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ABSTRACT

Monte Carlo simulation is a numerical method used to value options that have no closed-form,
analytical solution. The method was first applied to value options in 1977 and has since been used to

value increasingly complex option structures.

Despite its successful adoption by the financial

community, monte carlo simulation remains a computationally intensive method and the growth in
increasingly complex financial products has resulted in the need for innovative techniques to reduce
this computational burden. This dissertation analyses two of the current techniques as they apply to
valuing American options. One of these techniques proves to be complex and time consuming and

suffers from a restriction on its practical application.

flexibility.

1 Introduction

As financial markets evolve, they continue to
produce complex financial products for which
mathematics cannot yet provide analytical valuation
solutions. Despite the lack of closed-form pricing
formulae, the continued demand for new product from
financial market participants has led both buyers and
sellers to arrive at agreed price valuations using what are
termed 'numerical methods'. Monte Carlo simulation is
one such numerical method.

Since Boyle [1977] first applied the method to
option valuation, research into Monte Carlo simulation
techniques has expanded. Monte Carlo simulation of
American options has been one such area of research.
This dissertation reviews the results of this research with
an emphasis on the comparative performance of two of
the most recently published algorithms. The dissertation
is organised as follows. First, Section 2 discusses a few
basics of Monte Carlo simulation and how it can be used
to approximate the price of a European option. The
discussion is then extended to the key feature of American
options — the free boundary problem — and how this
complicates the Monte Carlo method. In Section 3, a
brief review of the research literature is made. This
continues with Section 4 providing greater discussion of
two recent algorithms.  Section 5 contains some
numerical results and Section 6 the concluding remarks.

The other displays simplicity, speed and

2 Background
Monte Carlo Simulation

Pricing options using Monte Carlo simulation
relies on two key mathematical concepts: the Law of
Large Numbers and the Martingale Approach to asset
pricing.

If X, X5, X, ..., Xu is a sequence of independent
and identically distributed random variables having mean
u, then the Weak Law of Large Numbers states:
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which can be generalised to the Strong Law of Large
Numbers:
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For example, if X, =PV {max(O, K- SlT)] (the present
value of the payoff from a European put option expiring at

time T and having a strike price of K) is distributed with
mean, P, then:

M=

L > PV imax[0. k=57 > P as Moo @)
M | J

and since the mean is its expected value, ie:
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we have the result:

M
lim .Y PV|max(0, k57
M- M i=1 (6)
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which can be simulated under the Monte Carlo method
using an algorithm such as follows:

1. Divide the chosen time horizon (T-t) into a discrete
set of N individual time periods ('time steps'), each
of Atin duration'.

2. Working forward in time, for each random variable
(eg. stock price) at each At, randomly sample its
value from the population of possible values,
thereby constructing a 'price path' for the asset over
the N number of At time steps.

3. Determine the set of discounted (ie. present-
valued) cash flows from the option according to
the option's payoff function (eg. European call,
American put, Asian strike call, etc.).

4, Repeat the above process for a desired number, M,
of times.
5. Take the average of step 4 to arrive at an estimate

of the option's price.

6. Repeat at different levels of M in order to achieve
the desired level of precision (g€ in equation (1)
above).

Having performed the simulation and obtained an
estimate, P, for the value P, the obvious question is
“what does this estimate represent?”’

The Martingale Approach to asset pricing states

that under the assumptions of (i) no arbitrage

1 For the case of a vanilla European option N=1 as we are only
interested in the exercise at maturity. However, exotic options
(including American options) require N > 1.

opportunities, and (ii) market completeness, the price of
an option is the risk-neutral expectation® of the present
value of its possible future cash flows (ie. payoffs):

p= E[Pv[max 0.k~ 7

Therefore, Monte Carlo simulation provides us
with an estimate of an option's price.

A

p=L.3pyl max(0.K -S| (8)

1
M i=1
which, being an estimate is subject to some error, £:

P=rP+e

g>0 9)

Having obtained an estimate we can invoke the
Central Limit Theorem to allows us to set confidence
intervals for P.

Under the Central Limit Theorem, if X;, X,, X, ...
is a sequence of independent and identically distributed
random variables having finite mean, p, and finite
variance, 02, then:

X+ Xyt X, —

oM
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lim P H

M-

= &(x)

<x (10)

where @(x) denotes the cumulative distribution function
of the standard normal random variable. Put another way,
this theorem states that for large M:

1 < o’
—. — 11
32 XN gz (11)
Hence, for the European put option example, above:
A 0'2
PﬁN(P,M) forlarge M (12)
ie. when M is large:
P—P
~ N(0,1
Ve (13)
VM
and the (1-a0)% confidence interval for P is:
A~ O A g
P———=.7,_4), P+7=—=.2_n 14
e ST (9

2 This is alternatively expressed as taking the expectation with respect
to the Q-measure.
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As 0% is unknown, it is common to us its unbiased
estimate, s, instead:

M
2 1 A2
= X —P 15
S= T 2l X - P (1)
so that the confidence interval becomes:
A K A s
P 2w P 2 (16)

So far, nothing has been said of the present value
operator, PV{...}. Throughout this dissertation a constant
interest rate environment will be assumed, unless stated
otherwise. This allows all cash flows to be present valued
at a single, riskless rate of interest, r, using the function:

a7

As rand T are both known at time ¢, this allows all present
value operations to be performed outside of the
expectation operator, ie:

p = ST E[max(O,K—SiT”

t

(18)

This greatly simplifies the mathematics, preventing
unnecessary complication from clouding the concepts
discussed throughout this dissertation.

The Free Boundary Problem in American Options

While a European option allows the option
holder to exercise its rights under the option at the
option's maturity date, an American option allows the
holder to exercise at any time®. It is this 'early-exercise'
feature that poses problems for an analytical solution to an
American option.

While Black and Scholes [1973] solved the
problem of the European option, there is no general
solution to their partial differential equation (PDE) where
the exercise boundary cannot be explicitly determined. To
illustrate this, consider the price of an American put
option on a non-dividend paying stock®.

3 Monte Carlo simulation works with discrete time steps, At. Hence,
it can only approximate the value of an American option — when At
is small. Hence, an American option is approximated by its
Bermudan counterpart. Despite this technicality, I will continue to
use the term 'American options' when discussing Monte Carlo
techniques.

4 An American call option on a non-dividend paying stock has the
same value as the equivalent European call option. This is because
it is never optimal to exercise such an American call option prior to
its maturity date. The reader is referred to Higham [2005] p.174 for
an explanation.

The value of the put option, P, at time t, tends to
the option's exercise price, K as the stock price, S, tends to
zero — because the option holder is unlikely to sell in the
market and increasingly likely to exercise its put, in order
to maximise their gain. In other words:

P—>K as §—0 (19)

Similarly, the value of the put option tends to zero
as the stock price tends to infinity — the option holder
being more inclined to sell and receive S than exercise and
receive K, ie:

P—0 as S—o (20)

Interpolating between these two extremes it can be
seen that, at any point in time, there will exit a particular
stock price, S*, such that if S is below S*, it is optimal to
exercise. Additionally, if S is above S*, it is optimal to
continue holding the option. As ¢ changes so does S* such
that it forms what is known as 'the optimal exercise
boundary' as demonstrated in Figure 1:

Stock Price (S)

A
Exercise | ____________________ ‘
Price (K) l
Continue to i
Hold l
l
S=8* |
|
Exercise |
1
|
“» Time (t)
Option
Maturity
Figure 1: Optimal Exercise Boundary, S = S*¥,

for an American put option.

The problem in formulating a closed form solution
to the Black-Scholes PDE in this case, is that the free
boundary cannot be defined ex-ante, thereby frustrating
any attempt to solve the PDE.

The free boundary problem is also referred to as
the “optimal stopping time” problem. Taking equation
(18) above and expressing it for the American case by
using T to represent the time at which exercise occurs (the
optimal stopping time) we have:

e2y)

P=e""", E[max(O,K—SiT
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which, we can see, requires knowledge of exactly when T
occurs’. In theory, the holder of an American option will
be constantly comparing the value of his option if
exercised now (“Intrinsic Value”) versus its value if held
for a fraction of a second more (“Continuation Value”).
In the case of an American put option, this decision rule
can be expressed mathematically as:

r.dt

(22)

P, =max(K_Sjl e ‘PH-d/)

where P, is the option's value at time ¢ and dr is the
infinitesimally small increment in time. While K-S, is
readily estimated using Monte Carlo simulation, e"*.P,.,
(the Continuation Value) is not so easily obtained. Since
the Continuation Value is essentially the option's value as
determined at 7 plus a fraction of a second more, obtaining
this value would require knowing the Continuation Value
at a fraction of a second after the first fraction of a second
(ie 2 x dt) and so on, recursively, until the maturity date.
Such an algorithm would appear to require a whole series
of Monte Carlo simulations to be performed — one for
each Continuation Value — thus giving rise to an infeasibly
large computational task. Indeed, this was the thinking up
until the early 1990s and pricing American options was
confined to other numerical methods such as the binomial
lattice method of Cox, Ross and Rubenstein [1979] and
the method of finite differences first applied to option
pricing by Brennan and Schwartz [1978].

The problem with these methods, however, is that
they do not scale well with options involving high
dimensions (ie. many state variables rather than a single
underlying asset). Boyle, Evnine and Gibbs [1989] did
extend the binomial lattice approach to American options
with two state variables and to European options
involving three assets. However, it is acknowledged by
many that although it is possible to take this further to
valuing multivariate American options, Barraquand and
Martineau [1995] point out that such approaches become
impractical for valuing higher order American options (ie.
>3 state variable), as the amount of computational effort
expands exponentially with the number of dimensions. A
similar problem also occurs with the finite difference
approach to option valuation.

Consequently, Monte Carlo simulation remained
(and still remains) an attractive area of research for
pricing high dimension options.  Additionally, the
attraction of Monte Carlo simulation as a numerical
method also lies in the generality of the types of assets it
can handle and the ease with which it copes with complex
payoff functions such as those exhibiting path
dependencies.

5 T is actually the set of all stopping times that occur when S=S* so,
technically, equation (21) should bring the present value operator
back inside the expectation operator. However, equation (21) has
been present as above as it is believed it makes the concept easier to
understand for the reader.

3 Monte Carlo Methods For American Options

Boyle [1977] was the first to apply Monte Carlo
simulation to pricing options. While the analytical
solution to a European call option on a non-dividend
paying stock had been solved some four years earlier by
Black and Scholes [1973], Boyle focussed his efforts on
the price of a European call option on a dividend paying
stock. Early attempts to use Monte Carlo simulation to
price American options had been limited to estimating the
explicit functional form of the optimal exercise boundary.
For example, Omberg [1987] wuses constrained
optimisation of exponential functions to specify this
boundary. Indeed, as stated previously, it was common
knowledge at the time that Monte Carlo simulation could
not be used to value American options®.

It was some 16 years after Boyle's paper that Tilley
[1993] proposed the first algorithm for pricing American
options using Monte Carlo simulation. Tilley's 'bundling’
algorithm was a regression method using crude kernel
smoothing techniques. Carriere [1996] Subsequently
proved this algorithm gave rise to biased estimates and, in
doing so, offered an alternative method employing a
sequential regression algorithm that resulted in unbiased
estimates.

Barraquand and Martineau [1995] proposed a
stratification method for pricing high-dimensional
American options by partitioning the payoff space instead
of the state space (Tilley's 'bundling'). However, this too
encountered subsequent problems when Boyle, Broadie
and Glasserman [1997] showed that the method did not
necessarily converge to the correct value and often lead to
a significant underestimate of an option's value.

Broadie and Glasserman [1997] argued there
could, in fact, be no general method for producing an
unbiased simulation estimator of American option
values’. Instead of focussing on a point estimate, their
'Random Tree' method produced two asymptotically
unbiased estimates: one biased high, the other biased low.
By taking the upper confidence limit from the 'high’
estimator and the lower confidence limit from the 'low'
estimator and combining them, they produce a
conservative confidence interval for the true option price.
Their numerical results are encouraging, exhibiting very
tight bands for this interval. However, their Random Tree
approach is not without its problems. While it lends itself
well to options with many state variables, it suffered from
the same “curse of dimensionality” found in many tree-
based  algorithms  (including lattice  methods).
Considerable computational effort is required when the

6 See, for example, footnote 8 of Hull and White [1988]: “... the
[Binomial lattice and Monte Carlo simulation] approaches are not
direct substitutes for each other. Monte Carlo simulation can be
used only for European options, whereas [Binomial lattice]
approaches can be used for European or American options.”

7  See Broadie and Glasserman [1997] at p. 1326.
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number of exercise opportunities is large®, rendering it
unsuitable for American option valuation. The authors
acknowledge this and suggest using extrapolation
procedures when implementing the method in practice.
However, reliance on extrapolation techniques is likely to
be a less than satisfactory solution for many a financial
risk manager. Consequently, Broadie and Glasserman
[2004]° sought to improve on this with their “Stochastic
Mesh” method, discussed in Section 4 below.

In a significant development, Longstaff and
Schwartz [2001] published an algorithm to estimate
Continuation Values using simple, ordinary least squares
regression techniques. Their algorithm has been widely
adopted and is considered by many to be the market
standard in American option valuation. Longstaff-
Schwartz's Least Squares Method (“LSM”) is also
discussed further in Section 4, below.

Although Monte Carlo techniques for pricing
American options have come a long way since Tilley's
first algorithm, they all still suffer from the same problem
inherent in Monte Carlo simulation: the need to generate
and keep the forward price paths and in order to work
recursively backwards to determine stopping times. For a
large number of paths each with many time steps, such as
long-dated American options and/or options with high-
dimensions (>3 state variables), this can lead to
significant computer memory requirements with
additional strain on processing power in managing that
memory. In a recent article, Dutt and Welke [2008] show
that this problem can be overcome in many instances by
eliminating the need to store the forward paths. Rather
than the traditional forward generation of price paths with
subsequent backward recursion of stopping times, used by
researchers in the past, Dutt and Welke show that
geometric brownian motion (and some other stochastic
processes'') can be generated backwards in time, thereby
dispensing with the need for generating and storing
forward price paths. For example, a standard brownian
motion can be specified by the following formula:

(23)

where Z, Z, .., Z, are mutually independent, standard
normal random variables.

They label this algorithm the “just-in-time” (“JIT”)
Monte Carlo procedure. While JIT Monte Carlo offers
benefits when using certain stochastic processes, the

8  “the computational requirements of the method grow exponentially
in the number of exercise opportunities”: Broadie and Glasserman
[1997] at p. 1327.

9  Although published in 2004, the original working paper was in wide
circulation from 1997 and is frequently referenced as such in many
of published articles.

10 Wilmott [2006] p. 1279.

11 Namely the Ornstein-Uhlenbeck and Cox-Ingersoll-Ross processes.

authors acknowledge that it will be of little or no benefit
in pricing some types of path-dependent American
options, such as American-Asian options (“Amerasians”).
Nonetheless, the JIT procedure is easy to implement and
useful for high dimension options. Just where the
boundaries are in terms of stochastic processes that can be
described by similar backward-recursive processes,
remains an area of continuing research (the article having
only been published recently).

4 The Stochastic Mesh and LSM Algorithms
The Stochastic Mesh Method

As mentioned previously, the Broadie and
Glasserman [2004] Stochastic Mesh method is an
improvement to their 1997 Random Tree. Under the latter
approach, at each time step on a particular asset path (ie. a
node), the node is 'branched' into b subsequent nodes,
where b is a user-specified number of branches per node.
This forms a tree that looks similar to a non-recombining
binomial lattice’>. This tree quickly 'explodes' with
branches as both b and the number of time steps increases.
Their Stochastic Mesh method, however, remains linear in
the number of branches. It does this by constraining each
node's branches to the set connecting that node with all of
the nodes appearing in the next time step. A simple
example is shown in Figure 2:

Asset
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Figure 2: Beginnings of a simple Stochastic Mesh
with 3 price paths and 3 time steps.

Here, three independent price paths for the asset (dotted
lines) are set out over three time steps (#; to #3). In
practice, these are generated no differently from a normal
Monte Carlo price path simulation. Also shown are three
dashed lines connecting the node on Path 1 at time ¢, to
the nodes on all price paths at time #;. If this is repeated
for Path 2 and Path 3 and then for each time step, then we
end up with the full mesh:

12 Although the authors do point out that, unlike the binomial lattice,
the nodes appear according to the order in which they are generated
and not according to their node values.




Pricing AMERICAN OPTIONS USING MONTE CARLO SIMULATION
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Figure 3: The full mesh with 3 price paths and 3
time steps.

These dashed lines hold a fundamental importance to the
Stochastic Mesh method, for they represent the weighting
scheme necessary for the calculation of Continuation
Values at any particular node. Expanding on the notation
from Equation (22) above, Broadie and Glasserman's
estimator for the Continuation value at time ¢ on asset path
iis:

joarAr Wi 24

b
f’i,t= max|K—S§,,, e (11; Z

J=1

where j is the index for the b nodes" appearing at time
t+At and w;; is the weight attaching to the (dashed) line
joining node 7 at time ¢ with node j at time #+A¢. Broadie
and Glasserman call equation 23 their Mesh Estimator.

Another estimator, the Path Estimator, is then
calculated as part of the Broadie and Glasserman
approach. The “Path Estimator” is determined by first
simulating a separate set of price paths independent from
those used to construct the mesh. For each of these paths
and at each time step (starting at =1 and moving forward
in time) the exercise value (ie. the intrinsic value) is
compared to a “Continuation Value” determined by a
weighted average of all the Continuation Values contained
in the mesh as at the next time step and as originally
calculated in accordance with equation (24). In other
words, the Path Estimator virtually ignores the previously
specified mesh except when it comes to determining a
suitable Continuation Value in order to compare the
intrinsic values (as determined from the Path Estimator's
simulation paths) and determine whether to stop (exercise)
or not. The end result is a completely separate matrix of
exercise cash flows (intrinsic values) which can be present

13 Although it is not explicit in Broadie and Glasserman [2004] it is
useful to keep in mind that b actually corresponds to the number of
(simulated) asset paths.

valued and averaged to give the Path Estimator. For an
American put option the Path Estimator is:
1 k
1 Z er\'r 1| ) (25)
k =1

where T is the stopping time determined in according
with the rule:

T, = min (26)

1 v
t: K_Sk,l = b_z P_/',z+d/'wk,,/'

j=1

where k is the asset path index for the paths generated in
the Path Estimator simulation run.

From these two estimators, the importance of the
weighting scheme (the w;; and wy;) becomes readily
apparent. However, while their importance to the method
cannot be underestimated, what is not obvious from
Broadie and Glasserman's 2004 paper is just how these
weights are actually determined in order for the method to
be coded into VBA, MatLab or C++ for practical
application'. While Broadie and Glasserman do discuss
the choice of weights in terms of marginal densities, (full)
densities and transition densities, they acknowledge that it
will often be the case that these density functions are
either unknown or fail to exist'. Despite this practical
limitation of the method the authors do prove that:

1. the Mesh Estimator is biased high, but consistent:

E|Py|= P, but E|P)|— P, as b—co (27)

2. the Path Estimator is biased low but, consistent:

Elp)| <P, but E|p]|— P, as b (28)

3. if the weights for the Mesh Estimator are not
chosen carefully, there is a risk of exponential
growth in the variance of the Mesh Estimator.

This last point has particular significance. The
Stochastic Mesh method is fundamentally reliant on
producing a tight confidence interval for both estimators.
By taking the upper confidence bound of the Mesh
Estimator and combining it with the lower confidence
bound of the Path Estimator, a valid interval containing

14 The author contacted Mr P. Glasserman by e-mail requesting sample
code used in the 2004 paper but received the somewhat helpful
response “I do not have code to provide you. You may be able to get
something from...” and pointed to a web site containing a library of
C++ routines for a variety of options. As the author's knowledge of
C++ is still in its infancy, it was not possible to identify the relevant
code fragments from the mass of code, let alone translate them into
into MatLab format.

15 Such as when the covariance matrix in a multivariate model does
not have full rank.
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the 'true' price of an American option can be obtained for
a given level of confidence. Therefore, if the standard
error of the Mesh Estimator is large (due to a poor choice
of weights), then the desired 'tight' interval will, itself, be
large thereby potentially rendering the method ineffective
in its practical application.

As stated previously, practical application of the
method requires knowledge of the transition density(s) of
the underlying process(es) of the states variables, which
can be problematic. In a subsequent paper, Broadie and
Glasserman [2000] report using constrained optimisation
techniques as an alternative way to determine mesh
weights. They use two separate optimisation criteria:
maximum entropy (“ME”) and ordinary least squares
(“OLS”). Despite the apparent promise of these methods,
their superficial treatment in the paper combined with
mathematical errors, casts uncertainty over the
practicality of these alternatives methods. As an
illustration of the former, the authors acknowledge that
the OLS approach offers an improvement in
computational speed over ME, but it suffers from the
drawback “that the weights produced [by OLS] are not
guaranteed to be non-negative.”'® Given the importance
of the weighting scheme to the method, the prospect of
generating negative weights renders OLS dead on arrival
as a potential solution. Furthermore, salvaging OLS by
constraining the weights to be non-negative removes any
speed advantage it may have had over ME. The only
saving grace of this conclusion is that the reader can
safely ignore the fact that the matrix of OLS regression
coefficients is (B™B)'B™ and not BT(BBT)'b as their
equation 15 states. It is also worth noting that their
specified constraint on the weighting scheme:

é‘ By.w;= b, 29
is expressed as:
;Ak.(Bkj.wij—bk) (30)
in a Lagrange equation and not:
;Ak.(Bkj—bk).w,.j a1

as shown in their equation 9.

Despite these apparent typographical errors the
ME approach offers some hope for those situations where
transition densities cannot be determined in advance.
What practical advantage it offers, though, remains to be
seen. The introduction of optimisation algorithms adds
further to computational effort that is already reportedly

16 Broadie and Glasserman [2000] at p. 42.

time consuming: “Broadie and Glasserman report that
computing [the high and low interval for an American
option on the maximum of five risky assets] requires
slightly more than 20 hours a piece using a 266MHz
Pentium II processor...while [Longstaff and Schwartz's
own algorithm (discussed further below)] takes less than
three minutes using the same CPU architecture (Pentium
1) with a slightly higher clock speed (300MHz)."”

While computer processing power has increased
significantly since 1997, a crude application of Moore's
Law'® suggests a time of approximately 37 minutes would
be needed to perform the same calculations (20 hours * 2
%). Such high processing times may help explain the lack
of widespread adoption of the Stochastic Mesh method by
the financial community — a fact not shared by the least
squares method of Longstaff and Schwartz [2001].

The Least Squares Method (“LSM”)

Longstaff and Schwartz [2001] use least squares
regression to estimate Continuation Values. Formally,
they assume the existence of a probability space (0, f, P)
over the finite time horizon (0, T) — where Q is the set of
all possible realisations of the stochastic economy during
that time horizon (with w representing a sample path), fis
the sigma field of distinguishable events at time 7 and P is
the probability measure defined on the elements of f.
Consistent with assuming no-arbitrage opportunities, they
also assume the existence of an equivalent martingale
measure, Q, in the economy.

By taking expectations (with respect to this Q-
measure) of all possible future cash flows and their
present values, for a given f, the Continuation Value an be
represented by the following conditional expectation
function:

F (w;tk) =
K (jlfr\w,s\ds (32)
E Y el i) | f(r)
j=k+1

where:

Flw;t) is the Continuation Value at time #;

Ey is the expectation taken with respect to
the Q-measure (see the discussion around
footnote 3, above, on risk-neutral
expectations);

17 Longstaff and Schwartz [2001] at p. 142.

18 Moore's Law describes the phenomenon that computer processing
power doubles approximately every 2 years. The law is attributed to
the comments of Gordon E. Moore, the co-founder of Intel
Corporation. While still a rule of thumb, it has shown remarkable
resilience since 1965 when it was first postulated.
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e

e is the present value factor which, for this
case, has deterministic or stochastic
interest rate r(w,s)"”;

[

is the cash flow path generated by the
option conditional on the option not being
exercised at or prior to time ¢ and on the
holder of the option following the optimal
stopping strategy for all ¢;, with t, < ¢, < T;
and

C((L),tj,'fk,T)

f(t)

is the filtration at #,.

The LSM uses least square regression to
approximate F(w;t;) by assuming it can be represented as
a linear combination of a countable set of basis functions
measurable on the filtration, f{#,). Therefore, using the
fitted value from this regression as the estimate of the
Continuation Value, the LSM allows the 'exercise or
continue' decision rule of equation (22) to be specified.
By performing this regression algorithm in a recursive
fashion (beginning at the option's expiry date and working
backwards in time) a complete specification of the
optimal exercise strategy can be obtained. The following
algorithm demonstrates this for the one-asset case:

1. Generate an M x (N+1) matrix of M asset paths
and N time steps (the first column being filled with
the starting value (time t=0) of the asset, Sy);

2. Generate an additional M x (N+1) matrix of zero
values which will be used to hold the entire
simulation's cash flow profile, ie. the C(w,#;1,T)
values, as determined by the LSM algorithm (steps
below);

3. For each of the M asset paths, generate the
European payoffs and place these in column N+1
of the matrix generated in step 2;

4. At time T-At determine which of the M asset paths
are showing a positive payoff if exercised at T-At,
ie. determine which paths are “in-the-money” at
time T-At, (At being the size of a single time
step™);

5. For each of the in-the-money paths identified in
step 4, present value their corresponding values
from step 3 (ie. present value the step 3 value at
time T to time T-At) and regress these present
values on a user defined set of functions of the in-
the-money values to generate a vector of regression
coefficients;

19 As stated previously, this dissertation assumes a fixed interest
environment, hence, this formula becomes e (see the discussion
around equation (17), above).

20 If we were valuing a Bermudan option, At would be the time
between option expiry (T) and the exercise date closest to expiry.

6.  Using the coefficients from step 5 estimate the
Continuation Values [F(w;t;)] at T-At for each in-
the-money path using the same set of functions and
in-the-money values as used in step 5;

7. For each in-the-money path, compare the
Continuation Value with the intrinsic value (ie. at
T-At) and use the early exercise rule of equation
(22) to determine if the option is exercised at T-At
or not;

8. If the option is exercised then set the corresponding
cash flow amount in step 2 equal to the intrinsic
value and set all subsequent cash flows for that
path to zero;

9. Repeat steps 4 to 8 for the previous time period, ie.
determine the in-the-money paths, Continuation
Values and any exercise cash flows for time T-2At
using the information in the payoff matrix (step 2)
from all time periods after T-2At; and

10.  Once column two of the payoff matrix (step 2) has
been filled we have the complete cash flow matrix
for the simulation — being a single cash flow along
each of the M asset paths which occurs at a time
period as determined by the above algorithm.
These cash flows can then be present valued to
time t=0 and averaged to give the LSM estimate of
the option's value at t=0: this average being the
Monte Carlo estimate F|w;t,] of Flw;t,]
(the true value).

GNU Octave” code for the above algorithm is
contained in Appendix 1.

The reader will notice the code at Appendix 1 uses
the polynomials [x°, x', x?, x’] as the countable set of basis
functions when implementing step 5 of the above
algorithm. Appendix 2 contains the same code but
without the comments and modified to incorporate the
variance reduction technique of antithetic variates®.
Unless otherwise stated, the Appendix 2 code has been
used in the following Numerical Analysis.

5 Numerical Analysis

21 The GNU Octave high level, matrix programming language has
been used in this dissertation as (a) it is freely available to download
and install, (b) it is faster than Microsoft's proprietary VBA
language, and (b) it is largely MatLab compatible. In fact, the code
as specified in the Appendices can be run in MatLab with minimal
changes required eg. change 'endfor' to 'end' in each of the for...next
loops.

22 Perusing the code, the reader will realise just how simple this
variance reduction technique is to employ. Although figures are not
reproduced in this dissertation, the antithetic variate technique
results in standard errors of the LSM estimate being between 40%
and 80% of non-antithetic (ie. 'raw') Monte Carlo estimates.
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Longstaff and Schwartz produce numerical results
for an American put option on a non-dividend paying
stock that follows the risk-neutral diffusion process:

ds

?=rf.dt +o.\dt.dZ (33)

where S is the stock price, dS is the infinitesimally small
change in S, ry is the risk-free rate of interest, df is an
infinitesimally small increment of time, O is the volatility
of the rate of return of S, and dZ is the standard normal
distribution function.

Table 1, below, contains their results under the
columns headed “LS2001”.  Additionally, the table
employs their estimate of the exact American put option
value obtained by the explicit finite difference method
(“FDM”). The column headed “Current” contains the
results from the LSM code contained in Appendix 2 and
based on the following Monte Carlo simulation
parameters (as originally used in LS2001):

M = 100,000 asset price paths (50,000 plus 50,000
antithetic);

N = 50 times steps per annum;

T = 1 or 2 year option term (ie. until maturity);

K = option strike price of 40;

So = starting stock price of 36, 38, 40, 42 or 44;

re= the fixed, risk free interest rate of 6%pa; and

0 = 20%pa. or 40%pa.

Table 1: LSM Results for an American Put Option

Option FDM  LSM Estimate Standard Error

# Se LS2001 LS2001 Current LS2001 Current
T=1, 0=0.2

1 36 4.478 4.472 4.471 0.010 0.009
2 38 3.250 3.244 3.256 0.009 0.009
3 40 2.314 2.313 2.302 0.009 0.009
4 42 1.617 1.607 1.628 0.007 0.008
5 44 1.110 1.118 1.109 0.007 0.007
T=1, 0=0.4

6 36 7.101 7.091 7.113 0.020 0.019
7 38 6.148 6.139 6.144 0.019 0.019
8 40 5.312 5.308 5.313 0.018 0.018
9 42 4.582 4.588 4.588 0.017 0.017
10 44 3.948 3.957 3.934 0.017 0.016
T=2,0=0.2

11 36 4.840 4.821 4.828 0.012 0.011
12 38 3.745 3.735 3.744 0.011 0.011
13 40 2.885 2.879 2.877 0.010 0.011
14 42 2.212 2.206 2.206 0.010 0.010
15 44 1.690 1.675 1.681 0.009 0.009

T=2, 0=04

16 36 8.508 8.488 8.499 0.024 0.023
17 38 7.670 7.669 7.639 0.022 0.022
18 40 6.920 6.921 6.905 0.022 0.022
19 42 6.248 6.243 6.252 0.021 0.021
20 44 5.647 5.622 5.615 0.021 0.021

An importance difference between LS2001 and
Current is the choice of basis functions used in the
regression. Longstaff and Schwartz used a constant and
three Laguerre polynomials® whereas the Current results,
as shown by the code in Appendix 2, use simple powers: a
constant (x” = 1) and the first three powers in the series.

The reader can see that the choice of functions
does not have a big impact on the LSM estimate.
Differences between the LS2001 values and the Current
values are small and both are very close to the FDM put
option value. In fact, the FDM amount is within — at most
— 1.54 standard errors of the Current LSM estimate (1.67
in the case of FS2001). These results are in line with
Longstaff and Schwartz who reported “results virtually
identical” to their Laguerre polynomials when they
regressed on a constant and the first three powers (2004,
p. 142).

Longstaff and Schwartz also claim “using more
than three basis functions... does not change the numerical
results” (2001, p.126). To test this, variations of the
Appendix 2 code were run by increasing the number of
basis functions incrementally up to x°. The same
assumptions were kept as used in Table 1 save for holding
0=40%, T=1 and using S;=36. The FDM value under
these assumptions (per Longstaff and Schwartz) is 7.101.
The results are shown in Table 2:

Table 2: Effect of Increasing the Number of Basis Functions

Basis Functions Estimate Std Error  Process Time”
1x!' 7.016 0.020 6.9
1 x'x? 7.080 0.019 8.4
1 x'x*x? 7.112 0.019 12.3
1x'x®x*x* 7.104 0.019 12.8
1x'x2x3x*x’ 7.095 0.019 13.1
I x'x*x3x*x°x® 7.098 0.019 15.1
I x'x*x3x*x°x8x’ 7.109 0.019 17.2
I x'x®x3x* x*x0xx® 7.114 0.019 19.3
Ix'23x* x°xx"x x> 7.090 0.019 21.8

* Time (in seconds) to perform the simulation using a 1.8GHz AMD Opteron processor with
4GB of DDR2-RAM running Octave 3.0.0 on the Ubuntu 8.04 GNU/Linux distribution.

A number of points can be made about the results
in Table 2. Firstly, they are in accordance with Longstaff
and Schwartz's claim: save for the first result (1 x'), there
is little difference in the LSM estimates when higher
powers are included. Secondly, the third result (1 x'x*x*)
remains close to the estimate from Table 1's simulation
run. Thirdly, the standard errors of the estimates remain

23 The first three in the Laguerre series.
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similar® irrespective of the number of basis functions
employed in the regression. Finally, the computational
time almost doubles as we move from three basis
functions to nine, removing any remaining doubt the
reader may have that higher order basis functions are an
apparent waste of time — for single-asset American option
valuation, at least.

As a final demonstration of the LSM, the case of a
deeply-out-of-the-money option can be examined. As
stated earlier, the LSM algorithm regresses only those
paths where the option is in-the-money. This raises an
interesting question as to the algorithm's accuracy when
pricing American options that are deeply out-of-the-
money. In such a scenario, the number of independent
variables may be few and far between such that the
resulting regression provides estimates of Continuation
Values which are equal, or close, to the actual dependent
variables. This 'perfect foresight' results in systematic
overestimation of an option's value. This point is not lost
on Dutt and Welke [2008] who demonstrate that the
number of paths in a Monte Carlo simulation needs to be
close to 10° for the LSM to give an accurate
approximation of the price of a deeply out-of-the-money
American put option. Anything less and the LSM shows
consistent overestimation, suggesting the LSM may not be
appropriate for valuing deeply-put-of-the-money options
irrespective of their complexity. Unfortunately, Octave
showed its limitations when trying to reproduce Dutt and
Welke's results. It consistently refused to price Dutt and
Welke's deeply-out-of-the-money option (K=20, S=100
and 0=0.4) complaining that it was being asked to regress
non-numeric matrices. This is a disappointing result as
up until now Octave had shown no signs of any problems.
At first it was thought there was some problem with the
code in Appendix 2, however, the MatLab code supplied
by Dutt and Welke in their paper was adjusted for Octave
and run. This is, perhaps, an area for future research for
the Octave project.

6 Conclusion
This dissertation has examined two recent
algorithms for applying Monte Carlo simulation

techniques to the problem of pricing American-style
options.

The Stochastic Mesh algorithm of Broadie and
Glasserman [2004] remains an interesting area for future
research but practical implementation of the approach
remains unclear. It requires prior knowledge of transition
densities for the underlying state variables used which
may or may not be known depending upon the type of
processes chosen for those state variables. Alternatives
have been proposed when knowledge of transition
densities are not known, but these are poorly documented
and contain glaring mathematical errors.

24 To three decimal places, that is. There is variability at more than
three decimal places.

The Least Squares Method of Longstaff and
Schwartz [2001], however, is very different. It is well
documented and relatively simple to implement. It
produces estimates that are very close to other numerical
methods (finite differences and binomial lattices) and
requires only simple linear regression techniques to
implement. It does, however, suffer from a requirement
for increased processing time when valuing deeply-out-of-
the-money options, as the number of paths in the
simulation must be of the order 10° or more. In this
respect, an interesting area for future research is using
parallel processing techniques to reduce simulation times.
Monte Carlo simulation lends itself well to such
techniques and there are many instances in the literature
on American option pricing where reference is made to
the potential promise of parallel processing to speed up
simulation times. As Longstaff and Schwartz state “from
the perspective of the LSM algorithm, the only constraint
on parallel computation is that the regression needs to use
cross-sectional information in the simulation... [and] there
are many ways in which regressions could be estimated
using individual CPUs and then aggregated across CPUs
to form a composite estimate of [the Continuation Value]”
at p. 144.

While the author is not aware of any 'parallelized’
version of MatlLab, there are many GNU/Linux
distributions available, such as PelicanHPC and
ParallelKnoppix, that incorporate parallel processing
techniques into their distribution of Octave. However, the
author's experience with Octave suggests it may still not
be appropriate to use Octave for valuing deeply-out-of-
the-money options. However, Octave is an open source
project and, as such, has a fast development cycle. It may
be that the problem experienced in this dissertation will
be overcome in the near future and parallel processing
using Octave will open a Pandora's Box to American
option valuation.
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Appendix 1
Octave 3.0.0 Code Listing: Longstaff-Schwartz Least Squares Method (“LSM”)
function [Output] = Ism2 (M, N, T, rf, K, SO, vol)

startl=time(); % start the clock!
dt=T/N; % dt = size (in years) of each time step

%% generate MxN matrix of (standard normal) random numbers
Z=randn(M,N);

% generate Mx(N+1) asset price path matrix (M=path, N=time)
S=[S0*ones(M,1), SO*cumprod( exp( (rf-0.5*vol*2)*dt + vol*sqrt(dt)*Z ), 2)];

% create Mx1 vectors to hold cash flows at exercise (IV) and PV of cash flows (EV)
IV=zeros(M,1);
EV=zeros(M,1);

% set CV to European exercise values (needed to 'start the ball rolling')
EV=max( 0, K-S(:,N+1) );

% loop through each column (ie. time step) but in reverse, starting at 2nd last column (N)
for t=N:-1:2

% PV the exercise values
EV=EV. *exp(-rf*dt);

% set IV to intrinsic value for this pass through the loop
IV=max(0,K-S(:,t));

% create vector of binaries (O=path is out-of-the-money, 1=path is in-the-money)
itm=IV>0;

% find asset price associated with the in-the-money paths, ie. x is the independent variable
x=S(itm,t);

% define the set of basis functions we're going to use for the LSM algorithm
X=[ones(length(x),1), x, x.*2, x."3];

% set up the vector for the Y dependent variable (ie. pv of next period's IV)
Y=EV(itm);

% find regression coefficients 'b’
b=regress(Y,X);

% set up Mx1 colum vector of zeros (not itm) and Continuation Values (itm)
CV=zeros(M,1); CV(itm)=X*b;

% create vector of binaries: O=no early exercise (IV<CV), 1=early exercise (IV>CV)
EE=IV>CYV;

% clear current IV column of IVs where there is no early exercise
IV(~EE)=0;

% if there is early exercise clear all 'subsequent' exercise values for that path
EV(EE)=0;

% finally, add current intrinsic values to remaining PV'd exercise values in preparation for next loop

11
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EV=EV+lV,
endfor
V=mean(EV)*exp(-rf*dt); % calculate LSM estimator
s=std(EV)/sqrt(M); % calculate standard error of LSM estimator
end1=time(); % stop the clock!
Time=end1-startl; % calculate how long it took to compute
CI=1.96*s/sqrt(M); % determine confidence interval width

Output=[M, N, SO, vol, T, Time, V, s, V-CI, V+CIJ;

endfunction

12
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Appendix 2

Octave 3.0.0 Code Listing: LSM with Antithetic Variates
function [Output] = Ism2anti (M, N, T, rf, K, SO, vol)
startl=time(); % start the clock!

dt=T/N; % dT = size (in years) of each time step

%% generate MxN matrix of (standard normal) random numbers (M/2 + M/2 antithetic)
Z1l=randn(M/2,N); Z=[Z1;-71];

S=[SO0*ones(M,1), SO*cumprod( exp( (rf-0.5*vol*2)*dt + vol*sqrt(dt)*Z ), 2)];
IV=zeros(M,1);
EV=zeros(M,1);
EV=max( 0, K-S(:,N+1) );
for t=N:-1:2
EV=EV.*exp(-rf*dt);
IV=max(0,K-S(:,t));
itm=IV>0;
x=S(itm,t);
X=[x.M0, x.*, x.2, x."3];
Y=EV(itm);
b=regress(Y,X);
CV=zeros(M,1); CV(itm)=X*b;
EE=IV>CV,
IV(~EE)=0;
EV(EE)=0;
EV=EV+lV,
endfor
V=mean(EV)*exp(-rf*dt);
s=std(EV);
endl=time();
Time=end]1-start];
CI=1.96*s/sqrt(M);
Output=[M, N, SO, vol, T, Time, V, s/sqrt(M), V-CI, V+CI];

endfunction

13
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