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1. Univariate Case 
 

Consider the Taylor Series of a function, , of one variable, : 

 

 

 

As an approximation: 

 

 

 

We can use this relation to find the value of  such that  ie. the value  will be close to 

the ‘root’ of . 

 

If  then: 

 

 

 

 

 

 

 

 

 

So, we can use this value of  to find , ie: 

 

 

 

This new value of  ( : 

 

 

 

gives rise to a new value of  ( ): 
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which will be closer to 0 than  was.  Of course if the value of is not as close to 0 as we would like, we 

can just set the value of  to be  and perform the process again, ie.: 

 

 

 

where  

 

We can keep on iterating like this until our value for  is “close enough” to 0, ie. within our desired 

tolerance.  This is the essence of the Newton-Raphson algorithm for finding the root of a function. 

 

In applying Newton-Raphson there is one practical problem: determining .  Quite often the functional 

form of  is not known, eg.  could simply be the value in a cell of a complex spreadsheet.  Not knowing 

the equation for means not being able to determine .  In such a situation, however,  can be 

approximated using the difference operator: 

 

 

 

The smaller  is, the closer the difference operator will come to the true value for . 

 

The Newton-Raphson algorithm, therefore, can be stated as: 

 

1. Start with an initial value for , being a guess as to what the root of the function is; 

2. Set ; 

3. Calculate ; 

4. Compare  with 0 to see how far away from 0 we are; 

5. If  is close enough to 0 then stop – we have found that  is close enough to the real root of . 

6. If  is not close enough to 0 then calculate .  This requires two separate calculations: one to 

calculate  and the other to calculate ; 

7.  Calculate  from the values of , and  we have just determined above, using the 

formula specified above; 

8. Set ; 

9. Go to step 3 with this new value of . 

 

2. Multivariate Case 
 

The above univariate case can be extended to the multivariate case quite simply.  Consider the two variable 

case: .  Again, we start with the Taylor Series expansion of , but this time with two variables,  and 

: 

 

 

 

Again, as an approximation: 
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If  then: 

 

 

 

 

 

In matrix notation: 

 

 

 

The problem here, of course, is that we have one equation but two unknowns resulting in an infinite number 

of solutions.  Therefore, in order to have a unique solution we require two equations, ie. two different 

functions which both depend on  and .  If this is the case then we have the equations: 

 

 

 

 

which simplifies to: 

 

 

 

or  

 

 

 

where  is the vector of ,  is the Jacobian matrix and  is the vector of s. Rearranging for  gives: 

 

 

 

and the resulting vector from  

 

 

 

provides our estimates of  which we can use to generate which can then be tested to see if each 

 is close enough to the target value to make  our estimate of the root of . 

 

The problem with multivariate Newton-Raphson is that the more variates there are, the more calculations 

need to be done.  When we had one variate, we needed to calculate the estimate of  which involved 2 
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calculations:  and .  With the bivariate case presented above we now have to calculate 4 partial 

derivatives, with each partial derivative requiring 2 calculations, ie. a total of 8 calculations to get .  A 

trivariate case has 9 partial derivatives in its Jacobian matrix, ie. 18 calculations for .  Generalizing we see that 

for the n-variate case, the calculation of  requires 2n
2
 separate calculations to be done.  And this is before 

we even start to invert .  Consequently, while Newton-Raphson lends itself well to the multivariate case, in its 

application we must be mindful of the computational effort required. 

 


