Root Estimation using
Newton-Raphson

by
Hammond Mason

ROOT ESTIMATION USING NEWTON-RAPHSON

1. Univariate Case

Consider the Taylor Series of a function, f, of one variable, x:

a 1 8°
flx +dx) = f(.r]+—fdx+—ﬂ—f{dx] + -

As an approximation:
f
Flr +dx) = flx) + 5, dx

We can use this relation to find the value of dx such that flx + dx} =
the ‘root’ of f.

If f(x + dx) = 0 then:
_ of
0= flx) + Pl

L
b —fG)

flx)
- Bf
dx

& odxy

flx)

T
ox

So, we can use this value of dx to find x + dx, ie:

)
x+d.r%x—E

dx

This new value of x (x ey)

+d f
Kpew — X J:EJ:—?

dx

gives rise to a new value of f (fyey):

foow = FCrna) = £ 4+)~ f (x _ %)
dx

: 0 ie. the value x + dx will be close to

Page 2

ROOT ESTIMATION USING NEWTON-RAPHSON

which will be closer to 0 than f{x) was. Of course if the value of fis not as close to 0 as we would like, we

can just set the value of x to be x ., and perform the process again, ie.:

v e f (g
new — “*old fr{xnid]
where f'lx 2] = z—i

x=Xpld

We can keep on iterating like this until our value for f;o; is “close enough” to 0, ie. within our desired

tolerance. This is the essence of the Newton-Raphson algorithm for finding the root of a function.

In applying Newton-Raphson there is one practical problem: determining f'{xJ. Quite often the functional
form of f is not known, eg. f(x) could simply be the value in a cell of a complex spreadsheet. Not knowing
the equation for f{x)means not being able to determine f'{x). In such a situation, however, f'{x} can be
approximated using the difference operator:

oy o PO+ dR) — F ()
f10 = dx

The smaller dx is, the closer the difference operator will come to the true value for f'(x).

The Newton-Raphson algorithm, therefore, can be stated as:

Start with an initial value for x, being a guess as to what the root of the function is;
Set x5y = x;

Calculate forg = flrpal;

Compare fz;z with 0 to see how far away from 0 we are;

If fo12 is close enough to 0 then stop — we have found that x ;4 is close enough to the real root of f.

o vk w N

If f12 is not close enough to 0 then calculate f'(x}. This requires two separate calculations: one to
calculate f(x + k) and the other to calculate f'(x);

7. Calculate x4, from the values of f'(x), fiizand x 52 we have just determined above, using the
formula specified above;

8. Set X8 = T

9. Go to step 3 with this new value of x 4.

2. Multivariate Case

The above univariate case can be extended to the multivariate case quite simply. Consider the two variable
case: f(x,.x;). Again, we start with the Taylor Series expansion of f, but this time with two variables, x; and

Xa!

af af
Flrg +dxy, xy +dxy) = flay, x5) + ﬂ—xl.d.r1+ a.d_r:-k---

Again, as an approximation:

Page 3

ROOT ESTIMATION USING NEWTON-RAPHSON

ar af
fley+dxyxy +dxgd = flry, xp) + B‘_.rl'dxl-l_ B_.r:'dx:

If flx, + dxy, 2+ dag) = 0 then:

of af
0= f(xl, J.'::] + a.l‘ixl-l- B—x:.dx:

dx,

af)
a—fley x) ® ar, Ot gy

In matrix notation:

it x [X [o]

The problem here, of course, is that we have one equation but two unknowns resulting in an infinite number

of solutions. Therefore, in order to have a unique solution we require two equations, ie. two different

functions which both depend on x; and x;. If this is the case then we have the equations:

—filx,, x)™ [ﬁ ﬁ] . [ri_rj_]

Bx, Bxagd ldx,
[8f: IEl'f:] [d.rll
fi{-rj:-r::]"- [ﬂxi Az, ldx,
which simplifies to:
°h Of
_[fl{_rl, Xg]ﬁ‘_ dxy dx, d.rl]
flewxl "|on 35 | lax,
dx, dx,
or
—f = J.dx

where £ is the vector of f{x], | is the Jacobian matrix and dx is the vector of x;s. Rearranging for dx gives:

dx = —]f
and the resulting vector from

x—]

provides our estimates of x; + dx; which we can use to generate f,.,, which can then be tested to see if each

f is close enough to the target value to make x —] ~f our estimate of the root of f.

The problem with multivariate Newton-Raphson is that the more variates there are, the more calculations

need to be done. When we had one variate, we needed to calculate the estimate of f'(x) which involved 2

Page 4

ROOT ESTIMATION USING NEWTON-RAPHSON

calculations: f(x + dx) and f'(x). With the bivariate case presented above we now have to calculate 4 partial
derivatives, with each partial derivative requiring 2 calculations, ie. a total of 8 calculations to get J. A
trivariate case has 9 partial derivatives in its Jacobian matrix, ie. 18 calculations for I. Generalizing we see that
for the n-variate case, the calculation of J requires 2n” separate calculations to be done. And this is before
we even start to invert J. Consequently, while Newton-Raphson lends itself well to the multivariate case, in its

application we must be mindful of the computational effort required.

Page 5

