=2.V(S,1)+(AS). a;S‘Z +0/(AS))]
ie.
V(S+AS,1)=2.V(S,t)+V(S—AS,1)=(AS). ‘ZZS‘Z +0[(ASY]
ie.
V(S+As,r)—2.(\;(5),2r)+v(S—As,t)=<22;/2 +olasy]
ie.
gzsx;= V(S+AS,t)—z.(\;(;?),zr)+V(S—AS,r)+0[(AS)3]
or:

O’V _VI(S+AS,1)=2.V(S,t)+V(S—AS, 1)
08 (AS)
o’V

SZ

which is a Central Difference estimator for Gamma

4. The Explicit Euler Method
Recall the Black-Scholes PDE (equation 2.5):
oV v 8.0’ o’V

+r. 5. + . —r.V=0
or S st T e Y

If we use central difference estimators for Delta and Gamma and use a backward difference
estimator for Theta, we can write the equation in terms of finite differences as follows:
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V(S,t)—V(S,t—At)]_i_r S{v(sms,t)—v(S—AS,t)l

At o 2.A8

V(S+AS,1)-2.V(S,t1)+V(S—AS,t)
(AS)

2 2
S.o

: —r.V(S.1)=0]At,(ASY]

+

Multiplying both sides by At and moving denominators to the coefficient terms gives:

r.S.At
2.AS8

V(S,t)-V(S,t—At)]+ JV(S+AS,t)-V(S—AS,1)]

S0’ At _ i i
+m~[V(S+AS,t)—2-V(S,t)+V(S—AS,t)]—r.At.V(S,t)_o[(m) A1.(AS))
ie.:
V(S,t—At)=
V(S,1)
r.S.At
ZAS.“NS+ASJ%JNS—ASJH
S’ o’ At
37Z§F<h%S+A&m—2VQLﬁ+vw—AS¢ﬂ
—r.At.V(S,1)

+0[(A1),At.(AS)]

Grouping similar V(. ,.) terms:

V(S,t—At)=

S’ 0’ At r.S.At

+ - VI(S—=AS,t
| 2.(AS)  2.A48 ( )

2 2

+ 1—2'5'7(7'2At—r.m V(S,t)
_ 2.(AS)
($.0%. At r.S.At

+ + VI(S+HAS,t
| 2.(AS)  2.A48 ( )

+0[(A1),At.(ASY]

Dropping the O { , } operator and simplifying:
V(S,t—At)~

S*.o*. At r.S.At

+ — V(S=AS,t
| 2.(AS) 2458 ( )

2 2

=SSO AL gy —— (4.1)
- (A9)
-SZ.O'Z.AI r.S.At

+ + VI(S+AS,t
| 2.(AS)  2.4S ( )

Which is an expression of V (., 71— At) in terms of V (., ¢).

10
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4.1 An Algorithm for Explicit Euler

To recap: we have taken the Black-Scholes PDE, expressed it in terms of finite differences and re-
arranged it to express an option's value at time t — At as a function of its value at time r. We express
this graphically using some ASCII-art. Consider the following example:

0 i i et et e e e e T= time

5At 4At 3At 2At 1At 0 = kAt
S jAS \ \ \ \ \

- - \ \ \ \ \ \
S0 0 ————F——F———t———t
\ \

1AS————+ + V(1AS,T)
[ /|

2AS————+ V(2AS, T-At) +———+ V (2AS,T)
\ \

3AS————+ + V(3AS,T)
\ \
4AS————+ +
\ \
Smax SAS————t———t———F———t———t———+

While this diagram may seem daunting at first, upon further analysis it's quite simple. Down the
left hand side we have discretized the asset price S into j units of AS each (j=5 in this example)
ranging from S=0 up to S=Smax. Starting from the top left we see that S starts at zero and
increases as we move down the axis to 5AS.

The time axis, however, is not so straight forward. It starts from the right (t ime=T) and works
backwards in time to the left with each node ('-+-") representing a movement back in time by At
until we reach t ime=0 (k=5 in this example). This representation of time is in keeping with our
choice of a backwards finite difference estimator for Theta.

Shown in the diagram is our finite difference estimate V (2AS, T-At) which is in accordance with
equation 3.1 (coefficients are not shown, of course). Therefore, if we repeat this calculation for all
other nodes at t ime = T-At then we build a grid — column by column — as we move backwards
to t ime=0. This, in essence, is the Explicit Euler Method of finite difference estimation:
iteratively working our way back from a final position to an initial position.

While such an approach is easily understood, it is often the case that in textbooks that our final
condition is turned into an initial condition by reversing the time variable so that we start from the
left and work our way, iteratively, across to the right. We are still, of course, moving back in time
but we are doing so from left to right, rather than right to left. The following diagram shows this:

T i i e et et et e e . 0= time

0 1At 2At 3At 4At 5At = kAt
S \ \ \ \ \ \
- \ \ \ \ \ \
S0 R e e
\ \
V(1AS,T)+ +
[ \
V(2AS, T) +———+V (2AS, T-At) +
|/ \
V(3AS,T)+ +
\ \
+ +
\ \
Smax s B e

11
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Now, we have both S and t starting at the top left. So, moving from left to right on the time axis,
we start at the option's expiry date T and move forward (back in time) to the option's start date. It is
V at this date ie. V (., 0) that is the whole purpose of the method of finite differences: we are trying
to estimate the option's price at t ime=0.

Taking equation 4.1 and expressing its S and ¢ variables in our discretized form gives:

V(j.AS.[k+1]. A1)~

(j.ASY.0%. At r.j.AS.At .

+ — V([j—1].A8 kAt
- 2.(A8) 2.AS (Li-1] )
[ . )

- L:AS) - Al Al V. AS kAL

(AS)
(ASY.0% At r.j.AS.At ,
+ V([j+1].AS, k At

Simplifying the coefficients gives:

V(jAS,[k+1].At)~
-jz.az.At_r.j.At
2 2
+-1_j2.crz.At
| 1
jz.cr;.At+r.j.2At

+

l.v([j—l].As,k.At)
—r.Atl.V(j.AS,k.At)

+

l.V([j+1].AS,k.At)

and bringing out common factors gives:
V(jAS,[k+1].At)~

+%.[]‘. F—r . V([j=1].AS kA1)

1= 0" At—r.At].V(j.AS, k. At)
+%.U. Fr| V([j+1].AS, kAt)
ie.
V(jAS, [k+1].At)~
+a.V([j—1].AS, kA1)

+b,.V(j.AS k. At)

+c, V([j+1].AS8 k At)

12



Estimation of Black-Scholes by Explicit Euler

where’

At
aj=—J2 .[].02—}"]
b=[1=2. 0 At=r At] oo (4.2)
cj=]'TAt.[j.Uz+r]

This can be expressed in simpler notation by using V’;: V(j.AS,k At) such that the above
equation becomes:

Vi ma, Vi 4 b Vit e, Vi) e (4.3)

J

Which is the form often seen in textbooks and can be visualised like so:

0 1At 2At 3At 4At 5At = kAt
jas \ \ \ \ \
- \ \ \ \ \ \
0 - e e e
\ \
1AS ———— V? + +
I\ \
0 1
2AS ———— ‘/2 +———t ‘/2 +
|/ [
3AS ———- Vg + +
\ \
A0S ———————— + +
\ \
5AS ———————- e e S At

Recall equation 4.3:
k+1 k k k
Vit~a. Vi +b.Vi+c; Vi

Using our previous example (j=0, 1, ..., 5 and k=0, 1, ..., 5) this gives general equation rise to the
following system of linear equations:

Vi~a, Vo+b, . Vitce, V)
Vica, Vi4+b,. Vite, V)
Vi~a, . Vi+b,. Vites. V)
0

Vica, Vi+b, . Vitc,. Ve

which, when flipped around the equalities, can be represented in matrix form Ax=b as:

5 Note that none of these coefficients is a function of k. This has important consequences for our algorithm which we
will discover shortly.

13
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We cannot determine either V* or V; because we do not know V, and V.. Looking at the previous

iteration we see that V, and V| were never determined. In short, we have not specified the
conditions at the boundaries of the region where our partial differential equation is defined.

What these boundary conditions are will depend upon the nature of the option contract. For a
European Call option, they are usually chosen based on the the following observations:

as S—0then V_,—0 AND as S—oothen V ,—S

The former states that as S gets closer and closer to zero — ie. is deeper and deeper out-of-the-money
— the probability that it will go above the call option's strike price (during the remaining term of the
option) gets smaller and smaller. There comes a point where this probability is so low as to be
negligible. Hence, the value of the call option is zero.

The latter observation specifies the opposite: as S gets larger and larger relative to the strike price
the option begins to behave more and more like the underlying. For very large S, the option behaves
just like S. However, in order to avoid excessive computation time caused by a large number of
asset steps, it is desirable to use a different boundary condition:

14
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—r.k. At

asS—jASthenV ,—j.AS—K.e
where K is the option's exercise price.
For a European Put option the boundary conditions are usually set based on:
S—0as thenV,, —K.e """ AND S—ow as then V,,—0

These, however, are not the only boundary conditions that may be imposed. An alternative is to
look at the PDE itself and see how it behaves when S —0 and S—oo. Recall the Black-Scholes PDE
(equation 2.5):

2 2 2
oV, gov. S.a 3V _

EPRRRLNPY: Y r.v=0

As §—0 we can see that the equation becomes:

——r.V=0
ot ’

which, when substituting our backwards difference estimator for Theta (equation 3.2) becomes:

V(0,t)=V(0,t—At)
At

—r.V(0,t)~0

ie.:
V(0,t)—r.At. V(0,t)~V(0,t—At)
ie.:
1—r.At].V(0,1)~V (0,t—At)

which, using our discretized notation is:

1—r. At VimVET
ie.:

Vgﬂw{l—r. At}. 1%
ie.:

Vo L r A VT e, (4.4)

2
Vv . . )
Iz — 0, ie. as S gets very large the option value becomes linear such that Gamma

As S — o then Z

15
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becomes zero. Using our central difference estimator for Gamma (equation 3.5) gives:

V(S+AS,t)-2.V(S,1)+V(S—AS,1)

2 NO
(AS)

ie.
V(S+AS,t)-2.V(S,t)+V(S—AS,t)~0
ie.
V(S+AS,t)~2.V(S,t)-V(S—AS, 1)

which, when discretized becomes:

vi=2.vi-vt
ie.:

VAR 2 V=V e, (4.5)

J

Substituting equations for V’;_l and V];._z gives:

k k—1 k—1 k—1 k—1 k—1 k—1
Vi2 la, Vb, VA e VA e VT b Ve, VR
ie.:

k k—1 k—1 k—1 k—1
VjN_aj_z. Vj—3+ 2.aj_l_bj_2). Vj—2+(2‘bj—l_cj—2)'Vj—l+cj—l' Vj

The beauty of these two alternative boundary conditions (ie. equations 4.4 and 4.5) is that they can
be used for either a European Call or a European Put, thereby simplifying the coding.

Using our boundary conditions our linear system becomes:

| 1 ] 1
N | 0 1
(1=r.At) 0 0 0 0 0l|Ve| [Vo
0 1
a, bl (69 0 0 0 Vl Vl
0 a, b, c, 0 0|Vy] |V
0 0 a b, cs 0|vyl |V}
0 0 0 a, b, | [V |V,
0 0 (-a;) (2.a,=b;) (2b,—c;) ¢ Vg V;
1 | ] |

which is now fully specified and can be coded as follows:

16
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1) set up the matrix A;

ii) use the option's payoff function (at option expiry: t ime=T; k=0) to establish vector x;
i) solve for vector b;

iv) letx =b;

V) repeat iii) to iv) for the number of time steps®.

4.2 The Stability of Explicit Euler

The reader will have noted from the preceding discussion that finite difference methods give a series
of estimates for V at each point in time: one for each value of S. So, by choosing the size of the
asset step, A S, the user can obtain the option value for a desired price level. This leads us to the
main problem with Explicit Euler: stability.

Despite its simplicity, Explicit Euler is a BAD method. This is because its estimates become
unstable when the number of time steps specified (k) is less than the square of the number of asset
steps specified (j). Alternatively: when the size of the time step, A ¢, exceeds a given value of the
asset step, A S. The result is that the Explicit Euler estimates “explode” (rather than converge) as
we step through time.

Proof is by way of a concept in physics known as von Neumann stability. A finite difference

i.B.j.A1
9

method generating estimates V]; is von Neumann stable if, under the subsitution V];:Ek. e the

absolute value of £ is less than one, ie. if [E|<1, where i=+—1 and B€|—, m].
So, substituting into equation 4.3 gives:

k+1  i.B.jAr_ k  i.B.(j—1).At k  i.B.jAt Kk iB.(j+1).At
& e =a;. § .e +b;.& e +c;.& .e

ie.
kol iBjAt_ k i.B.j.At  i.B.—1.At kK i.B. At k  i.B.jAt i.B.1.At
E & .e =a;.§ .e .e +b;.& .e +c;.& .e .e
ie.
k i.B.j. At 11k i.B.j.At —i.B.At i.B.At
e JE|=E"e la;.e +b,+c;.e |
ie.

—i.8.A i.B.A
£=a;.e o '+bj+cj.e"3 '

Recognising that ¢ **=cos (x)—i.sin(x) and " “*=cos (x)+i.sin(x) gives:
E=a,.[cos(B.At)—i.sin(B.At)|+b,+c,.[cos(B.At)+i.sin(B.At)]

which rearranges to:

6 The astute reader will notice that under these boundary conditions, we have a Markov Chain with A as the transition
matrix. Consequently, A only needs to be established once leading to flexible and simplified coding.
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E=b +[c,+a;|.cos(B.At)+|c;,~a,|.i.sin(B.A¥)

substituting in our values for @, b ; and ¢ ; (from equation 4.2) gives:

§=
+H1-j. 0" At—r. At]
H Lo e SR o r] | cos(B. A1)

2 o 2 st

which simplifies to:

&=
+H1-j 0" At—r.At]

+[j*.0%. At].cos(B.At)
+[j.r.At].\—=sin’(B. At)

It turns out that for [£|<1 the following three conditions must hold:

FoATZ0 e (4.6)
PP AL P AL e, 4.7)
(4.8)

L= 7 0 AL =F. ALZ0 e

While equation 4.6 is clearly satisfied, equation 4.7 can be simplified to:

Jot At=j.r. At

which places a lower bound on the number of asset steps, j.

Equation 4.8 can be simplified to:

1=/ 0°. At+r. At

1=[j*. 0" +r]. At

1 2 2
—>7J] .0 +
At J !
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T
and since At= ;:

This equation is the one which best demonstrates why Explicit Euler is viewed by some as a bad
method. If we increase the number of asset steps — in order to increase our precision on S — then we
must increase the number of time steps by the square of the asset step increase. For example if we
increase j by a factor of 2 (ie. we double the number of asset steps) then equation 4.9 requires us to
increase k by a factor of 22 (ie. we quadruple the number of time steps), so our computation time
goes up by a factor of 8!

4.3 Example VBA Code

Having developed our algorithm and identified our stability constraints it is time to write some
code. The following code listing is a simple but thread-bare Explicit Euler model that incorporates
what has been discussed so far.

1 Public Function ExplicitEuler( _

2 sglStrike As Single, _

3 sglSigma As Single, _

4 sglRfrate As Single, _

5 sglTerm As Single, _

6 intNAS As Integer, _

7 Optional strType As String = "Call" _
8

9

) As Variant
10 Dim j As Integer, _
11 k As Integer, _
12 intNTS As Integer, _
13 sglDeltaS As Single, _
14 sglDeltaT As Single, _
15 sglarrTM() As Single, _
16 vararrVold As Variant, _
17 vararrVnew As Variant
18
19 '// ensure stability of Explicit Euler
20 intNAS = Application.WorksheetFunction.Max(intNAS, Int(sglRfrate / sglSigma * 2) + 1) '// satisfy constraint on # asset steps
21 iNtNTS = Int((intNAS ~ 2 * sglSigma ~ 2 + sglRfrate) * sglTerm) + 1  '// satisfy constraint on # time steps
22
23 '// determine size of steps
24 sglDeltaS = 2 * sglStrike / intNAS '// note: Smax = 2 x Strike Price
25 sglDeltaT = sglTerm / intNTS
26
27 '// redimension Transition Matrix (TM) and vectors of option value estimates (V-old an V-new)
28 ReDim sglarrTM(0 To intNAS, 0 To intNAS), _
29 vararrVold(0 To intNAS, 0 To 0), _
30 vararrVnew(0 To intNAS, 0 To 0)
31
32 '// place FD coefficients (aj, bj and ¢j) into Transition Matrix
33 Forj=1To intNAS - 1
34 sglarrTM(j, j - 1) = j * sglDeltaT / 2 * (j * sglSigma ~ 2 - sglRfrate) '// aj
35 sglarrTM(j, j) = 1 - j ~ 2 * sglISigma ~ 2 * sglDeltaT - sgIRfrate * sglDeltaT '// bj
36 sglarrTM(j, j + 1) = j * sglDeltaT / 2 * (j * sglSigma ~ 2 + sglRfrate) '// ¢
37 Next j
38
39 '// set boundary conditions in Transition Matrix:
40 '// as S->0
41 sglarrTM(0, 0) = 1 - sglRfrate * sglDeltaT
42 '// as S -> Smax
43 sglarrTM(intNAS, intNAS - 3) = -1 * sglarrTM(intNAS - 2, intNAS - 3)
44 sglarrTM(intNAS, intNAS - 2) = 2 * sglarrTM(intNAS - 1, intNAS - 2) - sglarrTM(intNAS - 2, intNAS - 2)
45 sglarrTM(intNAS, intNAS - 1) = 2 * sglarrTM(intNAS - 1, intNAS - 1) - sglarrTM(intNAS - 2, intNAS - 1)
46 sglarrTM(intNAS, intNAS) = 2 * sglarrTM(intNAS - 1, intNAS)
47
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48 '// set initial condition (= option payoff at expiry) in column vector of option value estimates
49 For j = 0 To intNAS

50 vararrVold(j, 0) = Application.WorksheetFunction.Max(0, (j * sglDeltaS - sglStrike) * IIf(strType = "Put", -1, 1))
51 Next j

52

53 '// now step through each time step (ie. going 'back in time') to reach our answer

54 For k = 1 To intNTS

55 vararrVnew = Application.WorksheetFunction.MMult(sglarrTM, vararrVold)

56 vararrVold = vararrVnew

57 Next k

58

59 ExplicitEuler = vararrVold

60

61 End Function

The following points can be made about the above code:

* Lines 7 and 50 provide flexibility to price either a put or call option.

* Lines 19 to 21 set the number of asset steps and the number of time steps so as to ensure
stability of our estimator.

* Line 24 sets our proxy for S,,, equal to double the option's strike price.

* Lines 39-46 implement our boundary conditions.

* Lines 48-51 gets the algorithm going by setting our initial condition.

* Lines 53-57 is the 'heavy lifting' ie. where we step back through time to find our initial
option values.

* Line 59 returns our answer: a column vector of option value estimates at time=0.

4.4 Example Numerical Results
The chart and tables below have been produced based on the following assumptions:

Strike Price Volatility Risk-free Rate Term # Asset Steps Type

20 0.2 0.05 1 40 Call

A modified form of the code in section 4.3 was used which is listed in full at Appendix A.

Option Value

Maturity

2
L
Ay,
A
%

Asset Price
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In this chart we can clearly see how we started at the back (Maturity) and worked our way forward
to time=0 to go from our rigid payoff-at-expiry function to the familiar two-dimenstional 'hockey
stick' curve of Black-Scholes as often seen in text books.

4.4.1 Option Prices

In terms of its accuracy, the following table shows that Explicit Euler comes very close to the true
Black-Scholes option price:

Explicit Euler Black-Scholes

S Estimate Price Difference % Difference

0 0.00000 0.00000 0.00000 N/A

1 0.00000 0.00000 0.00000 N/A

2 0.00000 0.00000 0.00000 N/A

3 0.00000 0.00000 0.00000 N/A

4 0.00000 0.00000 0.00000 N/A

5 0.00000 0.00000 0.00000 N/A

6 0.00000 0.00000 0.00000 N/A

7 0.00000 0.00000 0.00000 N/A

8 0.00001 0.00000 0.00001 256.00%

9 0.00011 0.00006 0.00005 96.00%
10 0.00067 0.00048 0.00019 39.00%
11 0.00311 0.00269 0.00042 16.00%
12 0.01145 0.01089 0.00056 5.00%
13 0.03449 0.03428 0.00021 1.00%
14 0.08726 0.08829 -0.00103 -1.00%
15 0.19030 0.19345 -0.00314 -2.00%
16 0.36622 0.37188 -0.00566 -2.00%
17 0.63482 0.64272 -0.00790 -1.00%
18 1.00892 1.01824 -0.00932 -1.00%
19 1.49246 1.50217 -0.00971 -1.00%
20 2.08093 2.09012 -0.00919 0.00%
21 2.76353 2.77158 -0.00805 0.00%
22 3.52597 3.53259 -0.00663 0.00%
23 4.35292 4.35810 -0.00518 0.00%
24 5.22993 5.23381 -0.00388 0.00%
25 6.14441 6.14721 -0.00280 0.00%
26 7.08610 7.08805 -0.00195 0.00%
27 8.04704 8.04835 -0.00131 0.00%
28 9.02128 9.02212 -0.00084 0.00%
29 10.00453 10.00503 -0.00050 0.00%
30 10.99377 10.99403 -0.00026 0.00%
31 11.98694 11.98702 -0.00008 0.00%
32 12.98265 12.98260 0.00004 0.00%
33 13.97997 13.97984 0.00013 0.00%
34 14.97831 14.97813 0.00018 0.00%
35 15.97728 15.97707 0.00021 0.00%
36 16.97664 16.97642 0.00022 0.00%
37 17.97622 17.97602 0.00020 0.00%
38 18.97593 18.97578 0.00016 0.00%
39 19.97569 19.97563 0.00006 0.00%
40 20.97546 20.97554 -0.00009 0.00%

As can be seen, the differences are small in absolute terms but start to become quite large in relative
terms (ie. % Difference) when the option is deeply out-of-the-money. These relative differences
become so large that they were truncated for S < 8.
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The precision of Explicit Euler can be improved by increasing the number of asset steps but, as we
have seen, this comes at the cost of increased computation time. The following charts shows how
accuracy improves as the number of asset steps (“NAS”) increases:

Effect of NAS on Accuracy of Explicit Euler Call Option Price Estimate

—H#— NAS=10 —>— NAS=20 NAS=40 —li— NAS=80 —€— NAS=160

0.05

-0.05

-0.10

Difference from Black Scholes Value

-0.15

-0.20

Asset Price

Effect of NAS on Accuracy of Explicit Euler Call Option Price Estimate

—*%— NAS=10 —¢—NAS=20 NAS=40 —#— NAS=80 —&— NAS=160

160%
140%
120%
100%
80%
60%
40%

20%

% Difference from Black Scholes Value

0%

-20%

-40%

Asset Price

What is notable from the first chart is that while increasing NAS does increase accuracy, most
inaccuracy occurs when S is near the strike price. Also striking is the consistent underpricing of
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Explicit Euler over this region. The second chart shows what we have seen from our tabular results:
that the large percentage values when S < 15 are explained by the Black Scholes Values being close
to zero when an option is deeply out-of-the-money.

The charts suggest NAS should be 40 or more in order to get reasonable accuracy for pricing
purposes. Of course, depending on the notional value of the option contract under consideration,
greater accuracy may be required.

4.4.2 Delta and Gamma

The following table shows the accuracy of the Explicit Euler Delta and Gamma estimates (refer
equations 3.5 and 3.6)". Note that values have been truncated when S is deeply out-of-the-money
and no estimates are produced for the end points due to the use of central differences®:

Delta Gamma
Explicit Euler Black Scholes Explicit Euler Black Scholes
S Estimate Value Difference % Difference Estimate Value Difference % Difference
0 N/A 0.00000 N/A N/A N/A 0.00000 N/A N/A
1 0.00000 0.00000 0.00000 N/A 0.00000 0.00000 0.00000 N/A
2 0.00000 0.00000 0.00000 N/A 0.00000 0.00000 0.00000 N/A
3 0.00000 0.00000 0.00000 N/A 0.00000 0.00000 0.00000 N/A
4 0.00000 0.00000 0.00000 N/A 0.00000 0.00000 0.00000 N/A
5 0.00000 0.00000 0.00000 N/A 0.00000 0.00000 0.00000 N/A
6 0.00000 0.00000 0.00000 N/A 0.00000 0.00000 0.00000 N/A
7 0.00001 0.00000 0.00001 N/A 0.00001 0.00000 0.00001 547.00%
8 0.00005 0.00001 0.00004 372.00% 0.00008 0.00003 0.00005 162.00%
9 0.00033 0.00013 0.00019 143.00% 0.00046 0.00029 0.00017 58.00%
10 0.00150 0.00092 0.00058 63.00% 0.00188 0.00156 0.00032 21.00%
11 0.00539 0.00416 0.00124 30.00% 0.00591 0.00557 0.00034 6.00%
12 0.01569 0.01376 0.00193 14.00% 0.01469 0.01465 0.00005 0.00%
13 0.03790 0.03562 0.00228 6.00% 0.02973 0.03015 -0.00042 -1.00%
14 0.07791 0.07588 0.00203 3.00% 0.05028 0.05100 -0.00073 -1.00%
15 0.13948 0.13821 0.00128 1.00% 0.07288 0.07354 -0.00067 -1.00%
16 0.22226 0.22192 0.00034 0.00% 0.09267 0.09299 -0.00032 0.00%
17 0.32135 0.32183 -0.00048 0.00% 0.10551 0.10543 0.00008 0.00%
18 0.42882 0.42983 -0.00101 0.00% 0.10943 0.10910 0.00034 0.00%
19 0.53600 0.53726  -0.00126 0.00% 0.10493 0.10453 0.00040 0.00%
20 0.63554 0.63683 -0.00130 0.00% 0.09414 0.09381 0.00033 0.00%
21 0.72252 0.72373 -0.00121 0.00% 0.07983 0.07963 0.00020 0.00%
22 0.79470 0.79575 -0.00106 0.00% 0.06452 0.06443 0.00009 0.00%
23 0.85198 0.85287  -0.00089 0.00% 0.05005 0.05004 0.00001 0.00%
24 0.89574 0.89646  -0.00071 0.00% 0.03747 0.03750 -0.00003 0.00%
25 0.92809 0.92864  -0.00055 0.00% 0.02721 0.02725 -0.00004 0.00%
26 0.95132 0.95173 -0.00041 0.00% 0.01925 0.01929 -0.00004 0.00%
27 0.96759 0.96788  -0.00029 0.00% 0.01330 0.01333 -0.00003 0.00%
28 0.97875 0.97894  -0.00020 0.00% 0.00901 0.00903 -0.00002 0.00%
29 0.98625 0.98637  -0.00013 0.00% 0.00599 0.00601 -0.00002 0.00%
30 0.99121 0.99128  -0.00007 0.00% 0.00393 0.00394 -0.00001 0.00%
31 0.99444 0.99448  -0.00004 0.00% 0.00254 0.00255 -0.00001 0.00%
32 0.99651 0.99653 -0.00002 0.00% 0.00162 0.00163 -0.00001 -1.00%
33 0.99783 0.99784  -0.00001 0.00% 0.00102 0.00103 -0.00001 -1.00%
34 0.99866 0.99866  -0.00001 0.00% 0.00063 0.00065 -0.00001 -2.00%

7 Black Scholes Values for Delta and Gamma were determined using the analytical formulae derived in Appendix B.
8 Forward and backward differences could be used to produce estimates, of course, but it is unlikely they would be
needed in practice.
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Delta Gamma
Explicit Euler Black Scholes Explicit Euler Black Scholes
S Estimate Value Difference % Difference Estimate Value Difference % Difference
35 0.99917 0.99918 -0.00001 0.00% 0.00039 0.00040 -0.00002 -4.00%
36 0.99947 0.99950 -0.00003 0.00% 0.00023 0.00025 -0.00002 -9.00%
37 0.99965 0.99969 -0.00005 0.00% 0.00012 0.00015 -0.00003 -19.00%
38 0.99974 0.99981 -0.00008 0.00% 0.00005 0.00009 -0.00004 -45.00%
39 0.99976 0.99989 -0.00013 0.00% 0.00000 0.00006 -0.00006 -100.00%
40 N/A 0.99993 N/A N/A N/A 0.00003 N/A N/A

We can see that Explicit Euler provides fairly accurate estimates of the true, analytical Black-
Scholes values and they are certainly within boundaries for practical application on the trading
floor.

5. Conclusion

Despite its inherent shortcomings (stability constraints which lead to increased computational time)
Explicit Euler is a simple algorithm that is easily understood and can be applied with ease by
anyone with a rudimentary knowledge of computer programming. It provides reasonably accurate
estimates for option prices, delta and gamma and this accuracy can be improved at the cost of
increased computation.
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AppPeENDIX : ExpriciT EuLER VBA CobE

The tables and chart in this paper were produced using the following VBA code:

Public Function ExplicitEuler( _
sglStrike As Single, _
sglSigma As Single, _
sglRfrate As Single, _
sglTerm As Single, _
intNAS As Integer, _
Optional strType As String = "Call", _
Optional strOutput As String _
) As Variant

Dim j As Integer, _
k As Integer, _
intNTS As Integer, _
sglDeltaS As Double, _
sglDeltaT As Single, _
sglarrTM() As Single, _
vararrVold As Variant, _
vararrVnew As Variant, _
sglarrChartData() As Single

'// ensure stability of Explicit Euler
intNAS = Application.WorksheetFunction.Max(intNAS, Int(sgIRfrate / sglSigma * 2) + 1) '// satisfy constraint on # asset steps
iNtNTS = Int((intNAS ~ 2 * sgISigma ~ 2 + sglRfrate) * sglTerm) + 1  '// satisfy constraint on # time steps

'// determine size of steps
sglDeltaS = 2 * sglStrike / intNAS '// note: Smax = 2 x Strike Price
sglDeltaT = sglTerm / intNTS

'// redimension Transition Matrix (TM) and vectors of option value estimates (V-old an V-new)
ReDim sglarrTM(0 To intNAS, 0 To intNAS), _

vararrVold(0 To intNAS, 0 To 0), _

vararrVnew(0 To intNAS, 0 To 0), _

sglarrChartData(0 To intNAS, 0 To intNTS)

'// place FD coefficients (aj, bj and ¢j) into Transition Matrix

Forj =1To intNAS - 1
sglarrTM(j, j - 1) = j * sglDeltaT / 2 * (j * sglSigma ~ 2 - sglRfrate) '// aj
sglarrTM(j, j) = 1 -j A 2 * sglSigma ~ 2 * sglDeltaT - sglRfrate * sglDeltaT '// bj
sglarrTM(j, j + 1) = j * sglDeltaT / 2 * (j * sglSigma » 2 + sglRfrate) '// ¢j

Next j

'// set boundary conditions in Transition Matrix:

'// as S->0

sglarrTM(O, 0) = 1 - sglRfrate * sglDeltaT

'// as S -> Smax

sglarrTM(intNAS, intNAS - 3) = -1 * sglarrTM(intNAS - 2, intNAS - 3)

sglarrTM(intNAS, intNAS - 2) = 2 * sglarrTM(intNAS - 1, intNAS - 2) - sglarrTM(intNAS - 2, intNAS - 2)
sglarrTM(intNAS, intNAS - 1) = 2 * sglarrTM(intNAS - 1, intNAS - 1) - sglarrTM(intNAS - 2, intNAS - 1)
sglarrTM(intNAS, intNAS) = 2 * sglarrTM(intNAS - 1, intNAS)

'// set initial condition (= option payoff at expiry) in vector of option value estimates

For j = 0 To intNAS
vararrVold(j, 0) = Application.WorksheetFunction.Max(0, (j * sglDeltaS - sglStrike) * IIf(strType = "Put", -1, 1))
sglarrChartData(j, intNTS) = vararrVold(j, 0)

Next j

Select Case strOutput

Case "Chart"
'// now step through each time step (ie. going 'back in time') to reach our answer
For k = 1 To intNTS
'// WARNING: WorksheetFunction.MMult redimensions vararrVnew to Base 1
vararrVnew = Application.WorksheetFunction.MMult(sglarrTM, vararrVold)
vararrVold = vararrVnew
'// capture varrVold values into a matrix to be used for Charting
For j = 0 To intNAS
sglarrChartData(j, intNTS - k) = vararrVold(j + 1, 1)
Next j
Next k
ExplicitEuler = sglarrChartData '// return NAS x NTS matrix of values for Chart
Exit Function
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Case "Greeks"
'// now step through each time step (ie. going 'back in time') to reach our answer
For k = 1 To intNTS
'// WARNING: WorksheetFunction.MMult redimensions vararrVnew to Base 1
vararrVnew = Application.WorksheetFunction.MMult(sglarrTM, vararrVold)
vararrVold = vararrVnew
Next k
'// add Delta and Gamma estimates to option price estimates
ReDim Preserve vararrVnew(1l To intNAS + 1, 1 To 3)
Forj = 2 To intNAS
vararrVnew(j, 2) = (vararrVnew(j + 1, 1) - vararrVnew(j - 1, 1)) / (sglDeltaS * 2) '// Delta
vararrVnew(j, 3) = (vararrVnew(j + 1, 1) - 2 * vararrVnew(j, 1) + vararrVnew(j - 1, 1)) / (sglDeltaS * 2) '// Gamma
Next j
ExplicitEuler = vararrVnew '// return NAS x 3 matrix of option prices, deltas and gammas
Exit Function

Case Else

'// now step through each time step (ie. going 'back in time') to reach our answer

For k = 1 To intNTS
'// WARNING: WorksheetFunction.MMult redimensions vararrVnew to Base 1
vararrVnew = Application.WorksheetFunction.MMult(sglarrTM, vararrVold)
vararrVold = vararrVnew

Next k

ExplicitEuler = vararrVold '// return single column vector of option prices

Exit Function

End Select

End Function
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ApPENDIX B: DERIVING DELTA AND GAMMA
For a Black-Scholes Call Option
The closed-form solution for a call option's price under Black-Scholes' assumptions is:

C=S.N(d,)—K.e"" " .N(d,)

where
S o’ o
In|-Z)+|r+= AT —1) In| |+ r== (T —1)
d.= d.= =d.— .\/—T—l
1 o NT—t and 4, o VT —1 =0
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therefore:

0[N(d,)] _
od,

= | e
(@)
_&

and hence:
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For a Black-Scholes Put

The formula for a put is similar to a call but with a few signs reversed:
P=—S.N(—d,)+K.¢e """ N(-d,)

where d, and d, are as before. The delta, therefore, is:

ON (—d ON(—d
8—P=—S ( 1)_N(_dl)+K.e—r.(T—t). ( 2)
oS oS oS

Now recall the symmetry of the Normal probability density function: N (—d,) =1 - N(d,). Hence:
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a—Pz—S.M_[l_N(dl)]_}_K.efr.(Tﬂ). [ ( 2)]
oS oS o5
ON (d ONI(d
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oS oS
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=N(d,)—1+|S. .e .
oS oS

which, from the call option above, we recognise reduces to:
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1
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