Y1ELD CURVE CONSTRUCTION USING CuBIC SPLINE INTERPOLATION

Introduction

Cubic splines are a popular choice for fitting curves to observed data, such as
when constructing a yield curve. Once fit, form a smooth curve which aids
interpolation. It is important to realise that observable market data, eg.
Bootstrapped zero coupon rates, remain a necessary input to vyield curve
construction.
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Consider the piecewise-defined function S(X):

s;(x) if x <x<X,
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S, (x) if x
Where each S;(X) is a third-order polynomial function of the form:
S; () =a;(x=%,)> +b,(X=Xx)2 +¢;(X=%X)+d; ceoei .. @

where 1=12,....n-1. Note that each spline is relative to the “base” observed
data point, x.. Also not there are N data points but n—1 splines.

I
Cubic spline iInterpolation 1is concerned with determining the unknown
coefficients a,, b, ¢, and d,.

Conditions

S(x) is a continuous, smooth curve partly because the splines themselves are
smooth and continuous functions but, more importantly, because the conditions we
impose on the determination of the splines ensure S(X) 1is smooth and
continuous. These conditions are:



Each spline must pass through each of the observed data points.

In mathematical terms this means that for all x, i=1..,n:
S(Xi) = Y e @
From equation (1) we can see that S(X;)=s,(X;) for i=1..n-1_. This,

combined with equations (2) and (3), gives the result:
Yi =, (% =%)° +b,(x; —x)* +¢,(x, —x) +d,

However, since (X; —X;)=0 this collapses to:

While this holds for i=1..n-1, it
include the i=n case.

S easy to see this can be extended to

Each spline must be continuous across the observed data.

At each of the interior data points (ie. all data points excluding the
beginning and end points, X, and X, ) the value of the adjoining splines
must be equal, ie.:

Si (Xi) = Sifl(Xi) ---------------------------------- o)
for all X, i=2,..,n-1.

We know that S;(X;)=d; from above, so equation (5) implies:

di = Si_l(Xi) ---------------------------------- ®)

From equation (2) we see that:
3 2
Sia(X) =25 (X =X 1)” +b (X =X 1)” +C (% — %) +di4
Therefore, we can show equation (6) is:

d, =a (X _Xi—1)3 +b, (X - Xi—1)2 +C, (% —Xiy)+di

Simplifying the algebra by letting h_, =(X

. —X;,) gives:
3 2
d; =a_h’y +bh’ +c,h, +d
Substituting in equation (4) gives:
Yi = ai—lhis‘—l + bi—lhiz—l +Cihiy + Vi

1e. Chiy = Yi = Yix —ash?y —buhdy



ie. co=2 Y a h b Rl @
his
for all X, i=2,...,n=1. This is a result which we will use later.

The splines must be smooth across the observed data.

This requires the first and second derivatives of a spline at a data point,
to equal the first and second derivatives of the adjacent spline at that
same data point, ie.:

S;(Xi) = sivfl(xi) ---------------------------------- 1))

Si”(Xi) = S;Ll(Xi) --------------------------------- ®

for all X;, i=2,..,n-1.

Dealing with the second derivatives first, we can see from equation (2)
that:

S (X) =68, (X=X;) +2B; o (10)
S 3 (X) =62, (X=X )+ 2D oo an

At the point X=X; equation (10) reduces to:

which is an interesting result for it tells us that bi is masquerading as

the second derivative of S(X) evaluated at X = X; - Equations (9), (10) and
(12) combine to give:

2b, = 6a;; (% —X;1) +2b 4
ie. by =32,y (X; =X ;) + b,

bi B bi—l
1e. o ]
3(X; —Xi4)

As done previously, we let h_, =(X, —X,,) to give:

for all X, i=2,..,n-1.

Which is another result we will come back to.

Moving our attention to the First derivatives:

8;(X) =38, (X—X,)2 +20,(X =X, )+ C; e o e et (14)



' 2
Sia(X) =3, (X=X;1)" +20, (X=X ) +Ciy wonmii L
Again, at X=X; we can see that equation (14) collapses, this time to:
si(x)=c¢
and this combined with equations (8) and (15) gives:
2
Ci =33, (X —X;1)" +2b, (X —X; 1) +C;y

Letting h_, =(X, —X_):
C,=3a,h2 +2b N +C e

Substituting equation (7) into (16):

C; =3a;h; +2bh, + % h_ Y a;;h?y —bhi,

i-1

ie. ¢, =2a,,h2, +b_h  + I

his

Substituting In equation (13) gives:

c = Z(bi?’; biljhizl +bi—1hi—l + Yi r: Yia

i-1 i-1

ie. C = z(bi _bi—l)hi—l + 3bi—1hi—l n Yi = Yia
3 3 h

i-1

ie. c = 2b| hifl - 2biflhi—l + 3biflhi—1 N Vi —VYia
> s

c = (2b; +b, )h; + Yi = Yia
' 3 h

ie.

i-1

but from equation (7) we can see that:

¢ =%—aihf—|oihi

Therefore, equation (17) becomes:

Yian = Yi ah?—bh = (20 +by)h; LYY

hi 3 hi—l
ie. Yin —Yi _Yi—VYia _ (2b; ;1) +a,h” +bh,
hi hi—l 3

Using equation (13):



i yHl_yi__%'_yhlz(Zbi+bFJhF1+ le_biIﬁ 3b;h
h, h._, 3 3h, 3
ie yi+l_yi_yi_yil 2b|h|1+b h b|+1h bh 3bihi
- h; his 3 3 3
e Yia =Yi Yi —Yia _ bighiy +2bh, —bihi+3bihy +Dbyh;
) h, h, 3
ie Yia =Yi  Yi—Yia _ bish =0 2bh;, +2bh; b|+lhi
] h, h, 3 3 3
e Yin =Y Yi— Vi ZEbH-I-Z(h'l-’-h) 'b
h h, 3
ie. hbi—l 4 2(h| -1 +h; ) | b y|+1 Yi _ Yi ~Yia
3 3 h, h,
ie. h.b, +2(h, +h)b +hb =3 Y=Y ¥i~Yis
hi hi—l
ie.  h,2b, +2(h +h)2b, +h,2b, e(y'ﬂh L y‘;yilj
i i-1
where h,_, =(X —X) -
which forms the linear system like so:
h2b+ 2(h, +h,)2b, +  h,2b, 0O + 0 +0=6 %— yzh ylj
2 1
0 +  h2b, +2(h,+h)2b,+ h2b, + 0 +0=6 y4h_y3 - y3h_y2]
3 2
0+ 0o + h2b, + 2(h,+h)2b, + h,2b.+0=6 y5h_y4 - y4h_y3j
4 3

ie. the system Ax = b where:

Adis an Nn—2 x n matrix of h terms;
x is the n x 1 column vector of 2b coefficients: recall the relationship

between 2b and s (X)) in equation (12); and
b is an N—2 x 1 column vector of y and h terms.

We can already see that we have a problem: A is not square, therefore, it
can’t be inverted to solve x = Alb. Since other unknown spline



coefficients (a and Cc) are functions of b, this means we cannot find the
splines without imposing a further condition(s) on the system.

4. The first and final splines must obey the specified boundary conditions.

While the previous three conditions allowed us to solve for d; and find g,

and C; in terms of bi, we were not required to make any value judgements

about the splines. Unfortunately, as we have seen, these conditions were
not enough to give us a workable solution. We must now make two important
decisions:

S, (x;)=? for i=1
and

s;,(x)=? for i=n
ie. what values for the second derivatives of the “end points’?
It is usual to set both derivatives equal to zero, leading to a solution
called “natural” splines. This requires us to insert two rows into A: one
at the top which consists of all zeros — save for the first column’s entry
which is a 1 — and one row at the bottom which consists of all zeros save
for the last column’s entry which is a 1. This gives A dimensions of n x
N. We also need to add a “0” as the top entry in the y column vector and

also as the bottom entry in the same vector, thereby making its dimensions
n x 1. In effect, we have added the lines:

20, =0

and

to our system of linear equations. We can then proceed to invert A to get
the solution to x and use this to solve for the a; and C; coefficients.

Choice of Boundary Conditions

The problem with the natural splines approach is that it may result in the wrong
splines being determined. Consider the case where we fit splines to the (true)
curve y=x® along the interval x = [0, 1]. The second derivative at x=0 is 6(0)
= 0, so no problems there. However, at x=1 the second derivative has the value
6(1) = 6 and not 0. Accordingly, our splines will be incorrectly specified and
will not match one-for-one the true function, ie. any interpolated results will
not lie on the curve y=x5.

For a yield curve, better boundary conditions may be set by enforcing a slope
(ie. set the first derivative) at either end.

Using equation (14) recall that the first derivative at X=X, of the first
spline is:
sl(xl) =G

From equation (7) recall also that:



c, = %—alhf “bh,

1

Therefore:
S:I'.(Xl) = yzh_ h _alh12 _blhl
1
. : y,—-y, b,-Db
1e. $1(%) = zhl - 23h1 ~h? —bh,
je. S:I'.(Xl) _ Y=V _ bZhl _blhl +3b1h1
h, 3
o b,h, +2bh, _ Yo=Y _S]I.(Xl)
3 h,
o h, 2b, + 2h, 2b, _ YoV _SJI_(Xl)
6 h,
ie. h, 2b, + 2h, 2b, = 6(%— s;(xl)J
1
ie. 2h, 2b, +h, 2b, = 6( yzh‘ Yy —s;(xl)J
1

which becomes the first equation in our linear system.

Turning our attention to the end point, X=X,, we know from equation (15) that
its first derivative is:

S;—l(xn) = 3an—l(xn _Xn—l)z + 2bn—l(xn - Xn—l) +Chy
ie. S;'n—l(xn) = 3an—1hr$—1 +2b,,h,  +C

but we know from equation (7) that:

Cin = % - an—lhrf—l - bn—lhn—l

n-1
Therefore:
' B 2 Yo = Yo 2
sn—l(xn) = 3an—lhn—l + 2bn—lhn—l + h— - an—lhn—l - bn—lhn—l
n-1
ie. S;—l(xn) - % = 2an—lhnz—l +b,,h,

n-1



=2 u hnz—l +b,;hy
3hn—l

20

B bn—l)hn—l + 3bn—1hn—l
3

n

_ 2bn hn—l B 2bn—lhn—l + 3bn—lhn—l

3
_2(2b,h,; +b N
2 3
_2b.2h , +20b h
6
- 6(3;”()(“) ) %} =2, 420, +h,,2b,,
n-1
re. hnfl 2bn—1 + 2hn71 2bn = 6(8;11(Xn) —%j
n-1

which is the last equation in our linear system.

Hence, by choosing s,(X) and s, ,(X,) we can solve the linear system. For an
upward sloping yield curve we may decide S, ,(X,)=0 and s/(x,) will depend on

what short rates look like eg. it may be that Si(Xl)=0 is also a good choice.
Either way, both choices will have an impact on all splines and, therefore, all
interpolated data.



Private Function Spline( _

years As Range, _
rates As Range _
Variant

v
>
)

As Integer, _
As Integer, _
As Integer, _
As Variant, _
Variant, _
As Variant, _
As Variant, _
As Variant, _
As Variant

ZTO0O 0P Xmm>
>
n

n = years.Count

ReDim x(n, 1), y(n, 1)
ReDim A(n, n), b(n, 1), c(n, 1), M(n, 4)

X = years.Value
y = rates.Value
For i =1 Ton
For j =1 Ton
A, J) =0
Next j
b(i, 1) =0
c(i, 1) =0
Next i
For i =2 Ton-1
For j =1 Ton
IfjJ +1 =1 Then
ACGi, §) = x(i, 1) - x( -1, 1)
Elself j = i Then
A, J) =2 * (x@(i +1, 1) - x(i -1, 1))
Elself j - 1 =1 Then
AG, J) = x( +1, 1) - x(i, 1)
Else
A, §) =0
End IFf
Next j
c(i, 1) =3 > (_
@ +1, 1) -y@, 1)) /7 x@G + 1, 1) - x@i, 1)) _
)(y?i, D - y@ -1, 1)) 7 @G, 1) - x@G -1, D) _
Next i
For i =1 Ton Stepn -1
AGi, 1) =1
c(i, 1) =0
Next i

b = WorksheetFunction.MMult(WorksheetFunction.MInverse(A), c)

For i =1 Ton -1 "// Remember: there are n-1 splines
M@, 1) = (b + 1, 1) - b(i, 1)) 7 B * (x(i +1, 1) - x(i, 1)))
M@, 2) = b(i, 1)
MG, 3) = (@ +1, 1) -y@, 1)) /7 x@ + 1, 1) - x(i, 1)) _
- MG, 1) *Tx(E o+ 1, 1) - x(i, 1)) M2
- M@, 2) 2 (x(@@ + 1, 1) - x(@, 1))

MG, 4) = y(i, 1)
1

Next
Spline = M

End Function



