


QuantLib Python Cookbook

Luigi Ballabio and Goutham Balaraman

This book is for sale at http://leanpub.com/quantlibpythoncookbook

This version was published on 2018-09-25

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2014 - 2018 Luigi Ballabio and Goutham Balaraman

http://leanpub.com/quantlibpythoncookbook
http://leanpub.com/
http://leanpub.com/manifesto


Tweet This Book!
Please help Luigi Ballabio and Goutham Balaraman by spreading the word about this book on
Twitter!

The suggested hashtag for this book is #quantlib.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#quantlib

http://twitter.com
https://twitter.com/search?q=%23quantlib
https://twitter.com/search?q=%23quantlib


Also By Luigi Ballabio
Implementing QuantLib

http://leanpub.com/u/lballabio
http://leanpub.com/implementingquantlib


Contents

A note on Python and C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Code conventions used in this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1. QuantLib basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Instruments and pricing engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. Numerical Greeks calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4. Market quotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5. Term structures and their reference dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6. Pricing over a range of days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7. A note on random numbers and dimensionality . . . . . . . . . . . . . . . . . . . . . . . . 51

Interest-rate curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8. EONIA curve bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

9. Euribor curve bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

10. Constructing a yield curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

11. Dangerous day-count conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

12. Implied term structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

13. Interest-rate sensitivities via zero spread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

14. A glitch in forward-rate curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



CONTENTS

Interest-rate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

15. Simulating interest rates using Hull White model . . . . . . . . . . . . . . . . . . . . . . . 136

16. Thoughts on the convergence of Hull-White model Monte Carlo simulations . . . . . 141

17. Short interest rate model calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

18. Par versus indexed coupons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

19. Modeling interest rate swaps using QuantLib . . . . . . . . . . . . . . . . . . . . . . . . . . 163

20. Caps and floors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Equity models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173

21. Valuing European option using the Heston model . . . . . . . . . . . . . . . . . . . . . . . 174

22. Volatility smile and Heston model calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 177

23. Heston model parameter calibration in QuantLib Python & SciPy . . . . . . . . . . . . . 187

24. Valuing European and American options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

25. Valuing options on commodity futures using the Black formula . . . . . . . . . . . . . . 204

26. Defining rho for the Black process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

27. Using curves with different day-count conventions . . . . . . . . . . . . . . . . . . . . . . 213

Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217

28. Modeling fixed rate bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

29. Building irregular bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

30. Valuation of bonds with credit spreads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

31. Modeling callable bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

32. Discount margin calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

33. Duration of floating-rate bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

34. Treasury futures contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

35. Mischievous pricing conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257



CONTENTS

36. More mischievous conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269

Translating QuantLib Python examples to C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270



CONTENTS i

The authors have used good faith effort in preparation of this book, but make no expressed or implied
warranty of any kind and disclaim without limitation all responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out of the
use of the information or programs contained herein. Use of the information and instructions in this
book is at your own risk.

The cover image is in the public domain and available from the New York Public Library¹. The cover
font is Open Sans Condensed, released by Steve Matteson² under the Apache License version 2.0³.

¹http://digitalcollections.nypl.org/items/510d47df-335e-a3d9-e040-e00a18064a99
²https://twitter.com/SteveMatteson1
³http://www.apache.org/licenses/LICENSE-2.0

http://digitalcollections.nypl.org/items/510d47df-335e-a3d9-e040-e00a18064a99
https://twitter.com/SteveMatteson1
http://www.apache.org/licenses/LICENSE-2.0
http://digitalcollections.nypl.org/items/510d47df-335e-a3d9-e040-e00a18064a99
https://twitter.com/SteveMatteson1
http://www.apache.org/licenses/LICENSE-2.0


A note on Python and C++
The choice of using the QuantLib Python bindings and Jupyter was due to their interactivity, which
make it easier to demonstrate features, and to the fact that the platform provides out of the box
excellent modules like matplotlib for graphing and pandas for data analysis.

This choice might seem to leave C++ users out in the cold. However, it’s easy enough to translate
the Python code shown here into the corresponding C++ code. An example of such translation is
shown in the appendix.



Code conventions used in this book
The recipes in this cookbook are written as Jupyter notebooks⁴, and follow their structure: blocks
of explanatory text, like the one you’re reading now, are mixed with cells containing Python code
(inputs) and the results of executing it (outputs). The code and its output—if any—are marked by In
[N] and Out [N], respectively, with N being the index of the cell. You can see an example in the
computations below:

In [1]: def f(x, y):
return x + 2*y

In [2]: a = 4
b = 2
f(a, b)

Out[2]: 8

By default, Jupyter displays the result of the last instruction as the output of a cell, like it did above;
however, print statements can display further results.

In [3]: print(a)
print(b)
print(f(b, a))

Out[3]: 4
2
10

Jupyter also knows a few specific data types, such as Pandas data frames, and displays them in a
more readable way:

In [4]: import pandas as pd
pd.DataFrame({ 'foo': [1,2,3], 'bar': ['a','b','c'] })

Out[4]:

foo bar

0 1 a
1 2 b
2 3 c

⁴http://jupyter.org/

http://jupyter.org/
http://jupyter.org/
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The index of the cells shows the order of their execution. Jupyter doesn’t constrain it; however,
in all of the recipes of this book the cells were executed in sequential order as displayed. All cells
are executed in the global Python scope; this means that, as we execute the code in the recipes, all
variables, functions and classes defined in a cell are available to the ones that follow.

Notebooks can also include plots, as in the following cell:

In [5]: %matplotlib inline
import numpy as np
import utils
f, ax = utils.plot(figsize=(10,2))
ax.plot([0, 0.25, 0.5, 0.75, 1.0], np.random.random(5))

Out[5]: [<matplotlib.lines.Line2D at 0x7fef5c24fda0>]

As you might have noted, the cell above also printed a textual representation of the object returned
from the plot, since it’s the result of the last instruction in the cell. To prevent this, cells in the
recipes might have a semicolon at the end, as in the next cell. This is just a quirk of the Jupyter
display system, and it doesn’t have any particular significance; I’m mentioning it here just so that
you dont’t get confused by it.

In [6]: f, ax = utils.plot(figsize=(10,2))
ax.plot([0, 0.25, 0.5, 0.75, 1.0], np.random.random(5));

Finally, the utilsmodule that I imported above is a short module containing convenience functions,
mostly related to plots, for the notebooks in this collection. It’s not necessary to understand its
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implementation to follow the recipes, and therefore we won’t cover it here; but if you’re interested
and want to look at it, it’s included in the zip archive that you can download from Leanpub if you
purchased the book.



Basics



1. QuantLib basics
In this chapter we will introduce some of the basic concepts such as Date, Period, Calendar
and Schedule. These are QuantLib constructs that are used throughout the library in creation of
instruments, models, term structures etc.

In [1]: from QuantLib import *
import pandas as pd

Date Class

The Date object can be created using the constructor as Date(day, month, year). It would be
worthwhile to pay attention to the fact that day is the first argument, followed by month and then
the year. This is different from the Python datetime object instantiation.

In [2]: date = Date(31, 3, 2015)
print(date)

Out[2]: March 31st, 2015

The fields of the Date object can be accessed using the month(), dayOfMonth() and year()
methods. The weekday() method can be used to fetch the day of the week.

In [3]: print("%d-%d-%d" %(date.month(),
date.dayOfMonth(),
date.year()))

Out[3]: 3-31-2015

In [4]: date.weekday() == Tuesday

Out[4]: True

The Date objects can also be used to perform arithmetic operations such as advancing by days,
weeks, months etc. Periods such as weeks or months can be denoted using the Period class. Period
object constructor signature is Period(num_periods, period_type). The num_periods is an
integer and represents the number of periods. The period_type can be Weeks, Months and Years.
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In [5]: type(date+1)

Out[5]: QuantLib.QuantLib.Date

In [6]: print("Add a day : {0}".format(date + 1))
print("Subtract a day : {0}".format(date - 1))
print("Add a week : {0}".format(date + Period(1, Weeks)))
print("Add a month : {0}".format(date + Period(1, Months)))
print("Add a year : {0}".format(date + Period(1, Years)))

Out[6]: Add a day : April 1st, 2015
Subtract a day : March 30th, 2015
Add a week : April 7th, 2015
Add a month : April 30th, 2015
Add a year : March 31st, 2016

One can also do logical operations using the Date object.

In [7]: print(date == Date(31, 3, 2015))
print(date > Date(30, 3, 2015))
print(date < Date(1, 4, 2015))
print(date != Date(1, 4, 2015))

Out[7]: True
True
True
True

The Date object is used in setting valuation dates, issuance and expiry dates of instruments. The
Period object is used in setting tenors, such as that of coupon payments, or in constructing payment
schedules.

Calendar Class

The Date arithmetic above did not take holidays into account. But valuation of different securities
would require taking into account the holidays observed in a specific exchange or country. The
Calendar class implements this functionality for all the major exchanges. Let us take a look at a
few examples here.
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In [8]: date = Date(31, 3, 2015)
us_calendar = UnitedStates()
italy_calendar = Italy()

period = Period(60, Days)
raw_date = date + period
us_date = us_calendar.advance(date, period)
italy_date = italy_calendar.advance(date, period)

print("Add 60 days: {0}".format(raw_date))
print("Add 60 business days in US: {0}".format(us_date))
print("Add 60 business days in Italy: {0}".format(italy_date))

Out[8]: Add 60 days: May 30th, 2015
Add 60 business days in US: June 24th, 2015
Add 60 business days in Italy: June 26th, 2015

The addHoliday and removeHoliday methods in the calendar can be used to add and remove
holidays to the calendar respectively. If a calendar has any missing holidays or has a wrong holiday,
then these methods come handy in fixing the errors. The businessDaysBetweenmethod helps find
out the number of business days between two dates per a given calendar. Let us use this method on
the us_calendar and italy_calendar as a sanity check.

In [9]: us_busdays = us_calendar.businessDaysBetween(date, us_date)
italy_busdays = italy_calendar.businessDaysBetween(date, italy_date)

print("Business days US: {0}".format(us_busdays))
print("Business days Italy: {0}".format(italy_busdays))

Out[9]: Business days US: 60
Business days Italy: 60

In valuation of certain deals, more than one calendar’s holidays are observed. QuantLib has
JointCalendar class that allows you to combine the holidays of two or more calendars. Let us
take a look at a working example.
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In [10]: joint_calendar = JointCalendar(us_calendar, italy_calendar)

joint_date = joint_calendar.advance(date, period)
joint_busdays = joint_calendar.businessDaysBetween(date, joint_date)

print("Add 60 business days in US-Italy: {0}".format(joint_date))
print("Business days US-Italy: {0}".format(joint_busdays))

Out[10]: Add 60 business days in US-Italy: June 29th, 2015
Business days US-Italy: 60

Schedule Class

The Schedule object is necessary in creating coupon schedules or call schedules. Schedule object
constructors have the following signature:

Schedule(const Date& effectiveDate,
const Date& terminationDate,
const Period& tenor,
const Calendar& calendar,
BusinessDayConvention convention,
BusinessDayConvention terminationDateConvention,
DateGeneration::Rule rule,
bool endOfMonth,
const Date& firstDate = Date(),
const Date& nextToLastDate = Date())

and

Schedule(const std::vector<Date>&,
const Calendar& calendar,
BusinessDayConvention rollingConvention)

In [11]: effective_date = Date(1, 1, 2015)
termination_date = Date(1, 1, 2016)
tenor = Period(Monthly)
calendar = UnitedStates()
business_convention = Following
termination_business_convention = Following
date_generation = DateGeneration.Forward
end_of_month = False

schedule = Schedule(effective_date,
termination_date,
tenor,
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calendar,
business_convention,
termination_business_convention,
date_generation,
end_of_month)

pd.DataFrame({'date': list(schedule)})

Out[11]:

date

0 January 2nd, 2015
1 February 2nd, 2015
2 March 2nd, 2015
3 April 1st, 2015
4 May 1st, 2015
5 June 1st, 2015
6 July 1st, 2015
7 August 3rd, 2015
8 September 1st, 2015
9 October 1st, 2015
10 November 2nd, 2015
11 December 1st, 2015
12 January 4th, 2016

Here we have generated a Schedule object that will contain dates between effective_date and
termination_date with the tenor specifying the Period to be Monthly. The calendar object is
used for determining holidays. Here we have chosen the convention to be the day following holidays.
That is why we see that holidays are excluded in the list of dates.

The Schedule class can handle generation of dates with irregularity in schedule. The two extra
parameters firstDate and nextToLastDate parameters along with a combination of forward or
backward date generation rule can be used to generate short or long stub payments at the front
or back end of the schedule. For example, the following combination of firstDate and backward
generation rule creates a short stub in the front on the January 15, 2015.
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In [12]: # short stub in the front
effective_date = Date(1, 1, 2015)
termination_date = Date(1, 1, 2016)
first_date = Date(15, 1, 2015)
schedule = Schedule(effective_date,

termination_date,
tenor,
calendar,
business_convention,
termination_business_convention,
DateGeneration.Backward,
end_of_month,
first_date)

pd.DataFrame({'date': list(schedule)})

Out[12]:

date

0 January 2nd, 2015
1 January 15th, 2015
2 February 2nd, 2015
3 March 2nd, 2015
4 April 1st, 2015
5 May 1st, 2015
6 June 1st, 2015
7 July 1st, 2015
8 August 3rd, 2015
9 September 1st, 2015
10 October 1st, 2015
11 November 2nd, 2015
12 December 1st, 2015
13 January 4th, 2016

Using the nextToLastDate parameter along with the forward date generation rule creates a short
stub at the back end of the schedule.
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In [13]: # short stub at the back
effective_date = Date(1, 1, 2015)
termination_date = Date(1, 1, 2016)
penultimate_date = Date(15, 12, 2015)
schedule = Schedule(effective_date,

termination_date,
tenor,
calendar,
business_convention,
termination_business_convention,
DateGeneration.Forward,
end_of_month,
Date(),
penultimate_date)

pd.DataFrame({'date': list(schedule)})

Out[13]:

date

0 January 2nd, 2015
1 February 2nd, 2015
2 March 2nd, 2015
3 April 1st, 2015
4 May 1st, 2015
5 June 1st, 2015
6 July 1st, 2015
7 August 3rd, 2015
8 September 1st, 2015
9 October 1st, 2015
10 November 2nd, 2015
11 December 1st, 2015
12 December 15th, 2015
13 January 4th, 2016

Using the backward generation rule along with the firstDate allows us to create a long stub in the
front. Below the first two dates are longer in duration than the rest of the dates.
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In [14]: # long stub in the front
first_date = Date(1, 2, 2015)
effective_date = Date(15, 12, 2014)
termination_date = Date(1, 1, 2016)
schedule = Schedule(effective_date,

termination_date,
tenor,
calendar,
business_convention,
termination_business_convention,
DateGeneration.Backward,
end_of_month,
first_date)

pd.DataFrame({'date': list(schedule)})

Out[14]:

date

0 December 15th, 2014
1 February 2nd, 2015
2 March 2nd, 2015
3 April 1st, 2015
4 May 1st, 2015
5 June 1st, 2015
6 July 1st, 2015
7 August 3rd, 2015
8 September 1st, 2015
9 October 1st, 2015
10 November 2nd, 2015
11 December 1st, 2015
12 January 4th, 2016

Similarly the usage of nextToLastDate parameter along with forward date generation rule can be
used to generate long stub at the back of the schedule.
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In [15]: # long stub at the back
effective_date = Date(1, 1, 2015)
penultimate_date = Date(1, 12, 2015)
termination_date = Date(15, 1, 2016)
schedule = Schedule(effective_date,

termination_date,
tenor,
calendar,
business_convention,
termination_business_convention,
DateGeneration.Forward,
end_of_month,
Date(),
penultimate_date)

pd.DataFrame({'date': list(schedule)})

Out[15]:

date

0 January 2nd, 2015
1 February 2nd, 2015
2 March 2nd, 2015
3 April 1st, 2015
4 May 1st, 2015
5 June 1st, 2015
6 July 1st, 2015
7 August 3rd, 2015
8 September 1st, 2015
9 October 1st, 2015
10 November 2nd, 2015
11 December 1st, 2015
12 January 15th, 2016

Below the Schedule is generated from a list of dates.
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In [16]: dates = [Date(2,1,2015), Date(2, 2,2015),
Date(2,3,2015), Date(1,4,2015),
Date(1,5,2015), Date(1,6,2015),
Date(1,7,2015), Date(3,8,2015),
Date(1,9,2015), Date(1,10,2015),
Date(2,11,2015), Date(1,12,2015),
Date(4,1,2016)]

rolling_convention = Following

schedule = Schedule(dates, calendar,
rolling_convention)

pd.DataFrame({'date': list(schedule)})

Out[16]:

date

0 January 2nd, 2015
1 February 2nd, 2015
2 March 2nd, 2015
3 April 1st, 2015
4 May 1st, 2015
5 June 1st, 2015
6 July 1st, 2015
7 August 3rd, 2015
8 September 1st, 2015
9 October 1st, 2015
10 November 2nd, 2015
11 December 1st, 2015
12 January 4th, 2016

Interest Rate

The InterestRate class can be used to store the interest rate with the compounding type, day
count and the frequency of compounding. Below we show how to create an interest rate of 5.0%
compounded annually, using Actual/Actual day count convention.
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In [17]: annual_rate = 0.05
day_count = ActualActual()
compound_type = Compounded
frequency = Annual

interest_rate = InterestRate(annual_rate,
day_count,
compound_type,
frequency)

print(interest_rate)

Out[17]: 5.000000 % Actual/Actual (ISDA) Annual compounding

Lets say if you invest a dollar at the interest rate described by interest_rate, the compoundFactor
method in the InterestRate object gives you how much your investment will be worth after any
period. Below we show that the value returned by compound_factor for 2 years agrees with the
expected compounding formula.

In [18]: t = 2.0
print(interest_rate.compoundFactor(t))
print((1+annual_rate)*(1.0+annual_rate))

Out[18]: 1.1025
1.1025

The discountFactormethod returns the reciprocal of the compoundFactormethod. The discount
factor is useful while calculating the present value of future cashflows.

In [19]: print(interest_rate.discountFactor(t))
print(1.0/interest_rate.compoundFactor(t))

Out[19]: 0.9070294784580498
0.9070294784580498

A given interest rate can be converted into other compounding types and compounding frequency
using the equivalentRate method.

In [20]: new_frequency = Semiannual
new_interest_rate = interest_rate.equivalentRate(compound_type, new_frequency, t)
print(new_interest_rate)

Out[20]: 4.939015 % Actual/Actual (ISDA) Semiannual compounding

The discount factor for the two InterestRate objects, interest_rate and new_interest_rate
are the same, as shown below.
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In [21]: print(interest_rate.discountFactor(t))
print(new_interest_rate.discountFactor(t))

Out[21]: 0.9070294784580498
0.9070294784580495

The impliedRate method in the InterestRate class takes compound factor to return the
implied rate. The impliedRate method is a static method in the InterestRate class and can be
used without an instance of InterestRate. Internally the equivalentRate method invokes the
impliedRate method in its calculations.

Conclusion

This chapter gave an introduction to the basics of QuantLib. Here we explained the Date, Schedule,
Calendar and InterestRate classes.



2. Instruments and pricing engines
In this notebook, I’ll show how instruments and their available engines can monitor changes in their
input data.

Setup

To begin, we import the QuantLib module and set up the global evaluation date.

In [1]: from QuantLib import *

In [2]: today = Date(7, March, 2014)
Settings.instance().evaluationDate = today

The instrument

As a sample instrument, we’ll take a textbook example: a European option.

Building the option requires only the specification of its contract, so its payoff (it’s a call option
with strike at 100) and its exercise, three months from today’s date. Market data will be selected and
passed later, depending on the calculation methods.

In [3]: option = EuropeanOption(PlainVanillaPayoff(Option.Call, 100.0),
EuropeanExercise(Date(7, June, 2014)))

First pricing method: analytic Black-Scholes formula

The different pricing methods are implemented as pricing engines holding the required market data.
The first we’ll use is the one encapsulating the analytic Black-Scholes formula.

First, we collect the quoted market data. We’ll assume flat risk-free rate and volatility, so they can
be expressed by SimpleQuote instances: those model numbers whose value can change and that
can notify observers when this happens. The underlying value is at 100, the risk-free value at 1%,
and the volatility at 20%.
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In [4]: u = SimpleQuote(100.0)
r = SimpleQuote(0.01)
sigma = SimpleQuote(0.20)

In order to build the engine, the market data are encapsulated in a Black-Scholes process object. First
we build flat curves for the risk-free rate and the volatility…

In [5]: riskFreeCurve = FlatForward(0, TARGET(), QuoteHandle(r), Actual360())
volatility = BlackConstantVol(0, TARGET(), QuoteHandle(sigma), Actual360())

…then we instantiate the process with the underlying value and the curves we just built. The inputs
are all stored into handles, so that we could change the quotes and curves used if we wanted. I’ll
skip over this for the time being.

In [6]: process = BlackScholesProcess(QuoteHandle(u),
YieldTermStructureHandle(riskFreeCurve),
BlackVolTermStructureHandle(volatility))

Once we have the process, we can finally use it to build the engine…

In [7]: engine = AnalyticEuropeanEngine(process)

…and once we have the engine, we can set it to the option and evaluate the latter.

In [8]: option.setPricingEngine(engine)

In [9]: print(option.NPV())

Out[9]: 4.155543462156206

Depending on the instrument and the engine, we can also ask for other results; in this case, we can
ask for Greeks.

In [10]: print(option.delta())
print(option.gamma())
print(option.vega())

Out[10]: 0.5302223303784392
0.03934493301271913
20.109632428723106

Market changes

As I mentioned, market data are stored in Quote instances and thus can notify the option when any
of them changes. We don’t have to do anything explicitly to tell the option to recalculate: once we
set a new value to the underlying, we can simply ask the option for its NPV again and we’ll get the
updated value.
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In [11]: u.setValue(105.0)
print(option.NPV())

Out[11]: 7.27556357927846

Just for showing off, we can use this to graph the option value depending on the underlying asset
value. After a bit of graphic setup (don’t pay attention to the man behind the curtains)…

In [12]: %matplotlib inline
import numpy as np
from IPython.display import display
import utils

…we can take an array of values from 80 to 120, set the underlying value to each of them, collect the
corresponding option values, and plot the results.

In [13]: f, ax = utils.plot()
xs = np.linspace(80.0, 120.0, 400)
ys = []
for x in xs:

u.setValue(x)
ys.append(option.NPV())

ax.set_title('Option value')
utils.highlight_x_axis(ax)
ax.plot(xs, ys);
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Other market data also affect the value, of course.

In [14]: u.setValue(105.0)
r.setValue(0.01)
sigma.setValue(0.20)

In [15]: print(option.NPV())

Out[15]: 7.27556357927846

We can see it when we change the risk-free rate…

In [16]: r.setValue(0.03)

In [17]: print(option.NPV())

Out[17]: 7.624029148527754

…or the volatility.
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In [18]: sigma.setValue(0.25)

In [19]: print(option.NPV())

Out[19]: 8.531296969971573

Date changes

Just as it does when inputs are modified, the value also changes if we advance the evaluation date.
Let’s look first at the value of the option when its underlying is worth 105 and there’s still three
months to exercise…

In [20]: u.setValue(105.0)
r.setValue(0.01)
sigma.setValue(0.20)
print(option.NPV())

Out[20]: 7.27556357927846

…and then move to a date two months before exercise.

In [21]: Settings.instance().evaluationDate = Date(7, April, 2014)

Again, we don’t have to do anything explicitly: we just ask the option its value, and as expected it
has decreased, as can also be seen by updating the plot.

In [22]: print(option.NPV())

Out[22]: 6.560073820974377

In [23]: ys = []
for x in xs:

u.setValue(x)
ys.append(option.NPV())

ax.plot(xs, ys, '--')
display(f)
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In the default library configuration, the returned value goes down to 0 when we reach the exercise
date.

In [24]: Settings.instance().evaluationDate = Date(7, June, 2014)

In [25]: print(option.NPV())

Out[25]: 0.0

Other pricing methods

The pricing-engine mechanism allows us to use different pricing methods. For comparison, I’ll first
set the input data back to what they were previously and output the Black-Scholes price.
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In [26]: Settings.instance().evaluationDate = today
u.setValue(105.0)
r.setValue(0.01)
sigma.setValue(0.20)

In [27]: print(option.NPV())

Out[27]: 7.27556357927846

Let’s say that we want to use a Heston model to price the option. What we have to do is to instantiate
the corresponding class with the desired inputs…

In [28]: model = HestonModel(
HestonProcess(YieldTermStructureHandle(riskFreeCurve),

YieldTermStructureHandle(FlatForward(0, TARGET(),
0.0, Actual360())),

QuoteHandle(u),
0.04, 0.1, 0.01, 0.05, -0.75))

…pass it to the corresponding engine, and set the new engine to the option.

In [29]: engine = AnalyticHestonEngine(model)
option.setPricingEngine(engine)

Asking the option for its NPV will now return the value according to the new model.

In [30]: print(option.NPV())

Out[30]: 7.295356086978629

Lazy recalculation

One last thing. Up to now, we haven’t really seen evidence of notifications going around. After all,
the instrument might just have recalculated its value every time, regardless of notifications. What
I’m going to show, instead, is that the option doesn’t just recalculate every time anything changes;
it also avoids recalculations when nothing has changed.

We’ll switch to a Monte Carlo engine, which takes a few seconds to run the required simulation.
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In [31]: engine = MCEuropeanEngine(process, "PseudoRandom",
timeSteps=20,
requiredSamples=250000)

option.setPricingEngine(engine)

When we ask for the option value, we have to wait for the calculation to finish…

In [32]: %time print(option.NPV())

Out[32]: 7.306010762284822
CPU times: user 1.71 s, sys: 0 ns, total: 1.71 s
Wall time: 1.71 s

…but a second call to the NPV method will be instantaneous when made before anything changes.
In this case, the option didn’t calculate its value; it just returned the result that it cached from the
previous call.

In [33]: %time print(option.NPV())

Out[33]: 7.306010762284822
CPU times: user 10 ms, sys: 0 ns, total: 10 ms
Wall time: 976 µs

If we change anything (e.g., the underlying value)…

In [34]: u.setValue(104.0)

…the option is notified of the change, and the next call to NPV will again take a while.

In [35]: %time print(option.NPV())

Out[35]: 6.597869654923489
CPU times: user 1.69 s, sys: 30 ms, total: 1.72 s
Wall time: 1.71 s



3. Numerical Greeks calculation
In this notebook, I’ll build on the facilities provided by the Instrument class (that is, its ability to
detect changes in its inputs and recalculate accordingly) to show how to calculate numerical Greeks
when the engine doesn’t provide them.

Setup

As usual, we import the QuantLib module and set the evaluation date:

In [1]: from QuantLib import *

In [2]: today = Date(8, October, 2014)
Settings.instance().evaluationDate = today

A somewhat exotic option

As an example, we’ll use a knock-in barrier option:

In [3]: option = BarrierOption(Barrier.UpIn,
120.0, # barrier
0.0, # rebate
PlainVanillaPayoff(Option.Call, 100.0),
EuropeanExercise(Date(8, January, 2015)))

For the purpose of this example, the market data are the underlying value, the risk-free rate and the
volatility. We wrap them in quotes, so that the instrument will be notified of any changes…

In [4]: u = SimpleQuote(100.0)
r = SimpleQuote(0.01)
sigma = SimpleQuote(0.20)

…and from the quotes we build the flat curves and the process that the engine requires. As explained
in a later notebook, we build the term structures so that they move with the evaluation date; this
will be useful further on.
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In [5]: riskFreeCurve = FlatForward(0, TARGET(), QuoteHandle(r), Actual360())
volatility = BlackConstantVol(0, TARGET(), QuoteHandle(sigma), Actual360())

In [6]: process = BlackScholesProcess(QuoteHandle(u),
YieldTermStructureHandle(riskFreeCurve),
BlackVolTermStructureHandle(volatility))

Finally, we build the engine (the library provides one based on an analytic formula) and set it to the
option.

In [7]: option.setPricingEngine(AnalyticBarrierEngine(process))

Now we can ask the option for its value…

In [8]: print(option.NPV())

Out[8]: 1.3657980739109867

…but we’re not so lucky when it comes to Greeks:

In [9]: print(option.delta())

Out[9]: ---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-9-dcaa26b2b456> in <module>()
----> 1 print(option.delta())

/usr/local/lib/python3.6/dist-packages/QuantLib/QuantLib.py in delta(self)
11432
11433 def delta(self):

> 11434 return _QuantLib.BarrierOption_delta(self)
11435
11436 def gamma(self):

RuntimeError: delta not provided

The engine doesn’t provide the delta, so asking for it raises an error.

Numerical calculation

What does a quant have to do? We can use numerical differentiation to approximate the Greeks, as
shown in the next figure: that is, we can approximate the derivative by calculating the option value
for two slightly different values of the underlying and by taking the slope between the resulting
points.
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The relevant formulas are:

∆ =
P (u0 + h)− P (u0 − h)

2h
Γ =

P (u0 + h)− 2P (u0) + P (u0 − h)

h2

where P (u) is the price of the option for a given value of the underlying u.

Thanks to the framework we set in place, getting the perturbed prices is easy enough. We just have
to set the relevant quote to the new value and ask the option for its price again. Thus, we choose a
small increment and start. First, we save the current value of the option…

In [10]: u0 = u.value() ; h = 0.01

In [11]: P0 = option.NPV() ; print(P0)

Out[11]: 1.3657980739109867

…then we increase the underlying value and get the new option value…

In [12]: u.setValue(u0+h)
P_plus = option.NPV() ; print(P_plus)

Out[12]: 1.3688112201958083

…then we do the same after decreasing the underlying value.
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In [13]: u.setValue(u0-h)
P_minus = option.NPV() ; print(P_minus)

Out[13]: 1.3627900998610207

Finally, we set the underlying value back to its current value.

In [14]: u.setValue(u0)

Applying the formulas above give us the desired Greeks:

In [15]: Delta = (P_plus - P_minus)/(2*h)
Gamma = (P_plus - 2*P0 + P_minus)/(h*h)
print(Delta)
print(Gamma)

Out[15]: 0.3010560167393761
0.05172234855521651

The approach is usable for any Greek. We can use the two-sided formula above, or the one-sided
formula below if we want to minimize the number of evaluations:

∂P

∂x
=

P (x0 + h)− P (x0)

h

For instance, here we calculate Rho and Vega:

In [16]: r0 = r.value() ; h = 0.0001
r.setValue(r0+h) ; P_plus = option.NPV()
r.setValue(r0)
Rho = (P_plus - P0)/h ; print(Rho)

Out[16]: 6.531038494277386

In [17]: sigma0 = sigma.value() ; h = 0.0001
sigma.setValue(sigma0+h) ; P_plus = option.NPV()
sigma.setValue(sigma0)
Vega = (P_plus - P0)/h ; print(Vega)

Out[17]: 26.52519924198904

The approach for the Theta is a bit different, although it still relies on the fact that the option reacts
to the change in the market data. The problem is that we don’t have the time to maturity available
as a quote, as was the case for the other quantities. Instead, since we set up the term structures
so that they move with the evaluation date, we just have to set it to tomorrow’s date to get the
corresponding option value:
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In [18]: Settings.instance().evaluationDate = today+1
P1 = option.NPV()
h = 1.0/365
Theta = (P1-P0)/h ; print(Theta)

Out[18]: -10.770888399441302



4. Market quotes
In this notebook, I’ll show a pitfall to avoid when multiple quotes need to be updated.

In [1]: %matplotlib inline
import numpy as np
import utils

In [2]: from QuantLib import *

In [3]: today = Date(17, October, 2016)
Settings.instance().evaluationDate = today

Setting the stage

For illustration purposes, I’ll create a bond curve using the same data and algorithm shown in one
of the QuantLib C++ examples; namely, I’ll give to the curve the functional form defined by the
Nelson-Siegel model and I’ll fit it to a number of bond. Here are the maturities in years and the
coupons of the bonds I’ll use:

In [4]: data = [ (2, 0.02), (4, 0.0225), (6, 0.025), (8, 0.0275),
(10, 0.03), (12, 0.0325), (14, 0.035), (16, 0.0375),
(18, 0.04), (20, 0.0425), (22, 0.045), (24, 0.0475),
(26, 0.05), (28, 0.0525), (30, 0.055)]

For simplicity, I’ll use the same start date, frequency and conventions for all the bonds; this doesn’t
affect the point I’m going to make in the rest of the notebook. I’ll also assume that all bonds currently
price at 100. I’ll skip over the details of building the curve now; the one thing you’ll need to remember
is that it depends on the quotes modeling the bond prices.
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In [5]: calendar = TARGET()
settlement = calendar.advance(today, 3, Days)
quotes = []
helpers = []
for length, coupon in data:

maturity = calendar.advance(settlement, length, Years)
schedule = Schedule(settlement, maturity, Period(Annual),

calendar, ModifiedFollowing, ModifiedFollowing,
DateGeneration.Backward, False)

quote = SimpleQuote(100.0)
quotes.append(quote)
helpers.append(FixedRateBondHelper(QuoteHandle(quote), 3, 100.0,

schedule, [coupon], SimpleDayCounter(),
ModifiedFollowing))

curve = FittedBondDiscountCurve(0, calendar, helpers,
SimpleDayCounter(), NelsonSiegelFitting())

Here is a visualization of the curve as discount factors versus time in years:

In [6]: sample_times = np.linspace(0.0, 30.0, 301)
sample_discounts = [ curve.discount(t) for t in sample_times ]

f, ax = utils.plot()
ax.set_ylim(0.0, 1.0)
ax.plot(sample_times, sample_discounts);



Market quotes 29

Also, here’s a bond priced by discounting its coupons on the curve:

In [7]: schedule = Schedule(today, calendar.advance(today, 15, Years),
Period(Semiannual), calendar,
ModifiedFollowing, ModifiedFollowing,
DateGeneration.Backward, False)

bond = FixedRateBond(3, 100.0, schedule, [0.04], Actual360())
bond.setPricingEngine(DiscountingBondEngine(YieldTermStructureHandle(curve)))
print(bond.cleanPrice())

Out[7]: 105.77449628297312

“It looked like a good idea at the time”

Now, let’s add an observer that checks whether the bond is out of date, and if so recalculates the
bond and outputs its new price. In Python, I can do this by defining a function to be triggered by the
notifications, by passing it to the observer I’m creating, and (this last step is as in C++) by registering
the observer with the bond.

As a reminder of how the whole thing works: the changes will come from the market quotes, but the
observer doesn’t need to be concerned with that and only registers with the object it’s ultimately
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interested in; in this case, the bond whose price it wants to monitor. A change in any of the market
quotes will cause the quote to notify the helper, which in turn will notify the curve, and so on to the
pricing engine, the bond and finally our observer.

In [8]: prices = []
def print_price():

p = bond.cleanPrice()
prices.append(p)
print(p)

o = Observer(print_price)
o.registerWith(bond)

The function also appends the new price to a list that can be used later as a history of the prices.
Let’s see if it works:

In [9]: quotes[2].setValue(101.0)

Out[9]: 105.77449628297312
105.8656042875337

Whoa, what was that? The function was called twice, which surprised me too when I wrote this
notebook. It turns out that, due to a glitch of multiple inheritance, the curve sends two notifications
to the instrument. After the first, the instrument recalculates but the curve doesn’t (which explains
why the price doesn’t change); after the second, the curve updates and the price changes. This should
be fixed in a future release, but again it doesn’t change the point of the notebook.

Let’s set the quote back to its original value.

In [10]: quotes[2].setValue(100.0)

Out[10]: 105.8656042875337
105.77449634664224

Now, let’s say the market moves up and, accordingly, all the bonds prices increase to 101. Therefore,
we need to update all the quotes.
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In [11]: prices = []
for q in quotes:

q.setValue(101.0)

Out[11]: 105.77449634664224
105.28388426272507
105.28388426272507
105.2186288679219
105.2186288679219
105.3195906444377
105.3195906444377
105.4878663448759
105.4878663448759
105.68032070200927
105.68032070200927
105.87580370787278
105.87580370787278
106.06201680440225
106.06201680440225
106.23044624497663
106.23044624497663
106.37409230798896
106.37409230798896
106.48708840758337
106.48708840758337
106.56505206364592
106.56505206364592
106.60570726105742
106.60570726105742
106.60980187075381
106.60980187075381
106.58011186582736
106.58011186582736
106.52070699740128

As you see, each of the updates sent a notification and thus triggered a recalculation. We can use
the list of prices we collected (slicing it to skip duplicate values) to visualize how the price changed.

In [12]: unique_prices = prices[::2]+prices[-1::]
_, ax = utils.plot()
ax.plot(unique_prices, '-');
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The first price is the original one, and the last price is the final one; but all those in between are
calculated based on an incomplete set of changes in which some quotes were updated and some
others weren’t. Those are all incorrect, and (since they went both above and below the range of the
real prices) outright dangerous in case there were any triggers on price levels that could have fired.
Clearly, this is not the kind of behavior we want our code to have.

Alternatives?

There are workarounds we can apply. For instance, it’s possible to freeze the bond temporarily,
preventing it from forwarding notifications.

In [13]: bond.freeze()

Now, notifications won’t be forwarded by the bond and thus won’t reach our observer. In fact, the
following loop won’t print anything.

In [14]: for q in quotes:
q.setValue(101.5)

When we restore the bond, it sends a single notification, which triggers only one recalculation and
gives the correct final price.
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In [15]: bond.unfreeze()

Out[15]: 106.85839373944943

When using C++, it’s also possible to disable and re-enable notifications globally, which makes it
more convenient.

But it all feels a bit convoluted anyway. The whole thing will be simpler if we discard the initial
idea and don’t force a recalculation for each notification.

Pull, don’t push

It’s preferable for updates to not trigger recalculation and just set some kind of dirty flag, just like
the instruments in the library do. This way, you can control when the calculation occur.

To do so, let’s remove the observer we have in place…

In [16]: del o

…and instead create one that raises a flag when it’s notified.

In [17]: flag = {}
flag['status'] = 'down'
def set_flag():

flag['status'] = 'up'
o = Observer(set_flag)
o.registerWith(bond)

The flag is initially down…

In [18]: print(flag)

Out[18]: {'status': 'down'}

…and quote changes cause it to be raised.

In [19]: for q in quotes:
q.setValue(100.0)

In [20]: print(flag)

Out[20]: {'status': 'up'}

At this point, we can ask the bond for its final price.
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In [21]: bond.cleanPrice()

Out[21]: 105.77449635334463

Better yet, we can let the instrument do that: let’s remove the second observer, too, and just ask
the instrument for its price after the changes. The instrument keeps track of whether it needs
recalculation, so it doesn’t need us to keep track of it.

In [22]: del o

In [23]: for q in quotes:
q.setValue(101.0)

In [24]: bond.cleanPrice()

Out[24]: 106.52070687248381

So, less is more? In this case, it seems so.



5. Term structures and their reference
dates

In this notebook, I show briefly how to set up term structures so that they track (or don’t track) the
global evaluation date.

Setup

Import the QuantLib module and set up the global evaluation date. You might want to take note of
the date, since we’ll be moving it around later on.

In [1]: from QuantLib import *

In [2]: Settings.instance().evaluationDate = Date(3, October, 2014)

Specifying the reference date of a term structure

In not-too-accurate terms, the reference date of a term structure is where it begins. It can be the
evaluation date, but you might also want it to start on the spot date, for instance.

We have two possibilities to define a reference date for a curve—even though some particular classes
only allow one of them.

The first is to define it by means of a (possibly null) offset from the current evaluation date; e.g.,
“two business days after the evaluation date” to define it as the spot date, or “no business days” to
define it as the evaluation date itself. I’ll do it here by building a sample curve over a few swaps.

Never mind the helper object that I’m building here…

In [3]: helpers = [ SwapRateHelper(QuoteHandle(SimpleQuote(rate/100.0)),
Period(*tenor), TARGET(),
Annual, Unadjusted,
Thirty360(),
Euribor6M())

for tenor, rate in [((2,Years), 0.201),
((3,Years), 0.258),
((5,Years), 0.464),
((10,Years), 1.151),
((15,Years), 1.588)] ]

…because the construction of the curve is the main point: note the 0 and TARGET() arguments,
specifying the number of days and the calendar used to determine business days.



Term structures and their reference dates 36

In [4]: curve1 = PiecewiseFlatForward(0, TARGET(), helpers, Actual360())

The second possibility is to specify the reference date explicitly. For instance, the ForwardCurve
class takes a vector of specific dates and the corresponding rates and interpolates between them; the
first passed date is taken as the reference date of the curve.

For comparison purposes, I’ll ask the curve above for its nodes and use them to build a ForwardCurve
instance:

In [5]: dates, rates = zip(*curve1.nodes())

In [6]: curve1.nodes()

Out[6]: ((Date(3,10,2014), 0.0019777694879293093),
(Date(7,10,2016), 0.0019777694879293093),
(Date(9,10,2017), 0.0036475517704509294),
(Date(7,10,2019), 0.007660760701876805),
(Date(7,10,2024), 0.018414773669420893),
(Date(8,10,2029), 0.025311634328221498))

The curve built based on these data will be the same as the first, except that we’re specifying its
reference date explicitly as October 3rd (the first passed date).

In [7]: curve2 = ForwardCurve(dates, rates, Actual360())

Both curves are defined over the same range of dates…

In [8]: print("{0} to {1}".format(curve1.referenceDate(), curve1.maxDate()))
print("{0} to {1}".format(curve2.referenceDate(), curve2.maxDate()))

Out[8]: October 3rd, 2014 to October 8th, 2029
October 3rd, 2014 to October 8th, 2029

…and return the same rates, whether we ask for a given time (for instance, 5 years)…

In [9]: print(curve1.zeroRate(5.0, Continuous))
print(curve2.zeroRate(5.0, Continuous))

Out[9]: 0.452196 % Actual/360 continuous compounding
0.452196 % Actual/360 continuous compounding

…or for a given date.
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In [10]: print(curve1.zeroRate(Date(7, September, 2019), Actual360(), Continuous))
print(curve2.zeroRate(Date(7, September, 2019), Actual360(), Continuous))

Out[10]: 0.452196 % Actual/360 continuous compounding
0.452196 % Actual/360 continuous compounding

With the help of a couple more Python modules, we can also plot the whole curve by asking for
rates over a set of times:

In [11]: %matplotlib inline
import utils
from matplotlib.ticker import FuncFormatter
import numpy as np

In [12]: times = np.linspace(0.0, 15.0, 400)
rates = [ curve1.zeroRate(t, Continuous).rate() for t in times ]
_, ax = utils.plot()
ax.yaxis.set_major_formatter(

FuncFormatter(lambda r,pos: utils.format_rate(r,2)))
ax.plot(times, rates);



Term structures and their reference dates 38

Moving the evaluation date

To recap: we built the first curve specifying its reference date relative to the evaluation date, and the
second curve specifying its reference date explicitly. Now, what happens if we change the evaluation
date?

In [13]: Settings.instance().evaluationDate = Date(19, September, 2014)

As you might expect, the reference date of the first curve changes accordingly while that of the
second curve doesn’t.

We can see how the range of definition has now changed for the first curve, but not for the second:

In [14]: print("{0} to {1}".format(curve1.referenceDate(), curve1.maxDate()))
print("{0} to {1}".format(curve2.referenceDate(), curve2.maxDate()))

Out[14]: September 19th, 2014 to September 24th, 2029
October 3rd, 2014 to October 8th, 2029

And of course the rates have changed, too…

In [15]: print(curve1.zeroRate(5.0, Continuous))
print(curve2.zeroRate(5.0, Continuous))

Out[15]: 0.452196 % Actual/360 continuous compounding
0.452196 % Actual/360 continuous compounding

…if we look at them in the right way. The whole curve has moved back a couple of weeks, so if we
ask for a given time we’ll get the same rates; in other words, we’re asking for the zero rate over five
years after the reference date, and that remains the same for a rigid translation of the curve. If we
ask for the zero rate at a given date, though, we’ll see the effect:

In [16]: print(curve1.zeroRate(Date(7, September, 2019), Actual360(), Continuous))
print(curve2.zeroRate(Date(7, September, 2019), Actual360(), Continuous))

Out[16]: 0.454618 % Actual/360 continuous compounding
0.452196 % Actual/360 continuous compounding

Notifications

Finally, we can see how the two curves behave differently also with respect to notifications. Let’s
make two observers…
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In [17]: def make_observer(i):
def say():

s = "Observer %d notified" % i
print('-'*len(s))
print(s)
print('-'*len(s))

return Observer(say)

obs1 = make_observer(1)
obs2 = make_observer(2)

…and check that they work correctly by connecting them to a few quotes. The first observer will
receive notifications from the first and third quote, and the second observer will receive notifications
from the second and third quote.

In [18]: q1 = SimpleQuote(1.0)
obs1.registerWith(q1)

q2 = SimpleQuote(2.0)
obs2.registerWith(q2)

q3 = SimpleQuote(3.0)
obs1.registerWith(q3)
obs2.registerWith(q3)

If I trigger a change in the first quote, the first observer is notified and outputs a message:

In [19]: q1.setValue(1.5)

Out[19]: -------------------
Observer 1 notified
-------------------

A change in the second quote causes a message from the second observer…

In [20]: q2.setValue(1.9)

Out[20]: -------------------
Observer 2 notified
-------------------

…and a change in the third quote causes both observers to react.
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In [21]: q3.setValue(3.1)

Out[21]: -------------------
Observer 2 notified
-------------------
-------------------
Observer 1 notified
-------------------

Now let’s connect the observers to the curves. The first observer will receive notifications from the
curve that moves with the evaluation date, and the second observer will receive notifications from
the curve that doesn’t move.

In [22]: obs1.registerWith(curve1)
obs2.registerWith(curve2)

Now we can see what happens when the evaluation date changes again:

In [23]: Settings.instance().evaluationDate = Date(23, September, 2014)

Out[23]: -------------------
Observer 1 notified
-------------------

As you can see, only themoving curve sent a notification. The other did not, since it was notmodified
by the change of evaluation date.



6. Pricing over a range of days
Based on questions on Stack Exchange from Charles¹, bob.jonst², MCM³ and lcheng⁴.

In [1]: from QuantLib import *
import numpy as np
np.random.seed(42)

Let’s say we have an instrument (a fixed-rate bond, for instance) that we want to price on a number
of dates. I assume we also have the market quotes, or the curves, corresponding to each of the dates;
in this case we only need interest rates, but the library works the same way for any quotes.

We’ll store the resulting prices in a dictionary, with the date as the key.

In [2]: prices = {}

Producing a single price

To price the bond on a single date, we create the instrument itself…

In [3]: start_date = Date(8, February, 2016)
maturity_date = start_date + Period(5, Years)
schedule = Schedule(start_date, maturity_date, Period(Semiannual), TARGET(),

Following, Following, DateGeneration.Backward, False)
coupons = [0.01]*10
bond = FixedRateBond(3, 100, schedule, coupons, Thirty360())

…and the required discount curve. For brevity, here I’m interpolating precomputed rates; I might as
well bootstrap the curve on a set of market rates.

¹https://stackoverflow.com/questions/32869325/
²https://quant.stackexchange.com/questions/35961/
³https://quant.stackexchange.com/questions/38509
⁴https://quant.stackexchange.com/questions/36830/

https://stackoverflow.com/questions/32869325/
https://quant.stackexchange.com/questions/35961/
https://quant.stackexchange.com/questions/38509
https://quant.stackexchange.com/questions/36830/
https://stackoverflow.com/questions/32869325/
https://quant.stackexchange.com/questions/35961/
https://quant.stackexchange.com/questions/38509
https://quant.stackexchange.com/questions/36830/
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In [4]: today = Date(9, May, 2018)
nodes = [ today + Period(i, Years) for i in range(11) ]
rates = [ 0.007, 0.010, 0.012, 0.013, 0.014,

0.016, 0.017, 0.018, 0.020, 0.021, 0.022 ]
discount_curve = ZeroCurve(nodes, rates, Actual360())

Given the bond and the curve, we link them together through an engine, set the evaluation date and
get the result.

In [5]: discount_handle = RelinkableYieldTermStructureHandle(discount_curve)
bond.setPricingEngine(DiscountingBondEngine(discount_handle))

In [6]: Settings.instance().evaluationDate = today

In [7]: prices[today] = bond.cleanPrice()
print(prices[today])

Out[7]: 99.18942082987543

Pricing on multiple days

We could repeat the above for all dates, but it goes against the grain of the library. The architecture
(see chapter 2 of Implementing QuantLib⁵ for details) was designed so that the instrument can react
to changing market conditions; therefore, we can avoid recreating the instrument. We’ll only change
the discount curve and the evaluation date.

For instance, here I’ll calculate the price for the business day before today:

In [8]: calendar = TARGET()
yesterday = calendar.advance(today, -1, Days)

I’ll generate random rates to avoid coming up with a new set; but the idea is to build the correct
discount curve for the evaluation date.

In [9]: nodes = [ yesterday + Period(i, Years) for i in range(11) ]
base_rates = np.array(rates)
rates = base_rates * np.random.normal(loc=1.0, scale=0.005, size=base_rates.shape)
discount_curve = ZeroCurve(nodes, list(rates), Actual360())

As I mentioned, I need to set the new evaluation date and to link the handle in the engine to the
new discount curve…

⁵https://leanpub.com/implementingquantlib

https://leanpub.com/implementingquantlib
https://leanpub.com/implementingquantlib
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In [10]: Settings.instance().evaluationDate = yesterday
discount_handle.linkTo(discount_curve)

…after which the bond returns the updated price.

In [11]: prices[yesterday] = bond.cleanPrice()
print(prices[yesterday])

Out[11]: 99.16663635835845

By repeating the process, I can generate prices for, say, the whole of last year. Again, I’m generating
random rates to avoid tedious listings or external data files; you’ll use the correct ones instead.

In [12]: first_date = calendar.advance(today, -1, Years)
date = calendar.advance(yesterday, -1, Days)

while date >= first_date:
nodes = [ date + Period(i, Years) for i in range(11) ]
rates = base_rates * np.random.normal(loc=1.0, scale=0.005, size=base_rates.shape)
discount_curve = ZeroCurve(nodes, list(rates), Actual360())

Settings.instance().evaluationDate = date
discount_handle.linkTo(discount_curve)

prices[date] = bond.cleanPrice()
date = calendar.advance(date, -1, Days)

Here are the results. Through the random noise, you can see how the price increases as the bond
gets nearer to maturity.

In [13]: %matplotlib inline
import utils

In [14]: dates, values = zip(*sorted(prices.items()))

In [15]: fig, ax = utils.plot()
ax.xaxis.set_major_formatter(utils.date_formatter())
ax.plot_date([ utils.to_datetime(d) for d in dates ], values,'-');
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Using quotes

If we work with quotes, we can also avoid rebuilding the curve. Let’s say our discount curve is
defined as a risk-free curve with an additional credit spread. The risk-free curve is bootstrapped
from a number of market rates; for simplicity, here I’ll use a set of overnight interest-rate swaps, but
you’ll use whatever makes sense in your case.

In [16]: index = Eonia()
tenors = [ Period(i, Years) for i in range(1,11) ]
rates = [ 0.010, 0.012, 0.013, 0.014, 0.016, 0.017, 0.018, 0.020, 0.021, 0.022 ]

quotes = []
helpers = []
for tenor, rate in zip(tenors, rates):

q = SimpleQuote(rate)
h = OISRateHelper(2, tenor, QuoteHandle(q), index)
quotes.append(q)
helpers.append(h)

One thing to note: I’ll setup the curve so that it moves with the evaluation date. This means that I
won’t pass an explicit reference date, but a number of business days and a calendar. Passing 0, as
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in this case, will cause the reference date of the curve to equal the evaluation date; passing 2, for
instance, would cause it to equal the corresponding spot date.

In [17]: risk_free_curve = PiecewiseFlatForward(0, TARGET(), helpers, Actual360())

Finally, I’ll manage credit as an additional spread over the curve:

In [18]: spread = SimpleQuote(0.01)
discount_curve = ZeroSpreadedTermStructure(YieldTermStructureHandle(risk_free_curve),

QuoteHandle(spread))

Now we can recalculate today’s price…

In [19]: prices = {}

Settings.instance().evaluationDate = today
discount_handle.linkTo(discount_curve)

prices[today] = bond.cleanPrice()
print(prices[today])

Out[19]: 96.50362161659807

…and as before, we go back; except this time we don’t need to build a new curve. Instead, we can
set new values to the quotes and they will trigger the necessary recalculations.

In [20]: date = calendar.advance(today, -1, Days)

base_rates = np.array(rates)

while date >= first_date:
rates = base_rates * np.random.normal(loc=1.0, scale=0.005, size=base_rates.shape)
for q, r in zip(quotes, rates):

q.setValue(r)
spread.setValue(spread.value()*np.random.normal(loc=1.0, scale=0.005))

Settings.instance().evaluationDate = date

prices[date] = bond.cleanPrice()
date = calendar.advance(date, -1, Days)

Note that we didn’t create any new object in the loop; we’re only settings new values to the quotes.

Again, here are the results:
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In [21]: dates, values = zip(*sorted(prices.items()))

fig, ax = utils.plot()
ax.xaxis.set_major_formatter(utils.date_formatter())
ax.plot_date([ utils.to_datetime(d) for d in dates ], values,'-');

A complication: past fixings

For instruments that depend on the floating rate, we might need some past fixings. This is not
necessarily related to pricing on a range of dates: even on today’s date, we need the fixing for the
current coupon. Let’s set the instrument up…
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In [22]: forecast_handle = YieldTermStructureHandle(risk_free_curve)
index = Euribor6M(forecast_handle)

bond = FloatingRateBond(3, 100, schedule, index, Thirty360())
bond.setPricingEngine(DiscountingBondEngine(discount_handle))

In [23]: Settings.instance().evaluationDate = today
for q, r in zip(quotes, base_rates):

q.setValue(r)
spread.setValue(0.01)

…and try to price it. No joy.

In [24]: print(bond.cleanPrice())

Out[24]: ---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-24-74ed33c38331> in <module>()
----> 1 print(bond.cleanPrice())

/usr/local/lib/python3.6/dist-packages/QuantLib/QuantLib.py in cleanPrice(self, *args)
14307
14308 def cleanPrice(self, *args):

> 14309 return _QuantLib.Bond_cleanPrice(self, *args)
14310
14311 def dirtyPrice(self, *args):

RuntimeError: Missing Euribor6M Actual/360 fixing for February 6th, 2018

Being in the past, the fixing can’t be retrieved from the curve. We have to store it into the index,
after which the calculation works:

In [25]: index.addFixing(Date(6, February,2018), 0.005)

print(bond.cleanPrice())

Out[25]: 97.11939323923686

When pricing on a range of dates, though, we need to take into account the fact that the current
coupon changes as we go back in time. These two dates will work…
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In [26]: Settings.instance().evaluationDate = Date(1, March, 2018)
print(bond.cleanPrice())

Settings.instance().evaluationDate = Date(15, February, 2018)
print(bond.cleanPrice())

Out[26]: 96.84331874622794
96.79054303973298

…but this one causes the previous coupon to be evaluated, and that requires a new fixing:

In [27]: Settings.instance().evaluationDate = Date(1, February, 2018)
print(bond.cleanPrice())

Out[27]: ---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-27-33dc024b8a28> in <module>()

1 Settings.instance().evaluationDate = Date(1, February, 2018)
----> 2 print(bond.cleanPrice())

/usr/local/lib/python3.6/dist-packages/QuantLib/QuantLib.py in cleanPrice(self, *args)
14307
14308 def cleanPrice(self, *args):

> 14309 return _QuantLib.Bond_cleanPrice(self, *args)
14310
14311 def dirtyPrice(self, *args):

RuntimeError: Missing Euribor6M Actual/360 fixing for August 4th, 2017

Once we add it, the calculation works again.

In [28]: index.addFixing(Date(4, August, 2017), 0.004)
print(bond.cleanPrice())

Out[28]: 96.98060241422583

(If you’re wondering how the calculation worked before, since this coupon belonged to the bond: on
the other evaluation dates, this coupon was expired and the engine could skip it without needing to
calculate its amount. Thus, its fixing didn’t need to be retrieved.)

More complications: future prices

What if we go forward in time, instead of pricing on past dates?

For one thing, we’ll need to forecast curves in some way. One way is to imply them from today’s
curves: I talk about implied curves in another notebook, so I won’t repeat myself here. Let’s assume
we have implied rates and we can set them. Once we do, we can price in the future just as easily as
we do in the past. As I write this, it’s May 19th 2018, and June 1st is in the future:
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In [29]: Settings.instance().evaluationDate = Date(1, June, 2018)

print(bond.cleanPrice())

Out[29]: 97.2126812565699

However, there’s another problem, as pointed out by Mariano Zeron⁶ in a post to the QuantLib
mailing list. If we go further in the future, the bond will require—so to speak—future past fixings.

In [30]: Settings.instance().evaluationDate = Date(1, June, 2019)

print(bond.cleanPrice())

Out[30]: ---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-30-ae84687e04f4> in <module>()

1 Settings.instance().evaluationDate = Date(1, June, 2019)
2

----> 3 print(bond.cleanPrice())

/usr/local/lib/python3.6/dist-packages/QuantLib/QuantLib.py in cleanPrice(self, *args)
14307
14308 def cleanPrice(self, *args):

> 14309 return _QuantLib.Bond_cleanPrice(self, *args)
14310
14311 def dirtyPrice(self, *args):

RuntimeError: Missing Euribor6M Actual/360 fixing for February 6th, 2019

Here the curve starts on June 1st 2019, and cannot retrieve the fixing at the start of the corresponding
coupon.

One way out of this might be to forecast fixings off the current curve and store them:

In [31]: Settings.instance().evaluationDate = Date(1, June, 2018)

future_fixing = index.fixing(Date(6,February,2019))
print(future_fixing)
index.addFixing(Date(6,February,2019), future_fixing)

Out[31]: 0.011387399107860378

This way, they will be retrieved in the same way as real past fixings.

⁶https://sourceforge.net/p/quantlib/mailman/message/35270917/

https://sourceforge.net/p/quantlib/mailman/message/35270917/
https://sourceforge.net/p/quantlib/mailman/message/35270917/
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In [32]: Settings.instance().evaluationDate = Date(1, June, 2019)

print(bond.cleanPrice())

Out[32]: 98.30830224923507

Of course, you might forecast them in a better way: that’s up to you. And if you’re worried that
this might interfere with pricing on today’s date, don’t: stored fixings are only used if they’re in the
past with respect to the evaluation date. The fixing I’m storing below for February 3rd 2021 will be
retrieved if the evaluation date is later…

In [33]: index.addFixing(Date(3,February,2021), 0.02)

Settings.instance().evaluationDate = Date(1, June, 2021)
print(index.fixing(Date(3,February,2021)))

Out[33]: 0.02

…but it will be forecast from the curve when it’s after the evaluation date:

In [34]: Settings.instance().evaluationDate = Date(1, June, 2020)
print(index.fixing(Date(3,February,2021)))

Out[34]: 0.011367299732914539



7. A note on random numbers and
dimensionality

Setup

Import QuantLib and the graphing module.

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
from QuantLib import *

Also, define a helper function to make the notebook less verbose.

In [2]: def set_unit_square(ax):
ax.axis('scaled')
ax.set_xlim([0,1])
ax.set_ylim([0,1])

Covering a unit square

Let’s say we want to extract points inside a unit square; that is, pairs of points in the domain (0, 1)×
(0, 1). The dimensionality of the problem is 2, since we need 2 numbers, x and y, per each sample.

With pseudo-random numbers, it doesn’t matter much: we can just extract single numbers and form
pairs from them.

In [3]: rng = MersenneTwisterUniformRng(42)

In [4]: xs = []
ys = []
for i in range(2047):

xs.append(rng.next().value())
ys.append(rng.next().value())

In [5]: fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(1,1,1)
set_unit_square(ax)
ax.plot(xs,ys,'o');
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The same doesn’t hold for quasi-random numbers, for which each sample is correlated to the one
that follows it in order to cover the domain evenly. We can see this by plotting the sequence of Sobol
numbers generated to cover the 1-dimensional unit interval:
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In [6]: fig = plt.figure(figsize=(12,4))
for i, n in enumerate([0,1,2,3, 4,5,6,7, 9,11,13,15, 19,23,27,31]):

rng = SobolRsg(1)
xs = [ rng.nextSequence().value()[0] for j in range(n) ]
ax = fig.add_subplot(4, 4, i+1)
ax.axis('scaled')
ax.set_xlim([0,1])
ax.set_ylim([-0.1,0.1])
ax.set_xticks([])
ax.set_yticks([])
ax.plot(xs,[0]*len(xs),'o')
ax.text(0.0, 0.15, 'n = %d' % n)

The points are not added randomly at all, but in a predetermined sequence. This ruins the random
properties of the sequence when used with the wrong dimensionality. (You can also see how an even
coverage is only obtained for a number of samples of the form n = 2i − 1 for some i.)

In [7]: rng = SobolRsg(1)

In [8]: xs = []
ys = []
for i in range(2047):

xs.append(rng.nextSequence().value()[0])
ys.append(rng.nextSequence().value()[0])

In [9]: fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(1,1,1)
set_unit_square(ax)
ax.plot(xs,ys,'o');
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To cover the domain correctly, we have to use the right dimensionality.
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In [10]: rng = SobolRsg(2)

In [11]: xs = []
ys = []
for i in range(2047):

x,y = rng.nextSequence().value()
xs.append(x)
ys.append(y)

In [12]: fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(1,1,1)
set_unit_square(ax)
ax.plot(xs,ys,'o');
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The pattern above covers the square evenly, and also causes projections on the two axes to have good
coverage (which wouldn’t happen, for instance, with a regular placement in rows and columns; the
projections of most points would coincide). It is also interesting to see how the coverage is built as
the number of samples increase:
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In [13]: fig = plt.figure(figsize=(12,9))
for i, n in enumerate([0,1,2,3, 4,5,6,7, 15,31,63,127]):

rng = SobolRsg(2)
ax = fig.add_subplot(3, 4, i+1)
ax.set_xticks([])
ax.set_yticks([])
if n == 0:

continue
points = [ rng.nextSequence().value() for j in range(n) ]
xs,ys = zip(*points)
ax.axis('scaled')
ax.set_xlim([0,1])
ax.set_ylim([0,1])
ax.plot(xs,ys,'o')
ax.text(0.0, 1.05, 'n = %d' % n)
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Dimensionality of Monte Carlo simulations

The classes in the QuantLib Monte Carlo framework will check the dimensionality of the generators
they’re given and will warn you if it’s not correct. It’s still up to you to find the correct one, while
writing your engines (for details on that, you can check chapter 6 of Implementing QuantLib¹).

For instance, let’s say that you want to simulate three correlated stocks; and for sake of simplicity,
let’s say they follow the Black-Scholes process. You’ll build a process for each of them…

In [14]: today = Date(27,January,2018)
Settings.instance().evaluationDate = today
risk_free = YieldTermStructureHandle(FlatForward(today, 0.01, Actual360()))

processes = [
BlackScholesProcess(QuoteHandle(SimpleQuote(S)),

risk_free,
BlackVolTermStructureHandle(

BlackConstantVol(today, TARGET(), sigma, Actual360())))
for S, sigma in [(100, 0.20),

( 80, 0.25),
(110, 0.18)] ]

…and a single multi-dimensional process that correlates them. In this case, the resulting process has
three random drivers.

In [15]: rho = [[1.0, 0.6, 0.8],
[0.6, 1.0, 0.4],
[0.8, 0.4, 1.0]]

process = StochasticProcessArray(processes, rho)
print(process.factors())

Out[15]: 3

Now, let’s say that we want to simulate paths over four steps, starting from today and ending one
year from now. Each sample of the Monte Carlo simulation will need three random number for
each step, for a total of 12 random numbers. This is the dimensionality of the problem; and, as I
mentioned, the framework will check it and complain if it doesn’t match. (Please bear with me as
I build the several classes needed for random-numbers generation. If find yourself doing this, you
might want to write a helper function, like I do here.)

¹https://leanpub.com/implementingquantlib

https://leanpub.com/implementingquantlib
https://leanpub.com/implementingquantlib
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In [16]: def rng(dimensionality):
return GaussianRandomSequenceGenerator(

UniformRandomSequenceGenerator(
dimensionality,
UniformRandomGenerator(42)))

times = [0.25, 0.50, 0.75, 1.0]
generator = GaussianMultiPathGenerator(process, times, rng(10))

Out[16]: ---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-16-2f7dd2d480ec> in <module>()

6
7 times = [0.25, 0.50, 0.75, 1.0]

----> 8 generator = GaussianMultiPathGenerator(process, times, rng(10))

/usr/local/lib/python3.6/dist-packages/QuantLib/QuantLib.py in __init__(self, process\
, times, generator, brownianBridge)

18392
18393 def __init__(self, process, times, generator, brownianBridge=False):

> 18394 this = _QuantLib.new_GaussianMultiPathGenerator(process, times, gener\
ator, brownianBridge)

18395 try:
18396 self.this.append(this)

RuntimeError: dimension (10) is not equal to (3 * 4) the number of factors times the \
number of time steps

As you might expect, the thing works with the correct dimensionality:

In [17]: generator = GaussianMultiPathGenerator(process, times, rng(12))

In [18]: sample = generator.next().value()

In [19]: fig = plt.figure(figsize=(12,6))
ax = fig.add_subplot(1,1,1)
ts = [0.0] + times
y_min = 80
y_max = 110
for i in range(3):

p, = ax.plot(ts, sample[i], label='Stock %d' % (i+1))
ax.plot(ts, sample[i], 'o', color=p.get_color())
y_min = min(y_min, min(sample[i]))
y_max = max(y_max, max(sample[i]))

ax.set_xlim(0.0-0.02, 1.0+0.02)
ax.set_xticks(ts)
ax.set_ylim(y_min-2, y_max+2)
ax.legend(loc='best');
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Interest-rate curves



8. EONIA curve bootstrapping
In the next notebooks, I’ll reproduce the results of the paper by F. M. Ametrano and M. Bianchetti,
Everything You Always Wanted to Know About Multiple Interest Rate Curve Bootstrapping but Were
Afraid to Ask (April 2, 2013). The paper is available at SSRN: http://ssrn.com/abstract=2219548.

In [1]: %matplotlib inline
import math
import utils

In [2]: from QuantLib import *

In [3]: today = Date(11, December, 2012)
Settings.instance().evaluationDate = today

First try

We start by instantiating helpers for all the rates used in the bootstrapping process, as reported in
figure 25 of the paper.

The first three instruments are three 1-day deposit that give us discounting between today and the
day after spot. They are modeled by three instances of the DepositRateHelper class with a tenor of
1 day and a number of fixing days going from 0 (for the deposit starting today) to 2 (for the deposit
starting on the spot date).

In [4]: helpers = [ DepositRateHelper(QuoteHandle(SimpleQuote(rate/100)),
Period(1,Days), fixingDays,
TARGET(), Following, False, Actual360())

for rate, fixingDays in [(0.04, 0), (0.04, 1), (0.04, 2)] ]

Then, we have a series of OIS quotes for the first month. They are modeled by instances of the
OISRateHelper class with varying tenors. They also require an instance of the Eonia class, which
doesn’t need a forecast curve and can be shared between the helpers.
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In [5]: eonia = Eonia()

In [6]: helpers += [ OISRateHelper(2, Period(*tenor),
QuoteHandle(SimpleQuote(rate/100)), eonia)

for rate, tenor in [(0.070, (1,Weeks)), (0.069, (2,Weeks)),
(0.078, (3,Weeks)), (0.074, (1,Months))] ]

Next, five OIS forwards on ECB dates. For these, we need to instantiate the DatedOISRateHelper
class and specify start and end dates explicitly.

In [7]: helpers += [ DatedOISRateHelper(start_date, end_date,
QuoteHandle(SimpleQuote(rate/100)), eonia)

for rate, start_date, end_date in [
(0.046, Date(16,January,2013), Date(13,February,2013)),
(0.016, Date(13,February,2013), Date(13,March,2013)),
(-0.007, Date(13,March,2013), Date(10,April,2013)),
(-0.013, Date(10,April,2013), Date(8,May,2013)),
(-0.014, Date(8,May,2013), Date(12,June,2013))] ]

Finally, we add OIS quotes up to 30 years.

In [8]: helpers += [ OISRateHelper(2, Period(*tenor),
QuoteHandle(SimpleQuote(rate/100)), eonia)

for rate, tenor in [(0.002, (15,Months)), (0.008, (18,Months)),
(0.021, (21,Months)), (0.036, (2,Years)),
(0.127, (3,Years)), (0.274, (4,Years)),
(0.456, (5,Years)), (0.647, (6,Years)),
(0.827, (7,Years)), (0.996, (8,Years)),
(1.147, (9,Years)), (1.280, (10,Years)),
(1.404, (11,Years)), (1.516, (12,Years)),
(1.764, (15,Years)), (1.939, (20,Years)),
(2.003, (25,Years)), (2.038, (30,Years))] ]

The curve is an instance of PiecewiseLogCubicDiscount (corresponding to the PiecewiseYield-
Curve<Discount,LogCubic> class in C++; I won’t repeat the argument for this choice made in
section 4.5 of the paper). We let the reference date of the curve move with the global evaluation
date, by specifying it as 0 days after the latter on the TARGET calendar. The day counter chosen is
not of much consequence, as it is only used internally to convert dates into times. Also, we enable
extrapolation beyond the maturity of the last helper; that is mostly for convenience as we retrieve
rates to plot the curve near its far end.
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In [9]: eonia_curve_c = PiecewiseLogCubicDiscount(0, TARGET(),
helpers, Actual365Fixed())

eonia_curve_c.enableExtrapolation()

To compare the curve with the one shown in figure 26 of the paper, we can retrieve daily overnight
rates over its first two years and plot them:

In [10]: today = eonia_curve_c.referenceDate()
end = today + Period(2,Years)
dates = [ Date(serial) for serial in range(today.serialNumber(),

end.serialNumber()+1) ]
rates_c = [ eonia_curve_c.forwardRate(d, TARGET().advance(d,1,Days),

Actual360(), Simple).rate()
for d in dates ]

In [11]: _, ax = utils.plot()
utils.highlight_x_axis(ax)
utils.plot_curve(ax, dates, [(rates_c,'-')], format_rates=True)

However, we still have work to do. Out plot above shows a rather large bump at the end of 2012
which is not present in the paper. To remove it, we need to model properly the turn-of-year effect.
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Turn-of-year jumps

As explained in section 4.8 of the paper, the turn-of-year effect is a jump in interest rates due to an
increased demand for liquidity at the end of the year. The jump is embedded in any quoted rates
that straddles the end of the year and must be treated separately; the YieldTermStructure class
allows this by taking any number of jumps, modeled as additional discount factors, and applying
them at the specified dates.

Our problem is to estimate the size of the jump. To simplify analysis, we turn to flat forward rates
instead of log-cubic discounts; thus, we instantiate a PiecewiseFlatForward curve (corresponding
to PiecewiseYieldCurve<ForwardRate,BackwardFlat> in C++).

In [12]: eonia_curve_ff = PiecewiseFlatForward(0, TARGET(),
helpers, Actual365Fixed())

eonia_curve_ff.enableExtrapolation()

To show the jump more clearly, I’ll restrict the plot to the first 6 months:

In [13]: end = today + Period(6,Months)
dates = [ Date(serial) for serial in range(today.serialNumber(),

end.serialNumber()+1) ]
rates_ff = [ eonia_curve_ff.forwardRate(d, TARGET().advance(d,1,Days),

Actual360(), Simple).rate()
for d in dates ]

In [14]: _, ax = utils.plot()
utils.highlight_x_axis(ax)
utils.plot_curve(ax, dates, [(rates_ff,'-')], format_rates=True)
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As we see, the forward ending at the beginning of January 2013 is out of line. In order to estimate
the jump, we need to estimate a “clean” forward that doesn’t include it.

A possible estimate (although not the only one) can be obtained by interpolating the forwards
around the one we want to replace. To do so, we extract the values of the forwards rates and their
corresponding dates.

In [15]: nodes = list(eonia_curve_ff.nodes())

If we look at the first few nodes, we can clearly see that the seventh is out of line.

In [16]: nodes[:9]

Out[16]: [(Date(11,12,2012), 0.00040555533025081675),
(Date(12,12,2012), 0.00040555533025081675),
(Date(13,12,2012), 0.00040555533047721286),
(Date(14,12,2012), 0.00040555533047721286),
(Date(20,12,2012), 0.0007604110692568178),
(Date(27,12,2012), 0.0006894305026004767),
(Date(3,1,2013), 0.0009732981324671213),
(Date(14,1,2013), 0.0006728161005748453),
(Date(13,2,2013), 0.000466380545910482)]
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To create a curve that doesn’t include the jump, we replace the relevant forward rate with a simple
average of the ones that precede and follow…

In [17]: nodes[6] = (nodes[6][0], (nodes[5][1]+nodes[7][1])/2.0)
nodes[:9]

Out[17]: [(Date(11,12,2012), 0.00040555533025081675),
(Date(12,12,2012), 0.00040555533025081675),
(Date(13,12,2012), 0.00040555533047721286),
(Date(14,12,2012), 0.00040555533047721286),
(Date(20,12,2012), 0.0007604110692568178),
(Date(27,12,2012), 0.0006894305026004767),
(Date(3,1,2013), 0.000681123301587661),
(Date(14,1,2013), 0.0006728161005748453),
(Date(13,2,2013), 0.000466380545910482)]

…and instantiate a ForwardCurve with the modified nodes.

In [18]: temp_dates, temp_rates = zip(*nodes)
temp_curve = ForwardCurve(temp_dates, temp_rates,

eonia_curve_ff.dayCounter())

For illustration, we can extract daily overnight nodes from the doctored curve and plot them
alongside the old ones:

In [19]: temp_rates = [ temp_curve.forwardRate(d, TARGET().advance(d,1,Days),
Actual360(), Simple).rate()

for d in dates ]

In [20]: _, ax = utils.plot()
utils.highlight_x_axis(ax)
utils.plot_curve(ax, dates, [(temp_rates,'-'), (rates_ff,'--')], format_rates=True)
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Now we can estimate the size of the jump. As the paper hints, it’s more an art than a science. I’ve
been able to reproduce closely the results of the paper by extracting from the two curves the forward
rate over the two weeks around the end of the year:

In [21]: d1 = Date(31,December,2012) - Period(1,Weeks)
d2 = Date(31,December,2012) + Period(1,Weeks)

In [22]: F = eonia_curve_ff.forwardRate(d1, d2, Actual360(), Simple).rate()
F_1 = temp_curve.forwardRate(d1, d2, Actual360(), Simple).rate()
print(utils.format_rate(F,digits=3))
print(utils.format_rate(F_1,digits=3))

Out[22]: 0.082 %
0.067 %

We want to attribute the whole jump to the last day of the year, so we rescale it according to

(F − F1) · t12 = J · tJ

where t12 is the time between the two dates and tJ is the time between the start and end date of
the end-of-year overnight deposit. This gives us a jump quite close to the value of 10.2 basis points
reported in the paper.
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In [23]: t12 = eonia_curve_ff.dayCounter().yearFraction(d1,d2)
t_j = eonia_curve_ff.dayCounter().yearFraction(Date(31,December,2012),

Date(2,January,2013))
J = (F-F_1)*t12/t_j
print(utils.format_rate(J,digits=3))

Out[23]: 0.101 %

As I mentioned previously, the jump can be added to the curve as a corresponding discount factor
1/(1 + J · tJ) on the last day of the year. The information can be passed to the curve constructor,
giving us a new instance:

In [24]: B = 1.0/(1.0+J*t_j)
jumps = [QuoteHandle(SimpleQuote(B))]
jump_dates = [Date(31,December,2012)]
eonia_curve_j = PiecewiseFlatForward(0, TARGET(),

helpers, Actual365Fixed(),
jumps, jump_dates)

Retrieving daily overnight rates from the new curve and plotting them, we can see the jump quite
clearly:

In [25]: rates_j = [ eonia_curve_j.forwardRate(d, TARGET().advance(d,1,Days),
Actual360(), Simple).rate()

for d in dates ]

In [26]: _, ax = utils.plot()
utils.highlight_x_axis(ax)
utils.plot_curve(ax, dates, [(rates_ff,'-'), (rates_j,'o')], format_rates=True)
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We can now go back to log-cubic discounts and add the jump.

In [27]: eonia_curve = PiecewiseLogCubicDiscount(0, TARGET(),
helpers, Actual365Fixed(),
jumps, jump_dates)

eonia_curve.enableExtrapolation()

In [28]: rates_c = [ eonia_curve_c.forwardRate(d, TARGET().advance(d,1,Days),
Actual360(), Simple).rate()

for d in dates ]
rates = [ eonia_curve.forwardRate(d, TARGET().advance(d,1,Days),

Actual360(), Simple).rate()
for d in dates ]

In [29]: _, ax = utils.plot()
utils.highlight_x_axis(ax)
utils.plot_curve(ax, dates, [(rates_c,'-'), (rates,'o')], format_rates=True)
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As you can see, the large bump is gone now. The two plots in figure 26 can be reproduced as follows
(omitting the jump at the end of 2013 for brevity, and the flat forwards for clarity):

In [30]: dates = [ today+Period(i,Days) for i in range(0, 365*2+1) ]
rates = [ eonia_curve.forwardRate(d, TARGET().advance(d,1,Days),

Actual360(), Simple).rate()
for d in dates ]

_, ax = utils.plot()
utils.highlight_x_axis(ax)
utils.plot_curve(ax, dates, [(rates,'.')], ymin=-0.001, ymax=0.002, format_rates=True)
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In [31]: dates = [ today+Period(i,Months) for i in range(0, 12*60+1) ]
rates = [ eonia_curve.forwardRate(d, TARGET().advance(d,1,Days),

Actual360(), Simple).rate()
for d in dates ]

_, ax = utils.plot()
utils.plot_curve(ax, dates, [(rates,'-')], ymin=0.0, ymax=0.035, format_rates=True)
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A final word of warning: as you saw, the estimate of the jumps is not an exact science, so it’s best
to check it manually and not to leave it to an automated procedure.

Moreover, jumps nowadays might be present at the end of each month, as reported for instance in
Paolo Mazzocchi’s presentation at the QuantLib User Meeting 2014¹. This, too, suggests particular
care in building the Eonia curve.

¹https://speakerdeck.com/nando1970/eonia-jumps-and-proper-euribor-forwarding

https://speakerdeck.com/nando1970/eonia-jumps-and-proper-euribor-forwarding
https://speakerdeck.com/nando1970/eonia-jumps-and-proper-euribor-forwarding


9. Euribor curve bootstrapping
In this notebook, I’ll go over the second part of F. M. Ametrano and M. Bianchetti, Everything You
Always Wanted to Know About Multiple Interest Rate Curve Bootstrapping but Were Afraid to Ask
(April 2, 2013). The paper is available at SSRN: http://ssrn.com/abstract=2219548.

In [1]: %matplotlib inline
import math
import numpy as np
import utils

In [2]: from QuantLib import *

In [3]: today = Date(11, December, 2012)
Settings.instance().evaluationDate = today

Discounting curve

The bootstrap of the Eonia curve was analyzed in another notebook, so I’ll just instantiate the curve
here without further explanation.

In [4]: eonia = Eonia()

In [5]: helpers = [ DepositRateHelper(QuoteHandle(SimpleQuote(rate/100)),
Period(1,Days), fixingDays,
TARGET(), Following, False, Actual360())

for rate, fixingDays in [(0.04, 0), (0.04, 1), (0.04, 2)] ]

In [6]: helpers += [ OISRateHelper(2, Period(*tenor),
QuoteHandle(SimpleQuote(rate/100)), eonia)

for rate, tenor in [(0.070, (1,Weeks)), (0.069, (2,Weeks)),
(0.078, (3,Weeks)), (0.074, (1,Months))] ]

In [7]: helpers += [ DatedOISRateHelper(start_date, end_date,
QuoteHandle(SimpleQuote(rate/100)), eonia)

for rate, start_date, end_date in [
(0.046, Date(16,January,2013), Date(13,February,2013)),
(0.016, Date(13,February,2013), Date(13,March,2013)),
(-0.007, Date(13,March,2013), Date(10,April,2013)),
(-0.013, Date(10,April,2013), Date(8,May,2013)),
(-0.014, Date(8,May,2013), Date(12,June,2013))] ]
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In [8]: helpers += [ OISRateHelper(2, Period(*tenor),
QuoteHandle(SimpleQuote(rate/100)), eonia)

for rate, tenor in [(0.002, (15,Months)), (0.008, (18,Months)),
(0.021, (21,Months)), (0.036, (2,Years)),
(0.127, (3,Years)), (0.274, (4,Years)),
(0.456, (5,Years)), (0.647, (6,Years)),
(0.827, (7,Years)), (0.996, (8,Years)),
(1.147, (9,Years)), (1.280, (10,Years)),
(1.404, (11,Years)), (1.516, (12,Years)),
(1.764, (15,Years)), (1.939, (20,Years)),
(2.003, (25,Years)), (2.038, (30,Years))] ]

In [9]: jumps = [QuoteHandle(SimpleQuote(math.exp(-J*2.0/360)))
for J in [0.00102, 0.00086]]

jump_dates = [Date(31,December,2012), Date(31,December,2013)]

In [10]: eonia_curve = PiecewiseLogCubicDiscount(2, TARGET(), helpers,
Actual365Fixed(), jumps, jump_dates)

eonia_curve.enableExtrapolation()

6-months Euribor

As we’ll see, most of the Euribor curves for different tenors have their own quirks.

I’ll start from the 6-months Euribor curve, which is somewhat simpler due to having a number of
quoted rates directly available for bootstrapping. The first instrument used in the paper if the TOM
6-months FRA, which can be instantiated as a 6-months deposit with 3 fixing days; its rate (and
those of all other FRAs) is retrieved from figure 6 in the paper.

In [11]: helpers = [ DepositRateHelper(QuoteHandle(SimpleQuote(0.312/100)),
Period(6,Months), 3,
TARGET(), Following, False, Actual360()) ]

Then comes a strip of 6-months FRA up to 2 years maturity:
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In [12]: euribor6m = Euribor6M()

In [13]: helpers += [ FraRateHelper(QuoteHandle(SimpleQuote(rate/100)),
start, euribor6m)

for rate, start in [(0.293, 1), (0.272, 2), (0.260, 3),
(0.256, 4), (0.252, 5), (0.248, 6),
(0.254, 7), (0.261, 8), (0.267, 9),
(0.279, 10), (0.291, 11), (0.303, 12),
(0.318, 13), (0.335, 14), (0.352, 15),
(0.371, 16), (0.389, 17), (0.409, 18)] ]

Finally, we have a series of swap rates with maturities from 3 to 60 years, listed in figure 9. As the
paper explains, the curve being bootstrapped will be used only for forecasting the 6-months Euribor
fixings paid by the floating leg; all the payments will be discounted bymeans of the OIS curve, which
is wrapped in a Handle and passed as an extra argument to the SwapRateHelper constructor.

In [14]: discount_curve = RelinkableYieldTermStructureHandle()
discount_curve.linkTo(eonia_curve)

In [15]: helpers += [ SwapRateHelper(QuoteHandle(SimpleQuote(rate/100)),
Period(tenor, Years), TARGET(),
Annual, Unadjusted,
Thirty360(Thirty360.BondBasis),
euribor6m, QuoteHandle(), Period(0, Days),
discount_curve)

for rate, tenor in [(0.424, 3), (0.576, 4), (0.762, 5),
(0.954, 6), (1.135, 7), (1.303, 8),
(1.452, 9), (1.584, 10), (1.809, 12),
(2.037, 15), (2.187, 20), (2.234, 25),
(2.256, 30), (2.295, 35), (2.348, 40),
(2.421, 50), (2.463, 60)] ]

This will give us a decent Euribor curve, that we can display it by sampling 6-months forward rates
at a number of dates.

In [16]: euribor6m_curve = PiecewiseLogCubicDiscount(2, TARGET(), helpers,
Actual365Fixed())

euribor6m_curve.enableExtrapolation()

In [17]: spot = euribor6m_curve.referenceDate()
dates = [ spot+Period(i,Months) for i in range(0, 60*12+1) ]
rates = [ euribor6m_curve.forwardRate(d, euribor6m.maturityDate(d),

Actual360(), Simple).rate()
for d in dates ]

_, ax = utils.plot()
utils.plot_curve(ax, dates, [(rates, '-')], format_rates=True)



Euribor curve bootstrapping 77

This seems to work, and at the scale of the plot it seems to match figure 32 in the paper; but looking
closely at the first part of the curve, you can see a glitch (some kind of dip) in the last part of 2014,
when the FRA strip ends.

In [18]: dates = [ spot+Period(i,Weeks) for i in range(0, 52*4+1) ]
rates = [ euribor6m_curve.forwardRate(d, euribor6m.maturityDate(d),

Actual360(), Simple).rate()
for d in dates ]

_, ax = utils.plot()
utils.plot_curve(ax, dates, [(rates,'-')], ymin=0.0, format_rates=True)
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Synthetic deposits

In short, the reason is that the short end of the curve (which is required for pricing FRAs; for instance,
the 1x7 FRA required the discount factor at 1 month from now) is extrapolated backwards from the
first quoted pillar at 6 months and is not quite correct. This leads to oscillations as soon as the curve
is out of the tight strip of FRA quotes.

One way to correct this is to add synthetic deposits with short tenors, as explained in section 4.4.2
of the paper. To begin with, let’s save the original curve to another variable for later comparison.

In [19]: euribor6m_curve_0 = euribor6m_curve

As detailed in the paper, one can model the basis between the Euribor market quotes and the
corresponding OIS-based rates as a polynomial; that is, following equation 88,

Rx(T1, T2)τ(T1, T2) = Ron(T1, T2)τ(T1, T2) + ∆(T1, T2)

In the paper, the expression for ∆(T1, T2) is given by equation 90, that is,

∆(T1, T2) = α · (T2 − T1) +
1

2
β · (T2 − T1)

2 +
1

3
γ · (T2 − T1)

3 + . . .
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However, the above leads to problems when trying to solve for more than one coefficient. Following
a later formulation¹, I’ll express the instantaneous basis instead as

δ(t) = α+ β · t+ γ · t2 + . . .

which leads to

∆(T1, T2) =

∫ T2

T1

δ(t) = α · (T2 − T1) +
1

2
β · (T 2

2 − T 2
1 ) +

1

3
γ · (T 3

2 − T 3
1 ) + . . .

Once the basis is known, we can calculate synthetic deposit rates R(0, T ) for any maturity T .

Depending on howmany polynomial coefficients we want to determine, we’ll need a corresponding
number of market quotes; by replacing their values and those of the OIS rates in equation 88 we can
solve for α, β and any other coefficient.

For a constant polynomial, we’ll need one quote to determine α; we can use the TOM 6-months
deposit that the Euribor curve reprices exactly.

In [20]: d = TARGET().advance(spot, 1, Days)
F_x = euribor6m_curve_0.forwardRate(d, TARGET().advance(d, 6, Months),

Actual360(), Simple).rate()
F_on = eonia_curve.forwardRate(d, TARGET().advance(d, 6, Months),

Actual360(), Simple).rate()
day_counter = euribor6m.dayCounter()
T_x = day_counter.yearFraction(d, TARGET().advance(d, 6, Months))
alpha = (F_x - F_on)
print(alpha)

Out[20]: 0.002949286970370156

From the basis, we can instantiate synthetic deposits for a number of maturities below 6 months…

In [21]: synth_helpers = []
for n, units in [(1,Days), (1,Weeks), (2,Weeks), (3,Weeks),

(1, Months), (2, Months), (3, Months),
(4, Months), (5, Months)]:

t = day_counter.yearFraction(spot, TARGET().advance(spot, n, units))
F_on = eonia_curve.forwardRate(spot, TARGET().advance(spot, n, units),

Actual360(), Simple).rate()
F = F_on + alpha
print("{0}: {1}".format(Period(n,units), utils.format_rate(F, 4)))
synth_helpers.append(DepositRateHelper(QuoteHandle(SimpleQuote(F)),

Period(n, units), 2,

¹https://speakerdeck.com/nando1970/eonia-jumps-and-proper-euribor-forwarding

https://speakerdeck.com/nando1970/eonia-jumps-and-proper-euribor-forwarding
https://speakerdeck.com/nando1970/eonia-jumps-and-proper-euribor-forwarding
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TARGET(), Following, False, Actual360()))

Out[21]: 1D: 0.3349 %
1W: 0.3649 %
2W: 0.3639 %
3W: 0.3729 %
1M: 0.3689 %
2M: 0.3559 %
3M: 0.3419 %
4M: 0.3272 %
5M: 0.3188 %

…after which we can create a new curve, which seems to have a smaller dip:

In [22]: euribor6m_curve = PiecewiseLogCubicDiscount(2, TARGET(),
helpers+synth_helpers,
Actual365Fixed())

euribor6m_curve.enableExtrapolation()

In [23]: dates = [ spot+Period(i,Weeks) for i in range(0, 52*4+1) ]
rates_0 = [ euribor6m_curve_0.forwardRate(d, euribor6m.maturityDate(d),

Actual360(), Simple).rate()
for d in dates ]

rates = [ euribor6m_curve.forwardRate(d, euribor6m.maturityDate(d),
Actual360(), Simple).rate()

for d in dates ]
_, ax = utils.plot()
utils.plot_curve(ax, dates, [(rates_0,'-'), (rates,'-')], ymin=0.0, format_rates=True)
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By choosing to sample at different dates, we can zoom into the affected area. The original curve is
the dotted line; the new curve is the solid one.

In [24]: dates = [ spot+Period(i,Weeks) for i in range(65, 130) ]
rates_0 = [ euribor6m_curve_0.forwardRate(d, euribor6m.maturityDate(d),

Actual360(), Simple).rate()
for d in dates ]

rates = [ euribor6m_curve.forwardRate(d, euribor6m.maturityDate(d),
Actual360(), Simple).rate()

for d in dates ]
_, ax = utils.plot()
utils.plot_curve(ax, dates, [(rates_0,'.'), (rates,'-')], format_rates=True)
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If we wanted to determine more coefficients for the basis, we’d have to select more quotes and solve
a linear system. For instance, to determine both α and β, we can use the TOM 6-months and the 1x7
FRAs:

In [25]: start = TARGET().advance(spot, 1, Days)
end = TARGET().advance(start, 6, Months)
F_x = euribor6m_curve_0.forwardRate(start, end, Actual360(), Simple).rate()
F_on = eonia_curve.forwardRate(start, end, Actual360(), Simple).rate()
T_x0 = day_counter.yearFraction(start, end)
Delta0 = F_x - F_on

start = TARGET().advance(spot, 1, Months)
end = TARGET().advance(start, 6, Months)
F_x = euribor6m_curve_0.forwardRate(start, end, Actual360(), Simple).rate()
F_on = eonia_curve.forwardRate(start, end, Actual360(), Simple).rate()
T_x1 = day_counter.yearFraction(start, end)
Delta1 = F_x - F_on

t1 = day_counter.yearFraction(spot, start)
t2 = day_counter.yearFraction(spot, end)

L = np.array([[T_x0, 0.5*T_x0**2], [T_x1, 0.5*(t2**2-t1**2)]])
b = np.array([Delta0*T_x0, Delta1*T_x1])
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alpha, beta = np.linalg.solve(L,b)
print(alpha)
print(beta)

Out[25]: 0.0030464085692271255
-0.0003842173141594401

Again, we can create synthetic deposits…

In [26]: synth_helpers = []
for n, units in [(1,Days), (1,Weeks), (2,Weeks), (3,Weeks),

(1, Months), (2, Months), (3, Months),
(4, Months), (5, Months)]:

t = day_counter.yearFraction(spot, TARGET().advance(spot, n, units))
F_on = eonia_curve.forwardRate(spot, TARGET().advance(spot, n, units),

Actual360(), Simple).rate()
F = F_on + alpha + 0.5*beta*t
print("{0}: {1}".format(Period(n,units), utils.format_rate(F, 4)))
synth_helpers.append(DepositRateHelper(QuoteHandle(SimpleQuote(F)),

Period(n, units), 2,
TARGET(), Following, False, Actual360()))

Out[26]: 1D: 0.3446 %
1W: 0.3743 %
2W: 0.3729 %
3W: 0.3815 %
1M: 0.3769 %
2M: 0.3623 %
3M: 0.3468 %
4M: 0.3304 %
5M: 0.3204 %

…and build a new curve. I’ll leave it to you to decide whether this is an improvement over the
degree-1 polynomial basis.

In [27]: euribor6m_curve = PiecewiseLogCubicDiscount(2, TARGET(),
helpers+synth_helpers,
Actual365Fixed())

euribor6m_curve.enableExtrapolation()

In [28]: dates = [ spot+Period(i,Weeks) for i in range(0, 52*4+1) ]
rates_0 = [ euribor6m_curve_0.forwardRate(d, euribor6m.maturityDate(d),

Actual360(), Simple).rate()
for d in dates ]

rates = [ euribor6m_curve.forwardRate(d, euribor6m.maturityDate(d),
Actual360(), Simple).rate()
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for d in dates ]
_, ax = utils.plot()
utils.plot_curve(ax, dates, [(rates_0,'-'), (rates,'-')], ymin=0.0, format_rates=True)

In [29]: dates = [ spot+Period(i,Weeks) for i in range(65, 130) ]
rates_0 = [ euribor6m_curve_0.forwardRate(d, euribor6m.maturityDate(d),

Actual360(), Simple).rate()
for d in dates ]

rates = [ euribor6m_curve.forwardRate(d, euribor6m.maturityDate(d),
Actual360(), Simple).rate()

for d in dates ]
_, ax = utils.plot()
utils.plot_curve(ax, dates, [(rates_0,'.'), (rates,'-')], format_rates=True)
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One thing to note: the values I’m getting for the synthetic deposits are not the same as those reported
by the paper in figure 17. I still haven’t found the reason for the discrepancy.

As for figure 32 in the paper, here’s how we can reproduce it:

In [30]: spot = euribor6m_curve.referenceDate()
dates = [ spot+Period(i,Weeks) for i in range(0, 2*52+1) ]
rates = [ euribor6m_curve.forwardRate(d, euribor6m.maturityDate(d),

Actual360(), Simple).rate()
for d in dates ]

_, ax = utils.plot()
utils.plot_curve(ax, dates, [(rates, '-')], ymin=0.0, ymax=0.0075, format_rates=True)
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In [31]: spot = euribor6m_curve.referenceDate()
dates = [ spot+Period(i,Months) for i in range(0, 60*12+1) ]
rates = [ euribor6m_curve.forwardRate(d, euribor6m.maturityDate(d),

Actual360(), Simple).rate()
for d in dates ]

_, ax = utils.plot()
utils.plot_curve(ax, dates, [(rates, '-')], format_rates=True)
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12-months Euribor

For the 12-months curve, we’ll start with the quoted 12-months deposit and 12x24 FRA (see figures
4 and 5).

In [32]: euribor12m = Euribor1Y()
helpers = [ DepositRateHelper(QuoteHandle(SimpleQuote(0.54/100)),

Period(12,Months), 2,
TARGET(), Following, False, Actual360()) ]

helpers += [ FraRateHelper(QuoteHandle(SimpleQuote(0.5070/100)),
12, euribor12m) ]

Unfortunately, there are no quoted swap rates against 12-months Euribor. However, the market
quotes 6- vs 12-months basis swaps; and more importantly, it quotes them as a portfolio of two IRS,
payer and receiver, both accruing annual fixed coupons against Euribor 6M and 12M, respectively.
The spread between the two fixed legs is quoted so that it sets the NPV of the portfolio at zero.

Given that the market also quotes the fair fixed rate for one of the two swaps, i.e., the one paying a
fixed rate against Euribor 6M, it’s straightforward to see that the fair fixed rate for the swap against
Euribor 12M can be obtained by just adding the 6M rate to the basis spread: that is, if the NPV of a
swap S1 paying K against Euribor 6M is 0, and if the NPV of the portfolio of S1 minus another swap
S2 paying K + S against Euribor 12M is also 0, then the NPV of S2 must be 0 as well.
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This gives us quoted swap rates against Euribor 12M up to 30 years, which is the longest quoted
maturity for basis swaps. The data are from figures 9 and 15.

In [33]: helpers += [
SwapRateHelper(QuoteHandle(SimpleQuote((rate+basis)/100)),

Period(tenor, Years), TARGET(),
Annual, Unadjusted, Thirty360(Thirty360.BondBasis),
euribor12m, QuoteHandle(), Period(0, Days),
discount_curve)

for rate, basis, tenor in [(0.424, 0.179, 3), (0.576, 0.164, 4),
(0.762, 0.151, 5), (0.954, 0.139, 6),
(1.135, 0.130, 7), (1.303, 0.123, 8),
(1.452, 0.118, 9), (1.584, 0.113, 10),
(1.809, 0.106, 12), (2.037, 0.093, 15),
(2.187, 0.080, 20), (2.234, 0.072, 25),
(2.256, 0.066, 30)] ]

Again, we’ll be using synthetic helpers to improve the shape of the short end of the curve. The same
procedure we used for the Euribor 6M curve lets us create deposits with a number of maturities
below 1 year; I’ll skip the calculation and just create helpers with the the resulting rates as reported
by the paper.

In [34]: synth_helpers = [
DepositRateHelper(QuoteHandle(SimpleQuote(rate/100)),

Period(*tenor), 2,
TARGET(), Following, False, Actual360())

for rate, tenor in [(0.6537, (1,Months)), (0.6187, (3,Months)),
(0.5772, (6,Months)), (0.5563, (9,Months))] ]

It is also possible to build synthetic FRAs: their construction is explained in the paper. I’ll leave it to
a later version of this chapter; for the time being, I’ll just add the finished helpers.

In [35]: synth_helpers += [
FraRateHelper(QuoteHandle(SimpleQuote(rate/100)),

months_to_start, euribor12m)
for rate, months_to_start in [(0.4974, 3), (0.4783, 6), (0.4822, 9),

(0.5481, 15), (0.6025, 18)] ]

Finally, we can extend the long end of the curve by creating synthetic swaps with maturities above
30 years. To calculate their rates, we add the swap rates against Euribor 6M (quoted up to 60 years)
to the last quoted basis spread.
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In [36]: last_basis = 0.066
synth_helpers += [

SwapRateHelper(QuoteHandle(SimpleQuote((rate+last_basis)/100)),
Period(tenor, Years), TARGET(),
Annual, Unadjusted, Thirty360(Thirty360.BondBasis),
euribor12m, QuoteHandle(), Period(0, Days),
discount_curve)

for rate, tenor in [(2.295, 35), (2.348, 40),
(2.421, 50), (2.463, 60)] ]

Bootstrapping over the whole set of real and synthetic quotes gives us our final Euribor 12M curve:

In [37]: euribor12m_curve = PiecewiseLogCubicDiscount(2, TARGET(),
helpers+synth_helpers,
Actual365Fixed())

euribor12m_curve.enableExtrapolation()

For comparison, we can build another one excluding the synthetic helpers.

In [38]: euribor12m_curve_0 = PiecewiseLogCubicDiscount(2, TARGET(), helpers,
Actual365Fixed())

euribor12m_curve_0.enableExtrapolation()

The two curves are plotted together in the two following graphs, which also reproduce figure 34 in
the paper. The solid line corresponds to the complete curve, and the dashed line to the curve without
the synthetic helpers. The differences are obvious, both in the short and in the long end.

In [39]: spot = euribor12m_curve.referenceDate()
dates = [ spot+Period(i,Weeks) for i in range(0, 2*52+1) ]
rates_0 = [ euribor12m_curve_0.forwardRate(d, euribor12m.maturityDate(d),

Actual360(), Simple).rate()
for d in dates ]

rates = [ euribor12m_curve.forwardRate(d, euribor12m.maturityDate(d),
Actual360(), Simple).rate()

for d in dates ]
_, ax = utils.plot()
utils.plot_curve(ax, dates, [(rates, '-'),(rates_0, '--')], ymin=0.0, format_rates=Tr\

ue)
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In [40]: dates = [ spot+Period(i,Months) for i in range(0, 60*12+1) ]
rates_0 = [ euribor12m_curve_0.forwardRate(d, euribor12m.maturityDate(d),

Actual360(), Simple).rate()
for d in dates ]

rates = [ euribor12m_curve.forwardRate(d, euribor12m.maturityDate(d),
Actual360(), Simple).rate()

for d in dates ]
_, ax = utils.plot()
utils.plot_curve(ax, dates, [(rates, '-'), (rates_0, '--')], format_rates=True)
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3-months Euribor

For the 3-months Euribor, we can use a strip of very liquid futures after the 3-months deposit; their
rates are listed in figures 7 and 4, respectively.

In [41]: euribor3m = Euribor3M()
helpers = [ DepositRateHelper(QuoteHandle(SimpleQuote(0.179/100)),

Period(3,Months), 3,
TARGET(), Following, False, Actual360()) ]

helpers += [
FuturesRateHelper(QuoteHandle(SimpleQuote(100-rate)),

start_date, euribor3m, QuoteHandle())
for rate, start_date in [(0.1775, Date(19, December, 2012)),

(0.1274, Date(20, March, 2013)),
(0.1222, Date(19, June, 2013)),
(0.1269, Date(18, September, 2013)),
(0.1565, Date(18, December, 2013)),
(0.1961, Date(19, March, 2014)),
(0.2556, Date(18, June, 2014)),
(0.3101, Date(17, September, 2014))] ]

For the swaps, we combine quotes for the swaps against 6-months Euribor with quotes for the 3-
months against 6-months basis swap, like we did for the 12-months curve; basis swap quotes for this
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tenor are available up to 50 years, as shown in figure 15. In this case, though, the fixed rate against
Euribor 3M is lower than the one against Euribor 6M; therefore, the basis must be subtracted from
the quoted rate:

In [42]: helpers += [
SwapRateHelper(QuoteHandle(SimpleQuote((rate-basis)/100)),

Period(tenor, Years), TARGET(),
Annual, Unadjusted, Thirty360(Thirty360.BondBasis),
euribor3m, QuoteHandle(), Period(0, Days),
discount_curve)

for rate, basis, tenor in [(0.424, 0.1395, 3), (0.576, 0.1390, 4),
(0.762, 0.1395, 5), (0.954, 0.1375, 6),
(1.135, 0.1350, 7), (1.303, 0.1320, 8),
(1.452, 0.1285, 9), (1.584, 0.1250, 10),
(1.809, 0.1170, 12), (2.037, 0.1045, 15),
(2.187, 0.0885, 20), (2.234, 0.0780, 25),
(2.256, 0.0700, 30), (2.348, 0.0600, 40),
(2.421, 0.0540, 50)] ]

Again, synthetic deposit rates can be calculated and added for short maturities…

In [43]: synth_helpers = [
DepositRateHelper(QuoteHandle(SimpleQuote(rate/100)),

Period(*tenor), 2,
TARGET(), Following, False, Actual360())

for rate, tenor in [(0.1865, (2,Weeks)), (0.1969, (3,Weeks)),
(0.1951, (1,Months)), (0.1874, (2,Months))] ]

…and again, we can add a few synthetic swaps where quotes for the 3-months versus 6-months
Euribor are not available. We can calculate a quote for the 35-years basis swap by interpolating
between the 30- and 40-years quotes, and one for the 60-years swap by extrapolating the 50-years
quote flatly, like we did for the 12-months Euribor. Note that in this case, the authors of the paper
choose instead to extrapolate the previous quotes linearly; anyway, this gives a difference of less
than half a basis point.

In [44]: synth_helpers += [
SwapRateHelper(QuoteHandle(SimpleQuote((rate-basis)/100)),

Period(tenor, Years), TARGET(),
Annual, Unadjusted, Thirty360(Thirty360.BondBasis),
euribor3m, QuoteHandle(), Period(0, Days),
discount_curve)

for rate, basis, tenor in [(2.295, 0.0650, 35), (2.463, 0.0540, 60)] ]

Turn of year

This is not the end of the story, though, since one of the futures we used turns out to be out of line
with respect to the others in the strip.
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In [45]: futures = [(0.1775, Date(19, December, 2012)),
(0.1274, Date(20, March, 2013)),
(0.1222, Date(19, June, 2013)),
(0.1269, Date(18, September, 2013)),
(0.1565, Date(18, December, 2013)),
(0.1961, Date(19, March, 2014)),
(0.2556, Date(18, June, 2014)),
(0.3101, Date(17, September, 2014))]

Not surprisingly, it’s the one that spans the end of the year and thus includes the corresponding jump;
that is, the one at index 4 in the list, starting on December 18th. This can be seen clearly enough by
fitting a spline between the other futures and plotting the quoted value against the curve:

In [46]: spot = euribor6m_curve.referenceDate()
day_counter = euribor3m.dayCounter()
quotes, times = zip(*[(q, day_counter.yearFraction(spot, d))

for q,d in futures])
f = MonotonicCubicNaturalSpline(times[:4]+times[5:],

quotes[:4]+quotes[5:])

In [47]: _, ax = utils.plot()
ts, fs = zip(*[(t,f(t, True)) for t in np.arange(0.0, 2.0, 0.01)])
ax.plot(ts,fs)
_ = ax.plot(times,quotes,'o')
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We can also ask the interpolation for the estimated value and compare it with the real one:

In [48]: print(utils.format_rate(quotes[4]))
print(utils.format_rate(f(times[4])))

Out[48]: 15.65 %
15.06 %

To account for the jump, we can estimate the corresponding discount factor e−J∗τ (where both J

and τ are calculated with respect to the tenor of the futures) and add it to the curve.

In [49]: J = (quotes[4] - f(times[4]))/100
tau = day_counter.yearFraction(Date(18,December,2013), Date(18,March,2014))
print(utils.format_rate(J))
print(tau)

Out[49]: 0.01 %
0.25

In [50]: jumps = [QuoteHandle(SimpleQuote(math.exp(-J*tau)))]
jump_dates = [Date(31,December,2013)]
euribor3m_curve = PiecewiseLogCubicDiscount(2, TARGET(),
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helpers+synth_helpers,
Actual365Fixed(),
jumps, jump_dates)

euribor3m_curve.enableExtrapolation()

We can now reproduce figure 30 in the paper. The end-of-year jump can be seen clearly in the first
plot.

In [51]: spot = euribor3m_curve.referenceDate()
dates = [ spot+Period(i,Weeks) for i in range(0, 2*52+1) ]
rates = [ euribor3m_curve.forwardRate(d, euribor3m.maturityDate(d),

Actual360(), Simple).rate()
for d in dates ]

_, ax = utils.plot()
utils.plot_curve(ax, dates, [(rates, '-')], ymin=0.0, ymax=0.0075, format_rates=True)
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In [52]: dates = [ spot+Period(i,Months) for i in range(0, 60*12+1) ]
rates = [ euribor3m_curve.forwardRate(d, euribor3m.maturityDate(d),

Actual360(), Simple).rate()
for d in dates ]

_, ax = utils.plot()
utils.plot_curve(ax, dates, [(rates, '-')], ymin=0.0, format_rates=True)

1-month Euribor

Last, let’s bootstrap the 1-month Euribor curve. Quoted instruments based on this tenor include the
1-month deposit and interest-rate swaps paying a monthly fixed rate against 1-month Euribor with
maturities up to 1 year; their rates are listed in figures 4 and 11.
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In [53]: euribor1m = Euribor1M()
helpers = [ DepositRateHelper(QuoteHandle(SimpleQuote(0.110/100)),

Period(1,Months), 2,
TARGET(), Following, False, Actual360()) ]

helpers += [
SwapRateHelper(QuoteHandle(SimpleQuote(rate/100)),

Period(tenor, Months), TARGET(),
Monthly, Unadjusted, Thirty360(Thirty360.BondBasis),
euribor1m, QuoteHandle(), Period(0, Days),
discount_curve)

for rate, tenor in [(0.106, 2), (0.096, 3), (0.085, 4), (0.079, 5),
(0.075, 6), (0.071, 7), (0.069, 8), (0.066, 9),
(0.065, 10), (0.064, 11), (0.063, 12)] ]

For longer maturities, we can combine the swaps against 6-months Euribor with the 1-month vs
6-months basis swaps shown in figure 15.

In [54]: helpers += [
SwapRateHelper(QuoteHandle(SimpleQuote((rate-basis)/100)),

Period(tenor, Years), TARGET(),
Annual, Unadjusted, Thirty360(Thirty360.BondBasis),
euribor1m, QuoteHandle(), Period(0, Days),
discount_curve)

for rate, basis, tenor in [(0.324, 0.226, 2), (0.424, 0.238, 3),
(0.576, 0.246, 4), (0.762, 0.250, 5),
(0.954, 0.250, 6), (1.135, 0.248, 7),
(1.303, 0.245, 8), (1.452, 0.241, 9),
(1.584, 0.237, 10), (1.703, 0.233, 11),
(1.809, 0.228, 12), (2.037, 0.211, 15),
(2.187, 0.189, 20), (2.234, 0.175, 25),
(2.256, 0.163, 30)] ]

As before, we can use synthetic deposits for maturities below the 1-month tenor…

In [55]: synth_helpers = [
DepositRateHelper(QuoteHandle(SimpleQuote(rate/100)),

Period(*tenor), 2,
TARGET(), Following, False, Actual360())

for rate, tenor in [(0.0661, (1,Days)), (0.098, (1,Weeks)),
(0.0993, (2,Weeks)), (0.1105, (3,Weeks))] ]

…and we’ll extend the 30-years basis spread flatly to combine it with longer-maturity swaps against
6-months Euribor.
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In [56]: last_basis = 0.163
synth_helpers += [

SwapRateHelper(QuoteHandle(SimpleQuote((rate-last_basis)/100)),
Period(tenor, Years), TARGET(),
Annual, Unadjusted, Thirty360(Thirty360.BondBasis),
euribor1m, QuoteHandle(), Period(0, Days),
discount_curve)

for rate, tenor in [(2.295, 35), (2.348, 40),
(2.421, 50), (2.463, 60)] ]

This curve, too, shows a jump at the end of the year. The paper claims that it can be determined
and corrected by interpolating the quoted swaps with maturities from 1 to 12 months, but I haven’t
reproduced the calculation yet. For the time being, I’ll just use the value reported in the paper and
calculate the corresponding discount factor.

In [57]: J = 0.0016
t_j = euribor1m.dayCounter().yearFraction(Date(31,December,2012),

Date(2,January,2013))
B = 1.0/(1.0+J*t_j)
jumps = [QuoteHandle(SimpleQuote(B))]
jump_dates = [Date(31,December,2013)]

In [58]: euribor1m_curve = PiecewiseLogCubicDiscount(2, TARGET(),
helpers+synth_helpers,
Actual365Fixed(),
jumps, jump_dates)

euribor1m_curve.enableExtrapolation()

This last curve gives us figure 28 in the paper, down to the oscillations during the first year.

In [59]: spot = euribor1m_curve.referenceDate()
dates = [ spot+Period(i,Weeks) for i in range(0, 2*52+1) ]
rates = [ euribor1m_curve.forwardRate(d, euribor1m.maturityDate(d),

Actual360(), Simple).rate()
for d in dates ]

_, ax = utils.plot()
utils.plot_curve(ax, dates, [(rates, '-')], ymin=0.0, ymax=0.0075, format_rates=True)
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In [60]: dates = [ spot+Period(i,Months) for i in range(0, 60*12+1) ]
rates = [ euribor1m_curve.forwardRate(d, euribor1m.maturityDate(d),

Actual360(), Simple).rate()
for d in dates ]

_, ax = utils.plot()
utils.plot_curve(ax, dates, [(rates, '-')], ymin=0.0, ymax=0.035, format_rates=True)
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Basis curves

Finally, like the authors of the paper, we summarize the results by calculating the difference between
the FRA rates calculated on the corresponding Euribor curve and those calculated on the ON curve.
This lets us reproduce the top panel of figure 35.

In [61]: dates = [ spot+Period(i,Months) for i in range(0, 12*30+1) ]

def basis(curve, tenor):
results = []
for d in dates:

d2 = TARGET().advance(d, Period(*tenor), ModifiedFollowing)
FRA1 = curve.forwardRate(d, d2, Actual360(), Simple).rate()
FRA2 = eonia_curve.forwardRate(d, d2, Actual360(), Simple).rate()
results.append(FRA1-FRA2)

return results

basis_1m = basis(euribor1m_curve, (1,Months))
basis_3m = basis(euribor3m_curve, (3,Months))
basis_6m = basis(euribor6m_curve, (6,Months))
basis_12m = basis(euribor12m_curve, (12,Months))
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_, ax = utils.plot()
utils.plot_curve(ax, dates, [(basis_1m, '-'), (basis_3m, '-'),

(basis_6m, '-'), (basis_12m, '-')],
ymin=0, ymax=0.006, format_rates=True)



10. Constructing a yield curve
In this chapter we will go over the construction of treasury yield curve. Let’s start by importing
QuantLib and other necessary libraries.

In [1]: from QuantLib import *
from pandas import DataFrame
import numpy as np
import utils
%matplotlib inline

This is an example based on Exhibit 5-5 given in Frank Fabozzi’s Bond Markets, Analysis and
Strategies, Sixth Edition.

In [2]: depo_maturities = [Period(6,Months), Period(12, Months)]
depo_rates = [5.25, 5.5]

# Bond rates
bond_maturities = [Period(6*i, Months) for i in range(3,21)]
bond_rates = [5.75, 6.0, 6.25, 6.5, 6.75, 6.80, 7.00, 7.1, 7.15,

7.2, 7.3, 7.35, 7.4, 7.5, 7.6, 7.6, 7.7, 7.8]

maturities = depo_maturities+bond_maturities
rates = depo_rates+bond_rates
DataFrame(list(zip(maturities, rates)),

columns=["Maturities","Curve"],
index=['']*len(rates))

Out[2]:

Maturities Curve

6M 5.25
1Y 5.50
1Y6M 5.75
2Y 6.00
2Y6M 6.25
3Y 6.50
3Y6M 6.75
4Y 6.80
4Y6M 7.00
5Y 7.10
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Maturities Curve

5Y6M 7.15
6Y 7.20
6Y6M 7.30
7Y 7.35
7Y6M 7.40
8Y 7.50
8Y6M 7.60
9Y 7.60
9Y6M 7.70
10Y 7.80

Below we declare some constants and conventions used here. For the sake of simplicity, we assume
that some of the constants are the same for deposit rates and bond rates.

In [3]: calc_date = Date(15, 1, 2015)
Settings.instance().evaluationDate = calc_date

calendar = UnitedStates()
business_convention = Unadjusted
day_count = Thirty360()
end_of_month = True
settlement_days = 0
face_amount = 100
coupon_frequency = Period(Semiannual)
settlement_days = 0

The basic idea of bootstrapping is to use the deposit rates and bond rates to create individual rate
helpers. Then use the combination of the two helpers to construct the yield curve. As a first step, we
create the deposit rate helpers as shown below.

In [4]: depo_helpers = [DepositRateHelper(QuoteHandle(SimpleQuote(r/100.0)),
m,
settlement_days,
calendar,
business_convention,
end_of_month,
day_count )

for r, m in zip(depo_rates, depo_maturities)]

The rest of the points are coupon bonds. We assume that the YTM given for the bonds are all par
rates. So we have bonds with coupon rate same as the YTM. Using this information, we construct
the fixed rate bond helpers below.
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In [5]: bond_helpers = []
for r, m in zip(bond_rates, bond_maturities):

termination_date = calc_date + m
schedule = Schedule(calc_date,

termination_date,
coupon_frequency,
calendar,
business_convention,
business_convention,
DateGeneration.Backward,
end_of_month)

bond_helper = FixedRateBondHelper(QuoteHandle(SimpleQuote(face_amount)),
settlement_days,
face_amount,
schedule,
[r/100.0],
day_count,
business_convention,
)

bond_helpers.append(bond_helper)

The union of the two helpers is what we use in bootstrapping shown below.

In [6]: rate_helpers = depo_helpers + bond_helpers

The get_spot_rates is a convenient wrapper function that we will use to get the spot rates on a
monthly interval.

In [7]: def get_spot_rates(
yieldcurve, day_count,
calendar=UnitedStates(), months=121):

spots = []
tenors = []
ref_date = yieldcurve.referenceDate()
calc_date = ref_date
for month in range(0, months):

yrs = month/12.0
d = calendar.advance(ref_date, Period(month, Months))
compounding = Compounded
freq = Semiannual
zero_rate = yieldcurve.zeroRate(yrs, compounding, freq)
tenors.append(yrs)
eq_rate = zero_rate.equivalentRate(

day_count,compounding,freq,calc_date,d).rate()
spots.append(100*eq_rate)
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return DataFrame(list(zip(tenors, spots)),
columns=["Maturities","Curve"],
index=['']*len(tenors))

The bootstrapping process is fairly generic in QuantLib. You can chose what variable you are
bootstrapping, and what is the interpolation method used in the bootstrapping. There are multiple
piecewise interpolation methods that can be used for this process. The PiecewiseLogCubicDis-
count will construct a piece wise yield curve using LogCubic interpolation of the Discount
factor. Similarly PiecewiseLinearZero will use Linear interpolation of Zero rates. Piecewise-
CubicZero will interpolate the Zero rates using a Cubic interpolation method.

In [8]: yc_logcubicdiscount = PiecewiseLogCubicDiscount(calc_date,
rate_helpers,
day_count)

The zero rates from the tail end of the PiecewiseLogCubicDiscount bootstrapping is shown below.

In [9]: splcd = get_spot_rates(yc_logcubicdiscount, day_count)
splcd.tail()

Out[9]:

Maturities Curve

9.666667 7.981384
9.750000 8.005292
9.833333 8.028145
9.916667 8.050187
10.000000 8.071649

The yield curves using the PiecewiseLinearZero and PiecewiseCubicZero is shown below. The
tail end of the zero rates obtained from PiecewiseLinearZero bootstrapping is also shown below.
The numbers can be compared with that of the PiecewiseLogCubicDiscount shown above.

In [10]: yc_linearzero = PiecewiseLinearZero(
calc_date,rate_helpers,day_count)

yc_cubiczero = PiecewiseCubicZero(
calc_date,rate_helpers,day_count)

splz = get_spot_rates(yc_linearzero, day_count)
spcz = get_spot_rates(yc_cubiczero, day_count)
splz.tail()

Out[10]:
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Maturities Curve

9.666667 7.976804
9.750000 8.000511
9.833333 8.024221
9.916667 8.047934
10.000000 8.071649

All three are plotted below to give you an overall perspective of the three methods.

In [11]: fig, ax = utils.plot()
ax.plot(splcd["Maturities"],splcd["Curve"], '.',

label="LogCubicDiscount")
ax.plot(splz["Maturities"],splz["Curve"],'--',

label="LinearZero")
ax.plot(spcz["Maturities"],spcz["Curve"],

label="CubicZero")
ax.set_xlabel("Months", size=12)
ax.set_ylabel("Zero Rate", size=12)
ax.set_xlim(0.5,10)
ax.set_ylim([5.25,8])
ax.legend(loc=0);
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Conclusion

In this chapter we saw how to construct yield curves by bootstrapping bond quotes.



11. Dangerous day-count conventions
(Based on a question by Min Gao on the QuantLib mailing list. Thanks!)

In [1]: from QuantLib import *

In [2]: today = Date(22,1,2018)
Settings.instance().evaluationDate = today

In [3]: %matplotlib inline
import utils

The problem

Talking about term structures in Implementing QuantLib¹, I suggest to use simple day-count
conventions such as Actual/360 or Actual/365 to initialize curves. That’s because the convention is
used internally to convert dates into times, and we want the conversion to be as regular as possible.
For instance, we’d like distances between dates to be additive: given three dates d1, d2 and d3, we
would expect that T (d1, d2) + T (d2, d3) = T (d1, d3), where T denotes the time between dates.

Unfortunately, that’s not always the case for some day counters. The property holds for most dates…

In [4]: dc = Thirty360(Thirty360.USA)

In [5]: d1 = d1 = Date(1,January,2018)
d2 = Date(15, January, 2018)
d3 = Date(31, January, 2018)

In [6]: print(dc.yearFraction(d1,d2) + dc.yearFraction(d2,d3))
print(dc.yearFraction(d1,d3))

Out[6]: 0.08333333333333334
0.08333333333333333

…but doesn’t for some.

¹https://leanpub.com/implementingquantlib

https://leanpub.com/implementingquantlib
https://leanpub.com/implementingquantlib
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In [7]: d1 = Date(1,January,2018)
d2 = Date(30, January, 2018)
d3 = Date(31, January, 2018)

In [8]: print(dc.yearFraction(d1,d2) + dc.yearFraction(d2,d3))
print(dc.yearFraction(d1,d3))

Out[8]: 0.08055555555555556
0.08333333333333333

That’s because some day-count conventions were designed to calculate the duration of a coupon,
not the distance between any two given dates. They have particular formulas and exceptions that
make coupons more regular; but those exceptions also cause some pairs of dates to have strange
properties. For instance, there might be no distance at all between some particular distinct dates:

In [9]: d1 = Date(30, January, 2018)
d2 = Date(31, January, 2018)

print(dc.yearFraction(d1,d2))

Out[9]: 0.0

The 30/360 convention is not the worst offender, either. Min Gao’s question came from using for the
term structure the same convention used for the bond being priced, that is, ISMA actual/actual. This
day counter is supposed to be given a reference period, as well as the two dates whose distance one
needs to measure; failing to do so will result in the wrong results…

In [10]: d1 = Date(1, January, 2018)
d2 = Date(15, January, 2018)

reference_period = (Date(1, January, 2018), Date(1, July, 2018))

In [11]: dc = ActualActual(ActualActual.ISMA)

print(dc.yearFraction(d1, d2, *reference_period))
print(dc.yearFraction(d1, d2))

Out[11]: 0.03867403314917127
0.038356164383561646

…and sometimes, in spectacularly wrong results. Here is what happens if we plot the year fraction
since January 1st, 2018 as a function of the date over that same year.
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In [12]: d1 = Date(1, January, 2018)
dates = [ (d1 + i) for i in range(366) ]
times = [ dc.yearFraction(d1, d) for d in dates ]

In [13]: fig, ax = utils.plot()
ax.xaxis.set_major_formatter(utils.date_formatter())
ax.plot_date([ utils.to_datetime(d) for d in dates ], times,'-');

Of course, that’s noway to convert dates into times. Using this day-count convention inside a coupon
is ok, of course. Using it inside a term structure, which doesn’t have any concept of a reference period,
leads to very strange behaviors.

In [14]: curve = FlatForward(today, 0.01, ActualActual(ActualActual.ISMA))

In [15]: dates = [ (today + i) for i in range(366) ]
discounts = [ curve.discount(d) for d in dates ]
fig, ax = utils.plot()
ax.xaxis.set_major_formatter(utils.date_formatter())
ax.plot_date([ utils.to_datetime(d) for d in dates ], discounts,'-');
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Any solutions?

Not really, at this time. Work is underway to store a schedule inside an ISMA actual/actual day
counter and use it to retrieve the correct reference period, but that’s not fully working yet. In the
meantime, what I can suggest is to use the specified day-count conventions for coupons; but, unless
something prevents it, use a simple day-count convention such as actual/360 or actual/365 for term
structures.



12. Implied term structures
(Based on a question¹ by Stack Exchange user Lisa Ann. Thanks!)

In [1]: from QuantLib import *

In [2]: %matplotlib inline
import pandas as pd
import utils
from utils import to_datetime, format_rate

from matplotlib.dates import MonthLocator, DateFormatter
from matplotlib.ticker import FuncFormatter
def plot_curve(*curves):

fig, ax = utils.plot()
dates = [ today+Period(i,Weeks) for i in range(0, 52*5) ]
for (c, style) in curves:

valid_dates = [ d for d in dates if d >= c.referenceDate() ]
rates = [ c.forwardRate(d, d+1, Actual360(), Simple).rate()

for d in valid_dates ]
ax.plot_date([ to_datetime(d) for d in valid_dates ], rates, style)

ax.set_xlim(to_datetime(min(dates)),to_datetime(max(dates)))
ax.xaxis.set_major_locator(MonthLocator(bymonth=[6,12]))
ax.xaxis.set_major_formatter(DateFormatter("%b '%y"))
ax.xaxis.grid(True, 'major')
ax.xaxis.grid(False, 'minor')
ax.yaxis.set_major_formatter(FuncFormatter(lambda r,pos: format_rate(r)))

The statement of the case

Let’s say we have an interest-rate curve. For the sake of example, I’ll take a simple one bootstrapped
on a few swap rates.

¹http://quant.stackexchange.com/questions/9589/

http://quant.stackexchange.com/questions/9589/
http://quant.stackexchange.com/questions/9589/
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In [3]: today = Date(9,March,2016)
Settings.instance().evaluationDate = today

In [4]: helpers = [ SwapRateHelper(QuoteHandle(SimpleQuote(rate/100.0)),
Period(*tenor), TARGET(),
Annual, Unadjusted,
Thirty360(),
Euribor6M())

for tenor, rate in [((6,Months), 0.201),
((2,Years), 0.258),
((5,Years), 0.464),
((10,Years), 1.151),
((15,Years), 1.588)] ]

curve = PiecewiseLinearZero(0, TARGET(), helpers, Actual360())

In [5]: plot_curve((curve, '-'))

I’m using linear interpolation on the zero rates, which isn’t great for actual use. However, the
resulting jumps in the forward rates will be useful as visual points of reference; note, for instance,
the jump around March 2018.

The curve also implies an interest-rate curve in 1 year; meaning that, for instance, it can give us the
forward rate between 1 and to 2 years, that we expect to be the 1-year spot rate one year from now,
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or the forward rate between 1 year and 18 months, which will be the 6-months spot rate in one year.
The implied curve can be built as an instance of the ImpliedTermStructure class:

In [6]: future_reference = today + Period(1,Years)
implied_curve = ImpliedTermStructure(YieldTermStructureHandle(curve),

future_reference)

In [7]: plot_curve((implied_curve, '-'))

In the common range, the two curves are the same…

In [8]: plot_curve((curve, '-'), (implied_curve, 'o'))
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…although, of course, a spot rate for the implied curve corresponds to a forward rate for the original
curve.

In [9]: dates = [ future_reference + Period(i, Years) for i in range(6) ]
rates_1 = [ curve.forwardRate(future_reference, d,

Actual360(), Continuous).rate()
for d in dates ]

rates_2 = [ implied_curve.zeroRate(d, Actual360(), Continuous).rate()
for d in dates ]

pd.DataFrame(list(zip(dates,
[ format_rate(r) for r in rates_1 ],
[ format_rate(r) for r in rates_2 ])),

columns=('Maturity', 'Original forward rate',
'Implied zero rate'), index=['']*6)

Out[9]:
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Maturity Original forward rate Implied zero rate

March 9th, 2017 0.25 % 0.25 %
March 9th, 2018 0.29 % 0.29 %
March 9th, 2019 0.37 % 0.37 %
March 9th, 2020 0.45 % 0.45 %
March 9th, 2021 0.52 % 0.52 %
March 9th, 2022 0.67 % 0.67 %

Now, Lisa Ann’s idea was to forecast a bond price as of one year from now based on the implied
curve. In the library framework, that means setting the evaluation date to 1 year from today and
using the implied curve to discount the bond cash flows. However, after changing the evaluation
date…

In [10]: Settings.instance().evaluationDate = future_reference

…the implied curve had changed.

In [11]: rates_3 = [ implied_curve.zeroRate(d, Actual360(), Continuous).rate()
for d in dates ]

pd.DataFrame(list(zip(dates,
[ format_rate(r) for r in rates_2 ],
[ format_rate(r) for r in rates_3 ])),

columns=('Maturity', 'Before date change',
'After date change'), index=['']*6)

Out[11]:

Maturity Before date change After date change

March 9th, 2017 0.25 % 0.20 %
March 9th, 2018 0.29 % 0.22 %
March 9th, 2019 0.37 % 0.25 %
March 9th, 2020 0.45 % 0.32 %
March 9th, 2021 0.52 % 0.39 %
March 9th, 2022 0.67 % 0.46 %

What happened?

Simply put: the reference date of the original curve was specified relative to the evaluation date, and
when we moved it the curve moved, too. Let’s try it:
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In [12]: Settings.instance().evaluationDate = future_reference
plot_curve((curve, '-'))

Remember that jump in March 2018? It’s in March 2019 now.

Thus, after moving the evaluation date, the original and implied curve are exactly the same; and the
spot rates returned by the implied curve are no longer forward rates, but the spot rates returned by
the original curve.

In [13]: rates_1 = [ curve.zeroRate(d, Actual360(), Continuous).rate()
for d in dates ]

rates_2 = [ implied_curve.zeroRate(d, Actual360(), Continuous).rate()
for d in dates ]

pd.DataFrame(list(zip(dates,
[ format_rate(r) for r in rates_1 ],
[ format_rate(r) for r in rates_2 ])),

columns=('Maturity', 'Original zero rate',
'Implied zero rate'), index=['']*6)

Out[13]:



Implied term structures 118

Maturity Original zero rate Implied zero rate

March 9th, 2017 0.20 % 0.20 %
March 9th, 2018 0.22 % 0.22 %
March 9th, 2019 0.25 % 0.25 %
March 9th, 2020 0.32 % 0.32 %
March 9th, 2021 0.39 % 0.39 %
March 9th, 2022 0.46 % 0.46 %

The solution would be to build the original curve so that it doesn’t move when the evaluation date
changes; and as you might remember, the way to do that is to specify a reference date explicitly.

Unfortunately, though, doing this to a bootstrapped curve is an open issue; even if we specified the
reference date, the underlying swaps would still move (it’s a long story). Thus, the actual solution
will be a bit of a kludge: we’ll make a frozen copy of the original curve that doesn’t move when the
evaluation date does. The way we do it is to return to the original evaluation date…

In [14]: Settings.instance().evaluationDate = today

…extract the bootstrapped rates…

In [15]: curve.nodes()

Out[15]: ((Date(9,3,2016), 0.001954693606572509),
(Date(12,9,2016), 0.001954693606572509),
(Date(12,3,2018), 0.002536800732553941),
(Date(11,3,2021), 0.004572804156623578),
(Date(11,3,2026), 0.011524783611804843),
(Date(11,3,2031), 0.01615156507336212))

…and create a curve with the same rates and a fixed reference date.

In [16]: node_dates, node_rates = zip(*curve.nodes())
frozen_curve = ZeroCurve(node_dates, node_rates, curve.dayCounter())

In [17]: plot_curve((frozen_curve, '-'))
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As I said, a bit of a kludge: this curve is a frozen copy, and won’t react to changes in the underlying
quoted swap rates, so you’d have to recreate it manually if you want to track the market as it moves.

However, now we can build the implied curve based on the frozen one:

In [18]: implied_curve = ImpliedTermStructure(YieldTermStructureHandle(frozen_curve),
future_reference)

If we move the evaluation date, the frozen curve remains fixed at today’s date…

In [19]: Settings.instance().evaluationDate = future_reference
plot_curve((frozen_curve,'-'), (implied_curve,'o'))
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…and the implied curve returns the correct rates.

In [20]: rates_1 = [ frozen_curve.zeroRate(d, Actual360(), Continuous).rate()
for d in dates ]

rates_2 = [ frozen_curve.forwardRate(future_reference, d,
Actual360(), Continuous).rate()

for d in dates ]
rates_3 = [ implied_curve.zeroRate(d, Actual360(), Continuous).rate()

for d in dates ]
pd.DataFrame(list(zip(dates,

[ format_rate(r) for r in rates_1 ],
[ format_rate(r) for r in rates_2 ],
[ format_rate(r) for r in rates_3 ])),

columns=('Maturity', 'Original zero rate',
'Original forward rate', 'Implied zero rate'),

index=['']*6)

Out[20]:
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Maturity Original zero rate Original forward rate Implied zero rate

March 9th, 2017 0.21 % 0.25 % 0.25 %
March 9th, 2018 0.25 % 0.29 % 0.29 %
March 9th, 2019 0.32 % 0.37 % 0.37 %
March 9th, 2020 0.39 % 0.45 % 0.45 %
March 9th, 2021 0.46 % 0.52 % 0.52 %
March 9th, 2022 0.60 % 0.67 % 0.67 %



13. Interest-rate sensitivities via zero
spread

In this notebook, I’ll show a couple of different ways to calculate the sensitivity of an instrument
price to changes in the interest-rate curve.

In [1]: from QuantLib import *
today = Date(8, March, 2016)
Settings.instance().evaluationDate = today

In [2]: %matplotlib inline
from matplotlib.ticker import FuncFormatter
import numpy as np
import utils
from utils import format_rate

def plot_curves(*curves):
fig, ax = utils.plot()
ax.yaxis.set_major_formatter(FuncFormatter(lambda r,pos: format_rate(r)))
ax.set_xlim(0,15)
ax.set_xticks([0,5,10,15])
times = np.linspace(0.0, 15.0, 400)
for curve, style in curves:

rates = [ curve.zeroRate(t, Continuous).rate() for t in times ]
ax.plot(times, rates, style)

def plot_curve(curve):
plot_curves((curve,'-'))

Setup

Let’s say we have an interest-rate curve, no matter how it was calculated. As an example, I’ll use
a curve bootstrapped over the 6-months deposit, a strip of 6-months FRAs and a number of swaps
against the 6-months Euribor. All the market inputs are stored in quotes so that their values can be
changed.
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In [3]: quotes = [ SimpleQuote(0.312/100) ]
helpers = [ DepositRateHelper(QuoteHandle(quotes[0]),

Period(6,Months), 3,
TARGET(), Following, False, Actual360()) ]

for rate, months_to_start in [(0.293, 1), (0.272, 2), (0.260, 3),
(0.256, 4), (0.252, 5), (0.248, 6),
(0.254, 7), (0.261, 8), (0.267, 9),
(0.279, 10), (0.291, 11), (0.303, 12),
(0.318, 13), (0.335, 14), (0.352, 15),
(0.371, 16), (0.389, 17), (0.409, 18)]:

quotes.append(SimpleQuote(rate/100))
helpers.append(FraRateHelper(QuoteHandle(quotes[-1]),

months_to_start, Euribor6M()))

for rate, tenor in [(0.424, 3), (0.576, 4), (0.762, 5), (0.954, 6),
(1.135, 7), (1.303, 8), (1.452, 9), (1.584, 10),
(1.809, 12), (2.037, 15), (2.187, 20), (2.234, 25),
(2.256, 30), (2.295, 35), (2.348, 40), (2.421, 50),
(2.463, 60)]:

quotes.append(SimpleQuote(rate/100))
helpers.append(SwapRateHelper(QuoteHandle(quotes[-1]),

Period(tenor, Years), TARGET(),
Annual, Unadjusted, Thirty360(Thirty360.BondBasis),
Euribor6M()))

rate_curve = PiecewiseLogCubicDiscount(2, TARGET(), helpers, Actual365Fixed())
curve_handle = RelinkableYieldTermStructureHandle(rate_curve)

Here’s the curve, plotted over 15 years.

In [4]: plot_curve(rate_curve)
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For illustration purposes, I’ll be using the curve to price an interest-rate swap. Let’s create a 12-years
swap starting in one month, with an annual schedule for the fixed leg and a semiannual schedule
for the floating leg. We’ll use the curve above to forecast the floating-rate fixings, so we pass it to
the Euribor6M instance that, in turn, we pass to the swap constructor.

In [5]: fixed_schedule = Schedule(Date(8, April, 2016), Date(8, April, 2028),
Period(1, Years), TARGET(), Following, Following,
DateGeneration.Forward, False)

floating_schedule = Schedule(Date(8, April, 2016), Date(8, April, 2028),
Period(6, Months), TARGET(), Following, Following,
DateGeneration.Forward, False)

index = Euribor6M(curve_handle)
swap = VanillaSwap(VanillaSwap.Payer, 10000.0,

fixed_schedule, 0.02, Thirty360(),
floating_schedule, index, 0.0, Actual360())

Of course, we should use a different curve for discounting. But let me just skip that part for brevity,
and simply pass the same curve to the engine used by the swap. The points I’m going to make won’t
suffer for this.

Once we’ve done this, we can finally get the value of the swap.
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In [6]: swap.setPricingEngine(DiscountingSwapEngine(curve_handle))
P0 = swap.NPV()
print(P0)

Out[6]: -189.83267948709272

Now, let’s say that this was you pricing a deal. And let’s also say that you’re interested (as you
should) in how the swap price reacts to changes in the underlying rates.

Interest-rate sensitivities

If you’re interested in the sensitivities of the price to the input rates, you can have them: shift any
input rate by setting a perturbed value to the corresponding quote and recalculate the NPV. For
instance, you can bump the 6-months deposit rate by one basis point and get the new price as
follows:

In [7]: bp = 1.0e-4
ref = quotes[0].value()
quotes[0].setValue(ref+1*bp)
print(swap.NPV())
quotes[0].setValue(ref)

Out[7]: -190.1069970119836

(Also, don’t forget to set the value back to the actual quoted rate when you’re done).

This can be done for a single rate, as above, or for any number of rates; all of them, for instance…

In [8]: for q in quotes:
q.setValue(q.value()+1*bp)

print(swap.NPV())
for q in quotes:

q.setValue(q.value()-1*bp)

Out[8]: -178.68820577843826

…so the above gives you the swap price when all the input rates move 1 basis point upwards; the
difference between the new price and the old one will give you the DV01 of the swap. (Note that,
depending on how you define it, you might want to shift either the forecast curve, the discount
curve, or both.)

Different combinations of changes can also give you different stress scenarios; for instance, ones in
which the curve tilts in some direction, or ones in which you only move the short end or the long
end of the curve. In doing so, though, you’re constrained to use the nodes of the original curve. For
instance, in the curve above there are no nodes between 20 and 25 years, thus there are no levers to
pull in that interval.
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As an alternative, you can take an approach in which youmodify the curve as a whole independently
of the underlying rates. For instance, to shift all the zero rates upwards, you can keep the original
curve as it is and add one basis point to all its zero rates by means of the ZeroSpreadedTermStruc-
ture class. To use it for pricing our swap, we’ll store the original curve in a separate handle, add the
spread, and link the new curve to the handle we’re using for forecasting. As usual, the swap price
will react accordingly.

In [9]: base_curve = YieldTermStructureHandle(rate_curve)
spread = SimpleQuote(1*bp)

curve_handle.linkTo(ZeroSpreadedTermStructure(base_curve, QuoteHandle(spread)))
print(swap.NPV())

Out[9]: -178.8676404436867

As we could expect, the result is close to what we got by shifting all the input rates (the difference
is just one or two digits in the first decimal place) but not quite the same: modifying, say, an input
swap rate doesn’t have the same effect as applying the same change to the zero rates directly. As
usual, I’ll trust you to know what you’re doing in either case.

To get a more visual idea of what we’re doing, we can also increase the spread and plot the resulting
curve on top of the original one:

In [10]: spread.setValue(5*bp)
plot_curves((rate_curve,'-'), (curve_handle,'--'))
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Another class, SpreadedLinearZeroInterpolatedTermStructure (for whose name I apologize
on behalf of the library developers: I don’t know what came over us) allows one to apply a spread
which is interpolated linearly between a set of nodes, which of course are independent of the nodes
of the underlying curve.

For instance, we can create a scenario in which we tilt the curve by taking equally spaced dates each
year between now and 20 years, and define the corresponding spreads as negative in the short end,
increasing until they reach zero at the 7-years mark, and more and more positive in the long end.
Again, we can plot the resulting curve for comparison with the original one…

In [11]: spot = rate_curve.referenceDate()
dates = [ spot + Period(n,Years) for n in range(21)]
spreads = [ QuoteHandle(SimpleQuote((n-7)*bp)) for n in range(21) ]

curve_handle.linkTo(
SpreadedLinearZeroInterpolatedTermStructure(base_curve, spreads, dates))

plot_curves((rate_curve,'-'), (curve_handle,'--'))



Interest-rate sensitivities via zero spread 128

…and again, we can ask the swap for its price under this scenario.

In [12]: print(swap.NPV())

Out[12]: -138.69485276964178

When using this technique, going back to the actual market quotes simply means linking the curve
handle to the original curve:

In [13]: curve_handle.linkTo(rate_curve)
print(swap.NPV())

Out[13]: -189.83267949204492

If you want more control of the shift (as asked, for instance, by user6142489 on Stack Overflow¹ who
wanted to calculate key-rate risks) you might have to increase the number of nodes. If your nodes
are one year apart as above, and if you modify, e.g., the node at 7 years, the interpolation scheme
will cause the whole range between 6 and 8 years to change, and all coupons paid in that period
to be affected. The more nodes you have and the closer they are together, the more localized any
change will be.

¹https://stackoverflow.com/questions/46279785/quantlib-building-key-rate-risks

https://stackoverflow.com/questions/46279785/quantlib-building-key-rate-risks
https://stackoverflow.com/questions/46279785/quantlib-building-key-rate-risks


14. A glitch in forward-rate curves
(Based on a question asked by Boris Chow¹ on the QuantLib mailing list. Thanks!)

In [1]: %matplotlib inline
from pandas import DataFrame
import numpy as np
import utils

In [2]: from QuantLib import *

In [3]: today = Date(24, August, 2015)
Settings.instance().evaluationDate = today

The statement of the case

Let’s say we have built an interpolated forward-rate curve, by which I mean that it interpolates
instantaneous forward rates (for more details, read my other book). We’re using a backward-flat
interpolation, which corresponds to log-linear discount factors. The dates and forwards are entirely
made up; they are just for show.

In [4]: dates = [ today ] + [ today + Period(i, Years)
for i in [1, 2, 3, 5, 10, 20] ]

forwards = [ 0.01, 0.03, 0.02, 0.025, 0.035, 0.05, 0.04 ]
curve = ForwardCurve(dates, forwards, Actual360())

We can ask the curve for its nodes, and it will return those we expect—that is, those we passed
ourselves…

In [5]: DataFrame(list(curve.nodes()),
columns = ('date','rate'),
index = ['']*len(dates))

Out[5]:

¹https://sourceforge.net/p/quantlib/mailman/message/34286980/

https://sourceforge.net/p/quantlib/mailman/message/34286980/
https://sourceforge.net/p/quantlib/mailman/message/34286980/
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date rate

August 24th, 2015 0.010
August 24th, 2016 0.030
August 24th, 2017 0.020
August 24th, 2018 0.025
August 24th, 2020 0.035
August 24th, 2025 0.050
August 24th, 2035 0.040

…and if we retrieve the instantaneous forward from a date between the nodes, it’s the same as that
of the following node, as expected for a backward-flat interpolation.

In [6]: d = today + Period(4,Years)
print(d)
print(curve.forwardRate(d, d, curve.dayCounter(), Continuous))

Out[6]: August 24th, 2019
3.500000 % Actual/360 continuous compounding

We can even plot the whole thing and get the expected shape.

In [7]: sample_times = np.linspace(0.0, 20.0, 401)
sample_rates = [ curve.forwardRate(t, t, Continuous).rate()

for t in sample_times ]

f, ax = utils.plot()
ax.set_ylim(0.0,0.06)
ax.yaxis.set_major_formatter(utils.rate_formatter())
ax.plot(sample_times, sample_rates);
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So it seems all is well with the world. What if we retrieve the instantaneous forward rates at the
curve nodes, though?

In [8]: dates, expected = zip(*curve.nodes())
rates = [ curve.forwardRate(d, d, curve.dayCounter(), Continuous).rate()

for d in dates]
DataFrame(list(zip(dates, expected, rates)),

columns = ('date','expected','retrieved'),
index = ['']*len(dates))

Out[8]:

date expected retrieved

August 24th, 2015 0.010 0.0300
August 24th, 2016 0.030 0.0250
August 24th, 2017 0.020 0.0225
August 24th, 2018 0.025 0.0300
August 24th, 2020 0.035 0.0425
August 24th, 2025 0.050 0.0450
August 24th, 2035 0.040 0.0400
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Here are the above points, together with the rest of the curve.

In [9]: node_times = [ curve.dayCounter().yearFraction(today, d) for d in dates ]
ax.plot(node_times, rates, 'o', markersize=8)
display(f)

What’s wrong?

It’s a combination of two things. First, the particular interpolation we’ve chosen causes the
instantaneous forwards to be discontinuous at the nodes. Second, there’s a limitation in the
implementation of the base TermStructure class: the instantaneous forwards are not taken directly
from the interpolation, but retrieved generically from the discount factors as the forward over a small
interval around the given time; that is,

f̃(t) =
1

2δt
log

(
B(t− δt)

B(t+ δt)

)
Again, the details are in my other book.

By writing the discount factors B(t) in terms of the zero rates as exp (Z(t) · t), and in turn the zero

rates in terms of the instantaneous forwards as Z(t) =

∫ t

0

f(τ)dτ , the above simplifies (well, for some

value of “simplifies”) to
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f̃(t) =
1

2δt

[∫ t+δt

0

f(τ)dτ −
∫ t−δt

0

f(τ)dτ

]

We can interpret the above expression in two ways; both explain why the values at the nodes are
off and why we get the correct values elsewhere.

As the difference of two integrals, it equals

1

2δt

[∫ t+δt

t−δt

f(τ)dτ

]

that is, the average of f(τ) between t − δt and t + δt. What this means is clear from the following
figure: off the nodes, the result equals the flat value of the forwards; at the nodes, though, it equals
the average between the two adjacent levels.

If we consider the integral
∫ t

0

f(τ)dτ as a function F (t) instead, f̃(t) equals F (t+ δt)− F (t− δt)

2δt
; that

is, the numerical derivative of F at t. Again, a figure shows clearly what happens at and off the
nodes: the forwards are piecewise flat, their integral is piecewise linear with slopes equal to the
forwards, and the derivative at a given node is in between the two joining slopes.



A glitch in forward-rate curves 134

Is the curve wrong, then?

Yes and no. The glitch above is real, but discount factors and discrete rates are retrieved correctly
so there’s no problem using the curve (unless the value of an instrument depends on instantaneous
forwards, but that’s unlikely). If the above troubles you, though, what you can do is simply to choose
another interpolation that doesn’t cause discontinuities.



Interest-rate models



15. Simulating interest rates using Hull
White model

The Hull-White Short Rate Model is defined as:

drt = (θ(t)− art)dt+ σdWt

where a and σ are constants, and θ(t) is chosen in order to fit the input term structure of interest
rates. Here we use QuantLib to show how to simulate the Hull-White model and investigate some
of the properties.

We import the libraries and set things up as shown below:

In [1]: from QuantLib import *
import utils
import numpy as np
% matplotlib inline

The constants that we use for this example is all defined as shown below. Variables sigma and a
are the constants that define the Hull-White model. In the simulation, we discretize the time span
of length 30 years into 360 intervals (one per month) as defined by the timestep variable. For
simplicity we will use a constant forward rate term structure as an input. It is straight forward to
swap with another term structure here.

In [2]: sigma = 0.1
a = 0.1
timestep = 360
length = 30 # in years
forward_rate = 0.05
day_count = Thirty360()
todays_date = Date(15, 1, 2015)

In [3]: Settings.instance().evaluationDate = todays_date

spot_curve = FlatForward(todays_date,
QuoteHandle(SimpleQuote(forward_rate)),
day_count)

spot_curve_handle = YieldTermStructureHandle(spot_curve)

In [4]: hw_process = HullWhiteProcess(spot_curve_handle, a, sigma)
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rng = GaussianRandomSequenceGenerator(
UniformRandomSequenceGenerator(timestep, UniformRandomGenerator()))

seq = GaussianPathGenerator(hw_process, length, timestep, rng, False)

The Hull-White process is constructed by passing the term-structure, a and sigma. To create the
path generator, one has to provide a random sequence generator along with other simulation inputs
such as timestep and ‘length.

A function to generate paths can be written as shown below:

In [5]: def generate_paths(num_paths, timestep):
arr = np.zeros((num_paths, timestep+1))
for i in range(num_paths):

sample_path = seq.next()
path = sample_path.value()
time = [path.time(j) for j in range(len(path))]
value = [path[j] for j in range(len(path))]
arr[i, :] = np.array(value)

return np.array(time), arr

The simulation of the short rates look as shown below:

In [6]: num_paths = 10
time, paths = generate_paths(num_paths, timestep)
fig, ax = utils.plot()
for i in range(num_paths):

ax.plot(time, paths[i, :], lw=0.8, alpha=0.6)
ax.set_title("Hull-White Short Rate Simulation");
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The short rate r(t) is given a distribution with the properties:

E{r(t)|Fs} = r(s)e−a(t−s) + α(t)− α(s)e−a(t−s) (15..1)

V ar{r(t)|Fs} =
σ2

2a
[1− e−2a(t−s)] (15..2)

where

α(t) = fM (0, t) +
σ2

2a2
(1− e−at)2

as shown in Brigo & Mercurio’s book on Interest Rate Models.

In [7]: num_paths = 1000
time, paths = generate_paths(num_paths, timestep)

The mean and variance compared between the simulation (red dotted line) and theory (blue line).
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In [8]: vol = [np.var(paths[:, i]) for i in range(timestep+1)]
fig, ax = utils.plot()
ax.plot(time, vol, "-.", lw=3, alpha=0.6)
ax.plot(time,sigma*sigma/(2*a)*(1.0-np.exp(-2.0*a*np.array(time))), "-",

lw=2, alpha=0.5)
ax.set_title("Variance of Short Rates", size=14);

In [9]: def alpha(forward, sigma, a, t):
return forward + 0.5* np.power(sigma/a*(1.0 - np.exp(-a*t)), 2)

avg = [np.mean(paths[:, i]) for i in range(timestep+1)]
fig, ax = utils.plot()
ax.plot(time, avg, "-.", lw=3, alpha=0.6)
ax.plot(time,alpha(forward_rate, sigma, a, time), "-", lw=2, alpha=0.6)
ax.set_title("Mean of Short Rates", size=14);
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16. Thoughts on the convergence of
Hull-White model Monte Carlo
simulations

I had recently written an introductory post on simulating short rates in the Hull-White Model¹. This
question on the QuantLib forum² raised some interesting questions on the convergence of the Hull-
White model simulations. In this post, I discuss the convergence of Monte Carlo simulations using
the Hull-White model.

The Hull-White Short Rate Model is defined as:

drt = (θ(t)− art)dt+ σdWt

where a and σ are constants, and θ(t) is chosen in order to fit the input term structure of interest
rates. Here we use QuantLib to show how to simulate the Hull-White model and investigate some
of the properties.

The variables used in this post are described below: - timestep is the number of steps used to
discretize the time grid - hw_process the object that defines the Hull-White process, - length is
the time span of the simulation in years - low_discrepancy is a boolean variable that is used to
chose Sobol low discrepancy random or not - brownian_bridge is a boolean that chooses brownian
bridge for path generation - num_paths is the number of paths in the simulation - a is the constant
parameter in the Hull-White model - sigma is the constant parameter σ in the Hull-White model
that describes volatility

In [1]: import QuantLib as ql
import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import simps, cumtrapz, romb
% matplotlib inline
import math
import utils

todays_date = ql.Date(15, 1, 2015)
ql.Settings.instance().evaluationDate = todays_date

The get_path_generator function creates the a path generator. This function takes various inputs
such as

¹http://gouthamanbalaraman.com/blog/hull-white-simulation-quantlib-python.html
²http://quantlib.10058.n7.nabble.com/Matching-results-between-HW-tree-and-simulation-models-td16399.html

http://gouthamanbalaraman.com/blog/hull-white-simulation-quantlib-python.html
http://quantlib.10058.n7.nabble.com/Matching-results-between-HW-tree-and-simulation-models-td16399.html
http://gouthamanbalaraman.com/blog/hull-white-simulation-quantlib-python.html
http://quantlib.10058.n7.nabble.com/Matching-results-between-HW-tree-and-simulation-models-td16399.html
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In [2]: def get_path_generator(timestep, hw_process, length,
low_discrepancy=False, brownian_bridge=True):

"""
Returns a path generator
"""
if low_discrepancy:

usg = ql.UniformLowDiscrepancySequenceGenerator(timestep)
rng = ql.GaussianLowDiscrepancySequenceGenerator(usg)
seq = ql.GaussianSobolPathGenerator(

hw_process, length, timestep, rng,brownian_bridge)
else:

usg = ql.UniformRandomSequenceGenerator(timestep,
ql.UniformRandomGenerator())

rng = ql.GaussianRandomSequenceGenerator(usg)
seq = ql.GaussianPathGenerator(

hw_process, length, timestep, rng, brownian_bridge)
return seq

The generate_paths function uses the generic path generator produced by the get_path_gener-
ator function to return a tuple of the array of the points in the time grid and a matrix of the short
rates generated.

In [3]: def generate_paths(num_paths, timestep, seq):
arr = np.zeros((num_paths, timestep+1))
for i in range(num_paths):

sample_path = seq.next()
path = sample_path.value()
time = [path.time(j) for j in range(len(path))]
value = [path[j] for j in range(len(path))]
arr[i, :] = np.array(value)

return np.array(time), arr

The generate_paths_zero_price essentially is a wrapper around generate_path_generator
and generate_paths taking all the required raw inputs. This function returns the average of zero
prices from all the paths for different points in time. I wrote this out so that I can conveniently
change all the required inputs and easily plot the results.
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In [4]: def generate_paths_zero_price(spot_curve_handle, a, sigma, timestep, length,
num_paths, avg_grid_array, low_discrepancy=False,
brownian_bridge=True):

"""
This function returns a tuple (T_array, F_array), where T_array is the array
of points in the time grid, and F_array is the array of the average of zero
prices observed from the simulation.
"""
hw_process = ql.HullWhiteProcess(spot_curve_handle, a, sigma)
seq = get_path_generator(

timestep, hw_process, length, low_discrepancy, brownian_bridge
)
time, paths = generate_paths(num_paths, timestep, seq)
avgs = [(time[j],(np.mean([math.exp(-simps(paths[i][0:j], time[0:j]))

for i in range(num_paths)])))
for j in avg_grid_array
]

return zip(*avgs)

def generate_paths_discount_factors(spot_curve_handle, a, sigma, timestep, length,
num_paths, avg_grid_array, low_discrepancy=False,
brownian_bridge=True):

"""
This function returns a tuple (T_array, S_matrix), where T_array is the array
of points in the time grid, and S_matrix is the matrix of the spot rates for
each path in the different points in the time grid.
"""
hw_process = ql.HullWhiteProcess(spot_curve_handle, a, sigma)
seq = get_path_generator(

timestep, hw_process, length, low_discrepancy, brownian_bridge
)
time, paths = generate_paths(num_paths, timestep, seq)
arr = np.zeros((num_paths, len(avg_grid_array)))
for i in range(num_paths):

arr[i, :] = [np.exp(-simps(paths[i][0:j], time[0:j]))
for j in avg_grid_array ]

t_array = [time[j] for j in avg_grid_array]
return t_array, arr

def V(t,T, a, sigma):
""" Variance of the integral of short rates, used below"""
return sigma*sigma/a/a*(T-t + 2.0/a*math.exp(-a*(T-t)) -

1.0/(2.0*a)*math.exp(-2.0*a*(T-t)) - 3.0/(2.0*a) )
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Factors affecting the convergence

In order to understand the convergence of Monte Carlo for the Hull-White model, let us compare
the market discount factor,

PM (t, T ) = exp

(
−
∫ T

t

fM (t, u)du

)

with the expectation of the discount factors from the sample of Monte Carlo paths,

PMC(t, T ) = Et

{
e−

∫ T
t

rMC(u)du
}
.

Here fM (t, T ) is the instantaneous forward rate implied by the market, and rMC(s) is the instanta-
neous short rate from the Monte Carlo simulations. The error in the Monte Carlo simulation can be
defined as:

ϵ(T ) = PM (0, T )− PMC(0, T )

As a first step, let us look at the plots of ϵ(t) for different values of a and σ.

In [5]: # Here we vary sigma with fixed a and observe the error epsilon
# define constants
num_paths = 500
sigma_array = np.arange(0.01,0.1,0.03)
a = 0.1
timestep = 180
length = 15 # in years
forward_rate = 0.05
day_count = ql.Thirty360()
avg_grid_array = np.arange(12, timestep+1, 12)

# generate spot curve
spot_curve = ql.FlatForward(

todays_date,
ql.QuoteHandle(ql.SimpleQuote(forward_rate)), day_count

)
spot_curve_handle = ql.YieldTermStructureHandle(spot_curve)

#initialize plots
figure, axis = utils.plot()
plots = []
zero_price_theory = np.array([spot_curve.discount(j*float(length)/float(timestep))

for j in avg_grid_array])
for sigma in sigma_array:

term, zero_price_empirical = generate_paths_zero_price(
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spot_curve_handle, a, sigma, timestep, length, num_paths,
avg_grid_array

)
plots += axis.plot(

term, np.abs(zero_price_theory - np.array(zero_price_empirical)),
lw=2, alpha=0.6,
label="$\sigma=%.2f$"%sigma

)

# plot legend
labels = [p.get_label() for p in plots]
legend = axis.legend(plots, labels, loc=0)
axis.set_xlabel("T (years)", size=12)
axis.set_ylabel("|$\epsilon(T)$|", size=12)
axis.set_title("Discount Factor Error for $a=$%0.2f and Varying $\sigma$"%a,

size=14);

The above plot illustrates that for σ = 0.01, the Monte Carlo model shows good convergence, and
the convergence gradually deteriorates as σ increases and approaches a.
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In [6]: # Here we vary a with fixed sigma and observe the error epsilon
#define constants
num_paths = 500
sigma = 0.1
a_array = np.arange(0.1, 0.51, 0.1)
timestep = 180
length = 15 # in years
forward_rate = 0.05
day_count = ql.Thirty360()
avg_grid_array = np.arange(12, timestep+1, 12)

# generate spot curve
spot_curve = ql.FlatForward(

todays_date,
ql.QuoteHandle(ql.SimpleQuote(forward_rate)), day_count

)
spot_curve_handle = ql.YieldTermStructureHandle(spot_curve)

#initialize plots
figure, axis = utils.plot()
plots = []
zero_price_theory = np.array([spot_curve.discount(j*float(length)/float(timestep))

for j in avg_grid_array])
for a in a_array:

term, zero_price_empirical = generate_paths_zero_price(
spot_curve_handle, a, sigma, timestep, length, num_paths,
avg_grid_array

)
plots += axis.plot(

term,np.abs(zero_price_theory - np.array(zero_price_empirical)),
lw=2, alpha=0.6,
label="$a=%.2f$"%a

)

# plot legend
labels = [p.get_label() for p in plots]
legend =axis.legend(plots,labels, loc=0)
axis.set_xlabel("T (years)", size=12)
axis.set_ylabel("|$\epsilon(T)$|", size=12)
axis.set_title("Discount Factor Error for $\sigma$=%0.2f and Varying $a$"%sigma,

size=14);
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The above plot illustrates that for a = 0.1 the convergence of Monte Carlo is poor, and it gradually
improves as a increases more than σ.

From the plots above, we observe that the convergence is good if the ratio σ/a < 1, and the
convergence deteriorates as the ratio σ/a increases above unity. Now, let us try to formalize this
observation from the theoretical footing of the Hull-White model.
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Distribution of Discount Factors

The Monte Carlo approach estimates the market discount factor as the expectation of discount
factors from each Monte Carlo path. If distribution of discount factors has a standard deviation
σD, then the error in our estimate of PMC(t, T ) on using N paths will be of the order of:

ϵ(t, T ) ≈ σD√
(N)

.

In other words, there are two factors at play in ourMonte Carlo estimate, the number of Monte Carlo
pathsN and the standard deviation of the distribution of discount factors σ. Using moreMonte Carlo
paths will lead to improved convergence. But at the same time, the σD has to be relatively small for
us to get a good estimate.

The integral of short rates can be shown to be normally distributed (refer Brigo-Mercurio, second
edition page 75), and is given as

∫ T

t

r(u)du|Ft ∼ N
(
B(t, T )[r(t)− α(t)] + ln PM (0, t)

PM (0, T )
+

1

2
[V (0, T )− V (0, t)], V (t, T )

)
where,

B(t, T ) =
1

a

[
1− e−a(T−t)

]
(16..1)

V (t, T ) =
σ2

a2

[
T − t+

2

a
e−a(T−t) − 1

2a
e−2a(T−t) − 3

2a

]
(16..2)

Based on this result, the discount factor from the Monte Carlo simulation of short rates

PMC(t, T ) = exp

(
−
∫ T

t

r(u)du|Ft

)

will have a log-normal distribution with a standard deviation

σD(t, T ) = PM (t, T )
√
eV (t,T ) − 1

This result follows from the fact that if X is a random process with a normal distribution having
mean µ and standard deviation σ, then log-normal distribution³ Y = eX will satisfy:

³http://en.wikipedia.org/wiki/Log-normal_distribution

http://en.wikipedia.org/wiki/Log-normal_distribution
http://en.wikipedia.org/wiki/Log-normal_distribution
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E(Y ) = eµ+σ2/2 (16..3)

V ar(Y ) = (eσ
2

− 1)E(Y )2 (16..4)

In [7]: #define constants
num_paths = 500
sigma = 0.02
a = 0.1
timestep = 180
length = 15 # in years
forward_rate = 0.05
day_count = ql.Thirty360()
avg_grid_array = np.arange(1, timestep+1, 12)

# generate spot curve
spot_curve = ql.FlatForward(

todays_date,
ql.QuoteHandle(ql.SimpleQuote(forward_rate)), day_count

)
spot_curve_handle = ql.YieldTermStructureHandle(spot_curve)

term, discount_factor_matrix = generate_paths_discount_factors(
spot_curve_handle, a, sigma, timestep, length, num_paths,
avg_grid_array

)

fig, axis = utils.plot()

vol = [np.var(discount_factor_matrix[:, i]) for i in range(len(term))]
l1 = axis.plot(term, 100*np.sqrt(vol),"-", lw=2, alpha=0.6,label="Empirical")
vol_theory = [100*np.sqrt(math.exp(V(0,T,a, sigma))-1.0) *

spot_curve_handle.discount(T) for T in term]
l2 = axis.plot(term, vol_theory,"--", lw=2, alpha=0.6,label="Theory")

plots = l1+l2
labels = [p.get_label() for p in plots]
legend =plt.legend(plots,labels, loc=0)
axis.set_xlabel("Time (Years)", size=12)
axis.set_ylabel("$\sigma_D(0,T)$ (%)", size=12)
axis.set_title("Standard Deviation of Discount Factors "

"(a=%0.2f, $\sigma$=%0.2f)"%(a, sigma), size=14);
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The plot above compares the standard deviation of the discount factors σD from the closed form
expression with a Monte Carlo estimate. The empirical estimate is in agreement with the theoretical
expectation. We can estimate the value of σD for the asymptotic limit of T → ∞:

σD(0, T ) ≈ PM (0, T )ef
M (0,T )/a−σ2/(4a3)

√
eσ2T/a2 − 1

The exponential term, eσ2T/a2 , can become very large when σ2T/a2 grows above 1. Thus we can
expect good convergence when σ2T/a2 remains small or close to zero for the time T of interest to
us.

The above result suggests that if the parameters σ and a are not chosen carefully, (i.e. σ/a > 1) then
the convergence of the simulation would be poor and the results untrustworthy.



17. Short interest rate model calibration
In the earlier chapters, we have discussed simulating Hull-White model. That exercise gave a primer
on how to use the model classes. There the model parameters were assumed to be given. However
in practice, the model parameters need to calibrated from market data. Typically instruments such
as swaptions, caps or floors and their market prices / volatilities are taken as inputs. Then the model
parameters are fit in such a way that the model prices for these options are close enough. The
goodness of fit depends, apart from the choice of the numerical methods, on the type of model itself.
This is because models such as Hull-White 1 factor cannot fit some of the humped volatility term
structures observed in the market. Never the less, Hull-White is usually a good starting point to
understand calibration process.

Here we will discuss Hull-White model in detail. Then we will also show how the same procedure
can be applied to calibrate other short rate models. We will assume the quotes to be at-the-money
(ATM) log-normal volatilities. In the later section, we will extend to normal volatilities.

In [1]: from QuantLib import *
from collections import namedtuple
import math
from pandas import DataFrame

Hull-White 1-Factor Model

Hull-White model was one of the first practical exogenous models that attempted to fit to the market
interest rate term structures. The model is described as:

drt = (θ(t)− art)dt+ σdWt

where a is the mean reversion constant, σ is the volatility parameter. The parameter θ(t) is chosen
in order to fit the input term structure of interest rates.

What is the “right” value for parameters a and σ? This is the question that we address by calibrating
to market instruments.
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In [2]: today = Date(15, February, 2002);
settlement= Date(19, February, 2002);
Settings.instance().evaluationDate = today;
term_structure = YieldTermStructureHandle(

FlatForward(settlement,0.04875825,Actual365Fixed())
)

index = Euribor1Y(term_structure)

In this example we are going to calibrate given the starting tenor, months to maturity, and the
swaption volatilities as shown below.

In [3]: CalibrationData = namedtuple("CalibrationData",
"start, length, volatility")

data = [CalibrationData(1, 5, 0.1148),
CalibrationData(2, 4, 0.1108),
CalibrationData(3, 3, 0.1070),
CalibrationData(4, 2, 0.1021),
CalibrationData(5, 1, 0.1000 )]

In order to make the code succinct in the various examples, we will create two functions. Function
create_swaption_helpers takes all the swaption data, the index such as Euribor1Y, the term
structure and the pricing engine, and returns a list of SwaptionHelper objects. The calibration_-
report evaluates the calibration by comparing the model price and implied volatilities with the
Black price and market volatilities.

In [4]: def create_swaption_helpers(data, index, term_structure, engine):
swaptions = []
fixed_leg_tenor = Period(1, Years)
fixed_leg_daycounter = Actual360()
floating_leg_daycounter = Actual360()
for d in data:

vol_handle = QuoteHandle(SimpleQuote(d.volatility))
helper = SwaptionHelper(Period(d.start, Years),

Period(d.length, Years),
vol_handle,
index,
fixed_leg_tenor,
fixed_leg_daycounter,
floating_leg_daycounter,
term_structure
)

helper.setPricingEngine(engine)
swaptions.append(helper)

return swaptions
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def calibration_report(swaptions, data):
columns = ["Model Price", "Market Price", "Implied Vol", "Market Vol",

"Rel Error Price", "Rel Error Vols"]
report_data = []
cum_err = 0.0
cum_err2 = 0.0
for i, s in enumerate(swaptions):

model_price = s.modelValue()
market_vol = data[i].volatility
black_price = s.blackPrice(market_vol)
rel_error = model_price/black_price - 1.0
implied_vol = s.impliedVolatility(model_price,

1e-5, 50, 0.0, 0.50)
rel_error2 = implied_vol/market_vol-1.0
cum_err += rel_error*rel_error
cum_err2 += rel_error2*rel_error2

report_data.append((model_price, black_price, implied_vol,
market_vol, rel_error, rel_error2))

print("Cumulative Error Price: %7.5f" % math.sqrt(cum_err))
print("Cumulative Error Vols : %7.5f" % math.sqrt(cum_err2))
return DataFrame(report_data,columns= columns, index=['']*len(report_data))

Calibrating Reversion and Volaitility

Here we use the JamshidianSwaptionEngine to value the swaptions as part of calibration. The
JamshidianSwaptionEngine requires one-factor affine models as input. For other interest rate
models, we need a pricing engine that is more suited to those models.

In [5]: model = HullWhite(term_structure);
engine = JamshidianSwaptionEngine(model)
swaptions = create_swaption_helpers(data, index, term_structure, engine)

optimization_method = LevenbergMarquardt(1.0e-8,1.0e-8,1.0e-8)
end_criteria = EndCriteria(10000, 100, 1e-6, 1e-8, 1e-8)
model.calibrate(swaptions, optimization_method, end_criteria)

a, sigma = model.params()
print("a = %6.5f, sigma = %6.5f" % (a, sigma))

Out[5]: a = 0.04642, sigma = 0.00580

In [6]: calibration_report(swaptions, data)

Out[6]: Cumulative Error Price: 0.11583
Cumulative Error Vols : 0.11614
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Out[6]:

Model Price Market Price Implied Vol Market Vol Rel Error Price Rel Error Vols

0.008775 0.009485 0.106198 0.1148 -0.074854 -0.074928
0.009669 0.010078 0.106292 0.1108 -0.040610 -0.040688
0.008663 0.008716 0.106343 0.1070 -0.006138 -0.006138
0.006490 0.006226 0.106442 0.1021 0.042367 0.042525
0.003542 0.003323 0.106612 0.1000 0.065817 0.066122

Calibrating Volatility With Fixed Reversion

There are times when we need to calibrate with one parameter held fixed. QuantLib allows you to
perform calibration with constraints. However, this ability is not exposed in the SWIG wrappers as
of version 1.6. I have created a github issue¹ and provided a patch to address this issue. This patch
has been merged into QuantLib-SWIG version 1.7. If you are using version lower than 1.7, you will
need this patch to execute the following cells. Below, the model is calibrated with a fixed reversion
value of 5%.

The following code is similar to the Hull-White calibration, except we initialize the constrained
model with given values. In the calibrate method, we provide a list of boolean with constraints
[True, False], meaning that the first parameter a is constrained where as the second sigma is
not constrained.

In [7]: constrained_model = HullWhite(term_structure, 0.05, 0.001);
engine = JamshidianSwaptionEngine(constrained_model)
swaptions = create_swaption_helpers(data, index, term_structure, engine)

optimization_method = LevenbergMarquardt(1.0e-8,1.0e-8,1.0e-8)
end_criteria = EndCriteria(10000, 100, 1e-6, 1e-8, 1e-8)
constrained_model.calibrate(swaptions, optimization_method,

end_criteria, NoConstraint(),
[], [True, False])

a, sigma = constrained_model.params()
print("a = %6.5f, sigma = %6.5f" % (a, sigma))

Out[7]: a = 0.05000, sigma = 0.00586

In [8]: calibration_report(swaptions, data)

Out[8]: Cumulative Error Price: 0.11584
Cumulative Error Vols : 0.11615

Out[8]:

¹https://github.com/lballabio/quantlib-old/issues/336

https://github.com/lballabio/quantlib-old/issues/336
https://github.com/lballabio/quantlib-old/issues/336
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Model Price Market Price Implied Vol Market Vol Rel Error Price Rel Error Vols

0.008776 0.009485 0.106212 0.1148 -0.074738 -0.074812
0.009668 0.010078 0.106284 0.1108 -0.040682 -0.040761
0.008662 0.008716 0.106330 0.1070 -0.006261 -0.006261
0.006490 0.006226 0.106436 0.1021 0.042311 0.042469
0.003542 0.003323 0.106625 0.1000 0.065946 0.066252

Black Karasinski Model

The Black Karasinski model is described as:

d ln(rt) = (θt − a ln(rt))dt+ σdWt

Black-Karasinski is not an affine model, and hence we cannot use the JamshidianSwaptionEngine.
In order to calibrate, we use the TreeSwaptionEngine which will work with all short rate models.
The calibration procedure is shown below.

In [9]: model = BlackKarasinski(term_structure);
engine = TreeSwaptionEngine(model, 100)
swaptions = create_swaption_helpers(data, index, term_structure, engine)

optimization_method = LevenbergMarquardt(1.0e-8,1.0e-8,1.0e-8)
end_criteria = EndCriteria(10000, 100, 1e-6, 1e-8, 1e-8)
model.calibrate(swaptions, optimization_method, end_criteria)

a, sigma = model.params()
print("a = %6.5f, sigma = %6.5f" % (a, sigma))

Out[9]: a = 0.03902, sigma = 0.11695

In [10]: calibration_report(swaptions, data)

Out[10]: Cumulative Error Price: 0.12132
Cumulative Error Vols : 0.12163

Out[10]:

Model Price Market Price Implied Vol Market Vol Rel Error Price Rel Error Vols

0.008717 0.009485 0.105497 0.1148 -0.080954 -0.081033
0.009670 0.010078 0.106309 0.1108 -0.040453 -0.040531
0.008679 0.008716 0.106540 0.1070 -0.004297 -0.004297
0.006503 0.006226 0.106656 0.1021 0.044457 0.044623
0.003547 0.003323 0.106765 0.1000 0.067333 0.067646
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G2++ Model

As a final example, let us look at a calibration example of the 2-factor G2++ model. drt = φ(t)+xt+yt

where xt and yt are defined by

dxt = −axtdt+ σdW 1
t (17..1)

dyt = −bytdt+ ηdW 2
t (17..2)⟨

dW 1
t dW

2
t

⟩
= ρdt (17..3)

Once again, we use the TreeSwaptionEngine to value the swaptions in the calibration step. One
can also use G2SwaptionEngine and FdG2SwaptionEngine. But the calibration times, and accuracy
can vary depending on the choice of parameters.

In [11]: model = G2(term_structure);
engine = TreeSwaptionEngine(model, 25)
# engine = ql.G2SwaptionEngine(model, 10, 400)
# engine = ql.FdG2SwaptionEngine(model)
swaptions = create_swaption_helpers(data, index, term_structure, engine)

optimization_method = LevenbergMarquardt(1.0e-8,1.0e-8,1.0e-8)
end_criteria = EndCriteria(1000, 100, 1e-6, 1e-8, 1e-8)
model.calibrate(swaptions, optimization_method, end_criteria)

a, sigma, b, eta, rho = model.params()
print("a = %6.5f, sigma = %6.5f, b = %6.5f, eta = %6.5f, rho = %6.5f " % \

(a, sigma, b, eta, rho))

Out[11]: a = 0.03942, sigma = 0.00473, b = 0.04720, eta = 0.00301, rho = 0.03865

In [12]: calibration_report(swaptions, data)

Out[12]: Cumulative Error Price: 0.12241
Cumulative Error Vols : 0.12272

Out[12]:

Model Price Market Price Implied Vol Market Vol Rel Error Price Rel Error Vols

0.008704 0.009485 0.105333 0.1148 -0.082383 -0.082464
0.009672 0.010078 0.106322 0.1108 -0.040334 -0.040412
0.008676 0.008716 0.106510 0.1070 -0.004583 -0.004583
0.006503 0.006226 0.106647 0.1021 0.044365 0.044531
0.003548 0.003323 0.106800 0.1000 0.067681 0.067996
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Calibrating to Normal Volatilities

In certain markets in Europe and Japan for instance have had negative interest rates in the recent
past for some of the tenors of the yield curve. The lognormal volatility quotes used above are
inconsistent with negative rates and it is generally a practice to quote normal volaitilities in this
case. The SwaptionHelperPtr used above with lognormal volatilities can be modified for normal
volatilities by setting the VolatilityType parameter.

The full C++ syntax for the SwaptionHelper object is as shown below:

SwaptionHelperPtr(const Date& exerciseDate, const Period& length,
const Handle<Quote>& volatility,
const IborIndexPtr& index,
const Period& fixedLegTenor,
const DayCounter& fixedLegDayCounter,
const DayCounter& floatingLegDayCounter,
const Handle<YieldTermStructure>& termStructure,
CalibrationHelper::CalibrationErrorType errorType

= CalibrationHelper::RelativePriceError,
const Real strike = Null<Real>(),
const Real nominal = 1.0,
const VolatilityType type = ShiftedLognormal,
const Real shift = 0.0)

In the above examples, we did not pass any of the optional arguments for errorType, strike,
nominal and type specifying the VolatilityType. One can set the optional type parameter to
change from log-normal volatilities to normal volatilities.

A function to create swaption helpers with normal volatilities is shown below:

In [13]: def create_swaption_helpers_normal(data, index, term_structure, engine):
swaptions = []
fixed_leg_tenor = Period(1, Years)
fixed_leg_daycounter = Actual360()
floating_leg_daycounter = Actual360()
for d in data:

vol_handle = QuoteHandle(SimpleQuote(d.volatility))
helper= SwaptionHelper(Period(d.start, Years),

Period(d.length, Years),
vol_handle,
index,
fixed_leg_tenor,
fixed_leg_daycounter,
floating_leg_daycounter,
term_structure,
CalibrationHelper.RelativePriceError,
nullDouble(),
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1.0,
Normal
)

helper.setPricingEngine(engine)
swaptions.append(helper)

return swaptions

Now, we can call the create_swaption_helpers_normal instead to constructions swaptions with
normal volatilities and pass it to the calibration routine to determine the model parameters.

In [14]: model = HullWhite(term_structure);
engine = JamshidianSwaptionEngine(model)
swaptions = create_swaption_helpers_normal(data, index, term_structure, engine)

optimization_method = LevenbergMarquardt(1.0e-8,1.0e-8,1.0e-8)
end_criteria = EndCriteria(10000, 100, 1e-6, 1e-8, 1e-8)
model.calibrate(swaptions, optimization_method, end_criteria)

a, sigma = model.params()
print("a = %6.5f, sigma = %6.5f" % (a, sigma))

Out[14]: a = 0.04595, sigma = 0.11868

Conclusion

In this chapter, we saw some simple examples of calibrating the interest rate models to the swaption
volatilities. We looked at setting up different interest rate models and discussed both lognormal and
normal volatilities.



18. Par versus indexed coupons
(Based on a question asked by KK¹ on the QuantLib mailing list. Thanks!)

In [1]: from QuantLib import *
import pandas as pd

today = Date(7,January,2013)
Settings.instance().evaluationDate = today

The statement of the case

User KK was pricing an interest-rate swap. In the interest of brevity, I’ll skip the part where he
bootstrapped a LIBOR curve (there are other notebooks showing that in detail) and instantiate the
resulting curve directly from the resulting forward rates.

In [2]: dates, forwards = zip(*[(Date(7,1,2013), 0.03613672438543303),
(Date(8,4,2013), 0.03613672438543303),
(Date(8,7,2013), 0.033849133719219514),
(Date(7,1,2014), 0.03573931373272106),
(Date(7,7,2014), 0.03445303757052511)])

libor_curve = ForwardCurve(dates, forwards, Actual365Fixed())

Here is the floating leg of the swap; we don’t need to care about the fixed leg.

In [3]: index = GBPLibor(Period(6,Months),
YieldTermStructureHandle(libor_curve))

calendar = index.fixingCalendar()
nominal = 1000000
length = 1
maturity = calendar.advance(today,length,Years)
adjustment = index.businessDayConvention()

schedule = Schedule(today, maturity,
index.tenor(), calendar,
adjustment, adjustment,
DateGeneration.Backward, False)

floating_leg = IborLeg([nominal], schedule,
index, index.dayCounter())

¹https://sourceforge.net/p/quantlib/mailman/message/32902476/

https://sourceforge.net/p/quantlib/mailman/message/32902476/
https://sourceforge.net/p/quantlib/mailman/message/32902476/
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Next, KK set out to do some cash-flow analysis. He reproduced the coupon amounts by multiplying
the LIBOR fixing, the notional, and the accrual period; the actual code was different, but the
calculations are the same I’m doing here:

In [4]: df = pd.DataFrame()

dates = list(schedule)
df['fixing date'] = dates[:-1]
df['index fixing'] = [ index.fixing(d) for d in df['fixing date'] ]
df['start date'] = dates[:-1]
df['end date'] = dates[1:]
df['days'] = df['end date'] - df['start date']
df['accrual period'] = df['days']/365

df['amount'] = df['index fixing'] * nominal * df['accrual period']

df

Out[4]:

fixing date index fixing start date end date days accrual
period

amount

0 January 7th,
2013

0.035300 January 7th,
2013

July 8th, 2013 182 0.49863 17601.6

1 July 8th, 2013 0.036056 July 8th, 2013 January 7th,
2014

183 0.50137 18077.4

Unfortunately, the results for the second coupon don’t agree with what the library says:

In [5]: df2 = pd.DataFrame({'amount': [ c.amount() for c in floating_leg ],
'rate': [ as_coupon(c).rate() for c in floating_leg ]})

df2

Out[5]:

amount rate

0 17601.643836 0.035300
1 18080.116395 0.036061

The difference (in the rate, and thus the amount) is small but well above the expected precision for
the calculations.
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Where’s the problem?

Let’s go through the calculations again. The second coupon fixes on the expected date, and the
forecast for the fixing is the same KK obtained.

In [6]: coupon = as_floating_rate_coupon(floating_leg[1])

print(coupon.fixingDate())
print(index.fixing(coupon.fixingDate()))

Out[6]: July 8th, 2013
0.036056087457623655

The fixing is also consistent with what we can forecast from the LIBOR curve, given the start and
end date of the underlying tenor:

In [7]: startDate = index.valueDate(coupon.fixingDate())
endDate = index.maturityDate(startDate)
print(startDate)
print(endDate)

Out[7]: July 8th, 2013
January 8th, 2014

In [8]: print(libor_curve.forwardRate(startDate, endDate,
coupon.dayCounter(), Simple))

Out[8]: 3.605609 % Actual/365 (Fixed) simple compounding

The above is, in fact, the calculation performed in the index.fixing method.

Why does the coupon return a different rate, then?

The problem is that, for historical reasons, the coupon is calculated at par; that is, the floating rate
is calculated over the duration of the coupon. Due to the constraints of the schedule, the end of the
coupon doesn’t correspond to the end of the LIBOR tenor…

In [9]: couponStart = coupon.accrualStartDate()
couponEnd = coupon.accrualEndDate()
print(couponStart)
print(couponEnd)

Out[9]: July 8th, 2013
January 7th, 2014

…and therefore, the calculated rate is different:
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In [10]: print(libor_curve.forwardRate(couponStart, couponEnd,
coupon.dayCounter(), Simple))

Out[10]: 3.606143 % Actual/365 (Fixed) simple compounding

The coupon amount is consistent with the rate above…

In [11]: coupon.rate()

Out[11]: 0.0360614343399347

…and so is the amount:

In [12]: coupon.rate() * nominal * coupon.accrualPeriod()

Out[12]: 18080.116395090554

In [13]: coupon.amount()

Out[13]: 18080.11639509055

Was it a good idea to use par coupons? Hard to say. They are used in textbook examples, which one
might want to reproduce.

In any case, I’ve heard arguments against both calculations. The one against using the forecast index
fixing goes that the rate would be accrued over a period which is different from the one over which
it was calculated, and thus it will require a small convexity adjustment. Personally, the argument
failed to persuade me, since with par coupons we’re using the wrong rate over the right period and
therefore we’re introducing an error anyway; I doubt that it’s smaller than the missing convexity
adjustment. Moreover, the value of the swap is going to jump as soon as the coupon rate is actually
fixed, forcing an adjustment of the P&L.

The good news is that you can choose which one to use: there’s a configuration flag for the library
that allows you to use the forecast of the fixing. The bad news is that this requires the recompilation
of both the C++ library and the Python module. It would be better if the choice could be made at
run-time; I describe the details in Implementing QuantLib², including a few glitches that this might
cause. For the time being, you’ll have to make do.

²https://leanpub.com/implementingquantlib/

https://leanpub.com/implementingquantlib/
https://leanpub.com/implementingquantlib/


19. Modeling interest rate swaps using
QuantLib

An interest rate swap is a financial derivative instrument in which two parties agree to exchange
interest rate cash flows based on a notional amount from a fixed rate to a floating rate or from one
floating rate to another floating rate.

Here we will consider an example of a plain vanilla USD swap with 10 million notional and 10
year maturity. Let the fixed leg pay 2.5% coupon semiannually, and the floating leg pay Libor 3m
quarterly.

In [1]: from QuantLib import *
calculation_date = Date(20, 10, 2015)
Settings.instance().evaluationDate = calculation_date

Here we construct the yield curve objects. For simplicity, we will use flat curves for discounting
and Libor 3M. This will help us focus on the swap construction. Please refer to curve construction
example¹ for some details.

In [2]: # construct discount curve and libor curve

risk_free_rate = 0.01
libor_rate = 0.02
day_count = Actual365Fixed()

discount_curve = YieldTermStructureHandle(
FlatForward(calculation_date, risk_free_rate, day_count)

)

libor_curve = YieldTermStructureHandle(
FlatForward(calculation_date, libor_rate, day_count)

)
#libor3M_index = ql.Euribor3M(libor_curve)
libor3M_index = USDLibor(Period(3, Months), libor_curve)

To construct the swap, we have to specify the fixed rate leg and floating rate leg. We construct the
fixed rate and floating rate leg schedules below.

¹http://gouthamanbalaraman.com/blog/quantlib-term-structure-bootstrap-yield-curve.html

http://gouthamanbalaraman.com/blog/quantlib-term-structure-bootstrap-yield-curve.html
http://gouthamanbalaraman.com/blog/quantlib-term-structure-bootstrap-yield-curve.html
http://gouthamanbalaraman.com/blog/quantlib-term-structure-bootstrap-yield-curve.html
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In [3]: calendar = UnitedStates()
settle_date = calendar.advance(calculation_date, 5, Days)
maturity_date = calendar.advance(settle_date, 10, Years)

fixed_leg_tenor = Period(6, Months)
fixed_schedule = Schedule(settle_date, maturity_date,

fixed_leg_tenor, calendar,
ModifiedFollowing, ModifiedFollowing,
DateGeneration.Forward, False)

float_leg_tenor = Period(3, Months)
float_schedule = Schedule(settle_date, maturity_date,

float_leg_tenor, calendar,
ModifiedFollowing, ModifiedFollowing,
DateGeneration.Forward, False)

Below, we construct a VanillaSwap object by including the fixed and float leg schedules created
above.

In [4]: notional = 10000000
fixed_rate = 0.025
fixed_leg_daycount = Actual360()
float_spread = 0.004
float_leg_daycount = Actual360()

ir_swap = VanillaSwap(VanillaSwap.Payer, notional, fixed_schedule,
fixed_rate, fixed_leg_daycount, float_schedule,
libor3M_index, float_spread, float_leg_daycount )

We evaluate the swap using a discounting engine.

In [5]: swap_engine = DiscountingSwapEngine(discount_curve)
ir_swap.setPricingEngine(swap_engine)

Result Analysis

The cash flows for the fixed and floating leg can be extracted from the ir_swap object. The fixed
leg cash flows are shown below:
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In [6]: from pandas import DataFrame
DataFrame(

[(cf.date(), cf.amount()) for cf in ir_swap.leg(0)],
columns=["Date", "Amount"],
index=range(1, len(ir_swap.leg(0))+1))

Out[6]:

Date Amount

1 April 27th, 2016 127083.333333
2 October 27th, 2016 127083.333333
3 April 27th, 2017 126388.888889
4 October 27th, 2017 127083.333333
5 April 27th, 2018 126388.888889
6 October 29th, 2018 128472.222222
7 April 29th, 2019 126388.888889
8 October 28th, 2019 126388.888889
9 April 27th, 2020 126388.888889
10 October 27th, 2020 127083.333333
11 April 27th, 2021 126388.888889
12 October 27th, 2021 127083.333333
13 April 27th, 2022 126388.888889
14 October 27th, 2022 127083.333333
15 April 27th, 2023 126388.888889
16 October 27th, 2023 127083.333333
17 April 29th, 2024 128472.222222
18 October 28th, 2024 126388.888889
19 April 28th, 2025 126388.888889
20 October 27th, 2025 126388.888889

The floating leg cash flows are shown below:

In [7]: from pandas import DataFrame
DataFrame(

[(cf.date(), cf.amount()) for cf in ir_swap.leg(1)],
columns=["Date", "Amount"],
index=range(1, len(ir_swap.leg(1))+1))

Out[7]:
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Date Amount

1 January 27th, 2016 60760.458147
2 April 27th, 2016 60098.647700
3 July 27th, 2016 60098.647700
4 October 27th, 2016 60760.458147
5 January 27th, 2017 60760.458147
6 April 27th, 2017 59436.867427
7 July 27th, 2017 60098.647700
8 October 27th, 2017 60760.458147
9 January 29th, 2018 62084.169572
10 April 27th, 2018 58113.397399
11 July 27th, 2018 60098.647700
12 October 29th, 2018 62084.169572
13 January 28th, 2019 60098.647700
14 April 29th, 2019 60098.647700
15 July 29th, 2019 60098.647700
16 October 28th, 2019 60098.647700
17 January 27th, 2020 60098.647700
18 April 27th, 2020 60098.647700
19 July 27th, 2020 60098.647700
20 October 27th, 2020 60760.458147
21 January 27th, 2021 60760.458147
22 April 27th, 2021 59436.867427
23 July 27th, 2021 60098.647700
24 October 27th, 2021 60760.458147
25 January 27th, 2022 60760.458147
26 April 27th, 2022 59436.867427
27 July 27th, 2022 60098.647700
28 October 27th, 2022 60760.458147
29 January 27th, 2023 60760.458147
30 April 27th, 2023 59436.867427
31 July 27th, 2023 60098.647700
32 October 27th, 2023 60760.458147
33 January 29th, 2024 62084.169572
34 April 29th, 2024 60098.647700
35 July 29th, 2024 60098.647700
36 October 28th, 2024 60098.647700
37 January 27th, 2025 60098.647700
38 April 28th, 2025 60098.647700
39 July 28th, 2025 60098.647700
40 October 27th, 2025 60098.647700

Some other analytics such as the fair value, fair spread etc can be extracted as shown below.
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In [8]: print("%-20s: %20.3f" % ("Net Present Value", ir_swap.NPV()))
print("%-20s: %20.3f" % ("Fair Spread", ir_swap.fairSpread()))
print("%-20s: %20.3f" % ("Fair Rate", ir_swap.fairRate()))
print("%-20s: %20.3f" % ("Fixed Leg BPS", ir_swap.fixedLegBPS()))
print("%-20s: %20.3f" % ("Floating Leg BPS", ir_swap.floatingLegBPS()))

Out[8]: Net Present Value : -115054.034
Fair Spread : 0.005
Fair Rate : 0.024
Fixed Leg BPS : -9629.981
Floating Leg BPS : 9642.042

Conclusion

Here we saw a simple example on how to construct a swap and value them. We evaluated the fixed
and floating legs and then valued the VanillaSwap using the DiscountingSwapEngine.



20. Caps and floors
In this post, I will walk you through a simple example of valuing caps. I want to talk about two
specific cases:

1. Value caps given a constant volatility
2. Value caps given a cap volatility surface

Caps, as you might know, can be valued as a sum of caplets. The value of each caplet is determined
by the Black formula. In practice, each caplet would have a different volatility. Meaning, a caplet
that is in the near term can have a different volatility profile compared to the caplet that is far away
in tenor. Similarly caplet volatilities differ with the strike as well.

In [1]: from QuantLib import *

In [2]: calc_date = Date(14, 6, 2016)
Settings.instance().evaluationDate = calc_date

Constant Volatility

Let us start by constructing different components required in valuing the caps. The components that
we would need are:

1. interest rate term structure for discounting
2. interest rate term structure for the floating leg
3. construction of the cap
4. the pricing engine to value caps using the Black formula

For simplicity, we will construct only one interest rate term structure here, and assume that the
discounting and the floating leg is referenced by the same. Below the term structure of interest rates
is constructed from a set of zero rates.
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In [3]: dates = [Date(14,6,2016), Date(14,9,2016),
Date(14,12,2016), Date(14,6,2017),
Date(14,6,2019), Date(14,6,2021),
Date(15,6,2026), Date(16,6,2031),
Date(16,6,2036), Date(14,6,2046)
]

yields = [0.000000, 0.006616, 0.007049, 0.007795,
0.009599, 0.011203, 0.015068, 0.017583,
0.018998, 0.020080]

day_count = ActualActual()
calendar = UnitedStates()
interpolation = Linear()
compounding = Compounded
compounding_frequency = Annual

term_structure = ZeroCurve(dates, yields, day_count,
calendar, interpolation,
compounding, compounding_frequency)

ts_handle = YieldTermStructureHandle(term_structure)

As a next step, lets construct the cap itself. In order to do that, we start by constructing the Schedule
object to project the cash-flow dates.

In [4]: start_date = Date(14, 6, 2016)
end_date = Date(14, 6 , 2026)
period = Period(3, Months)
calendar = UnitedStates()
buss_convention = ModifiedFollowing
rule = DateGeneration.Forward
end_of_month = False

schedule = Schedule(start_date, end_date, period,
calendar, buss_convention,
buss_convention, rule, end_of_month)

Now that we have the schedule, we construct the USDLibor index. Below, you can see that I use
addFixing method to provide a fixing date for June 10, 2016. According the schedule constructed,
the start date of the cap is June 14, 2016, and there is a 2 business day settlement lag (meaning June
10 reference date) embedded in the USDLibor definition. So in order to set the rate for the accrual
period, the rate is obtained from the fixing data provided. For all future dates, the libor rates are
automatically inferred using the forward rates provided by the given interest rate term structure.
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In [5]: ibor_index = USDLibor(Period(3, Months), ts_handle)
ibor_index.addFixing(Date(10,6,2016), 0.0065560)

ibor_leg = IborLeg([1000000], schedule, ibor_index)

Now that we have all the required pieces, the Cap can be constructed by passing the ibor_leg
and the strike information. Constructing a floor is done through the Floor class. The Black-
CapFloorEngine can be used to price the cap with constant volatility as shown below.

In [6]: strike = 0.02
cap = Cap(ibor_leg, [strike])

vols = QuoteHandle(SimpleQuote(0.547295))
engine = BlackCapFloorEngine(ts_handle, vols)

cap.setPricingEngine(engine)
print(cap.NPV())

Out[6]: 54369.85806286924

Using Volatility Surfaces

In the above exercise, we used a constant volatility value. In practice, one needs to strip the market
quoted cap/floor volatilities to infer the volatility of each caplet. QuantLib provides excellent tools in
order to do that. Let us assume the following dummy data represents the volatility surface quoted by
the market. I have the various strikes, expiries, and the volatility quotes in percentage format.
I take the raw data and create a Matrix in order to construct the volatility surface.

In [7]: strikes = [0.01,0.015, 0.02]
temp = list(range(1, 11)) + [12]
expiries = [Period(i, Years) for i in temp]
vols = Matrix(len(expiries), len(strikes))
data = [[47.27, 55.47, 64.07, 70.14, 72.13, 69.41, 72.15, 67.28, 66.08, 68.64, 65.83],

[46.65,54.15,61.47,65.53,66.28,62.83,64.42,60.05,58.71,60.35,55.91],
[46.6,52.65,59.32,62.05,62.0,58.09,59.03,55.0,53.59,54.74,49.54]
]

for i in range(vols.rows()):
for j in range(vols.columns()):

vols[i][j] = data[j][i]/100.0

The CapFloorTermVolSurface offers a way to store the cap/floor volatilities. These are however
CapFloor volatilities, and not the volatilities of the individual options.
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In [8]: calendar = UnitedStates()
bdc = ModifiedFollowing
daycount = Actual365Fixed()
settlement_days = 2
capfloor_vol = CapFloorTermVolSurface(

settlement_days, calendar, bdc,
expiries, strikes, vols, daycount

)

The OptionletStripper1 class lets you to strip the individual caplet/floorlet volatilities from
the cap/floor volatilities. We have to ‘jump’ some hoops here to make it useful for pricing. The
OptionletStripper1 class cannot be consumed directly by a pricing engine. The StrippedOp-
tionletAdapter takes the stripped optionlet volatilities, and creates a term structure of optionlet
volatilities. We then wrap that into a handle using OptionletVolatilityStructureHandle.

In [9]: optionlet_surf = OptionletStripper1(capfloor_vol, ibor_index, nullDouble(),
1e-6, 100, ts_handle)

ovs_handle = OptionletVolatilityStructureHandle(
StrippedOptionletAdapter(optionlet_surf)

)

Below, we visualize the cap/floor volatility surface, and the optionlet volatility surface for a fixed
strike.

In [10]: import utils
import numpy as np
%matplotlib inline

In [11]: tenors = np.arange(0,10,0.25)
strike = 0.01
capfloor_vols = [capfloor_vol.volatility(t, strike) for t in tenors]
opionlet_vols = [ovs_handle.volatility(t, strike) for t in tenors]

fig, ax = utils.plot()
ax.plot(tenors, capfloor_vols, "--", label="CapFloor Vols")
ax.plot(tenors, opionlet_vols,"-", label="Optionlet Vols")
ax.legend(loc='best')
ax.set_xlabel("Tenors", size=14)
ax.set_ylabel("Volatility", size=14);
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The BlackCapFloorEngine can accept the optionlet volatility surface in order to price the caps or
floors.

In [12]: engine2 = BlackCapFloorEngine(ts_handle, ovs_handle)
cap.setPricingEngine(engine2)
print(cap.NPV())

Out[12]: 54384.928314950135

One can infer the implied volatility for the cap at its NPV, and it should be in agreement with what
is quote by the surface.

In [13]: cap.impliedVolatility(cap.NPV(), ts_handle, 0.4)

Out[13]: 0.5474438930928851

The QuantLib C++ class allow for one to view the projected cash flows in terms of individual caplets.
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21. Valuing European option using the
Heston model

Heston model can be used to value options by modeling the underlying asset such as the stock of a
company. The one major feature of the Heston model is that it inocrporates a stochastic volatility
term.

dSt = µStdt+
√

VtStdW
1
t (21..1)

dVt = κ(θ − Vt) + σ
√
VtdW

2
t (21..2)

Here :

• St is the asset’s value at time t

• µ is the expected growth rate of the log normal stock value
• Vt is the variance of the asset St

• W 1
t is the stochastic process governing the St process

• θ is the value of mean reversion for the variance Vt

• κ is the strength of mean reversion
• σ is the volatility of volatility
• W 2

t is the stochastic process governing the Vt process
• The correlation between W 1

t and W 2
t is ρ

In contrast, the Black-Scholes-Merton process assumes that the volatility is constant.

In [1]: from QuantLib import *
import matplotlib.pyplot as plt
import numpy as np
#from scipy.integrate import simps, cumtrapz, romb
% matplotlib inline
import math

Let us consider a European call option for AAPL with a strike price of 130 maturing on 15th Jan,
2016. Let the spot price be 127.62. The volatility of the underlying stock is know to be 20%, and has
a dividend yield of 1.63%. We assume a short term risk free rate of 0.1%. Lets value this option as of
8th May, 2015.



Valuing European option using the Heston model 175

In [2]: # option parameters
strike_price = 110.0
payoff = PlainVanillaPayoff(Option.Call, strike_price)

# option data
maturity_date = Date(15, 1, 2016)
spot_price = 127.62
strike_price = 130
volatility = 0.20 # the historical vols for a year
dividend_rate = 0.0163
option_type = Option.Call

risk_free_rate = 0.001
day_count = Actual365Fixed()
calendar = UnitedStates()

calculation_date = Date(8, 5, 2015)
Settings.instance().evaluationDate = calculation_date

Using the above inputs, we construct the European option as shown below.

In [3]: # construct the European Option
payoff = PlainVanillaPayoff(option_type, strike_price)
exercise = EuropeanExercise(maturity_date)
european_option = VanillaOption(payoff, exercise)

In order to price the option using the Heston model, we first create the Heston process. In order
to create the Heston process, we use the parameter values: mean reversion strength kappa = 0.1,
the spot variance v0 = volatility*volatility = 0.04, the mean reversion variance theta=v0,
volatility of volatility sigma = 0.1 and the correlation between the asset price and its variance is
rho = -0.75.

In [4]: # construct the Heston process

v0 = volatility*volatility # spot variance
kappa = 0.1
theta = v0
sigma = 0.1
rho = -0.75

spot_handle = QuoteHandle(
SimpleQuote(spot_price)

)
flat_ts = YieldTermStructureHandle(

FlatForward(calculation_date, risk_free_rate, day_count)
)
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dividend_yield = YieldTermStructureHandle(
FlatForward(calculation_date, dividend_rate, day_count)

)
heston_process = HestonProcess(flat_ts, dividend_yield,

spot_handle, v0, kappa,
theta, sigma, rho)

On valuing the option using the Heston model, we get the net present value as:

In [5]: engine = AnalyticHestonEngine(HestonModel(heston_process),0.01, 1000)
european_option.setPricingEngine(engine)
h_price = european_option.NPV()
print("The Heston model price is {0}".format(h_price))

Out[5]: The Heston model price is 6.533855481449102

Performing the same calculation using the Black-Scholes-Merton process, we get:

In [6]: flat_vol_ts = BlackVolTermStructureHandle(
BlackConstantVol(calculation_date, calendar,

volatility, day_count)
)
bsm_process = BlackScholesMertonProcess(spot_handle, dividend_yield,

flat_ts, flat_vol_ts)
european_option.setPricingEngine(AnalyticEuropeanEngine(bsm_process))
bs_price = european_option.NPV()
print("The Black-Scholes-Merton model price is {0}".format(bs_price))

Out[6]: The Black-Scholes-Merton model price is 6.749271812460607

The difference in the price between the two models is bs_price - h_price, or about 0.215. This
difference is due to the stochastic modeling of the volatility as a CIR-process.



22. Volatility smile and Heston model
calibration

European options on an equity underlying such as an index (S&P 500) or a stock (AMZN) trade for
different combinations of strikes and maturities. It turns out that the Black-Scholes implied volatility
for these options with different maturities and strikes is not the same. The fact that the implied
volatility varies with strike is often referred in the market as having a smile.

In [1]: from QuantLib import *
import math

First let us define some of the basic data conventions such as the day_count, calendar etc.

In [2]: day_count = Actual365Fixed()
calendar = UnitedStates()

calculation_date = Date(6, 11, 2015)

spot = 659.37
Settings.instance().evaluationDate = calculation_date

dividend_yield = QuoteHandle(SimpleQuote(0.0))
risk_free_rate = 0.01
dividend_rate = 0.0
flat_ts = YieldTermStructureHandle(

FlatForward(calculation_date, risk_free_rate, day_count))
dividend_ts = YieldTermStructureHandle(

FlatForward(calculation_date, dividend_rate, day_count))

Following is a sample matrix of volatility quote by expiry and strike. The volatilities are log-normal
volatilities and can be interpolated to construct the implied volatility surface.
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In [3]: expiration_dates = [Date(6,12,2015), Date(6,1,2016), Date(6,2,2016),
Date(6,3,2016), Date(6,4,2016), Date(6,5,2016),
Date(6,6,2016), Date(6,7,2016), Date(6,8,2016),
Date(6,9,2016), Date(6,10,2016), Date(6,11,2016),
Date(6,12,2016), Date(6,1,2017), Date(6,2,2017),
Date(6,3,2017), Date(6,4,2017), Date(6,5,2017),
Date(6,6,2017), Date(6,7,2017), Date(6,8,2017),
Date(6,9,2017), Date(6,10,2017), Date(6,11,2017)]

strikes = [527.50, 560.46, 593.43, 626.40, 659.37, 692.34, 725.31, 758.28]
data = [
[0.37819, 0.34177, 0.30394, 0.27832, 0.26453, 0.25916, 0.25941, 0.26127],
[0.3445, 0.31769, 0.2933, 0.27614, 0.26575, 0.25729, 0.25228, 0.25202],
[0.37419, 0.35372, 0.33729, 0.32492, 0.31601, 0.30883, 0.30036, 0.29568],
[0.37498, 0.35847, 0.34475, 0.33399, 0.32715, 0.31943, 0.31098, 0.30506],
[0.35941, 0.34516, 0.33296, 0.32275, 0.31867, 0.30969, 0.30239, 0.29631],
[0.35521, 0.34242, 0.33154, 0.3219, 0.31948, 0.31096, 0.30424, 0.2984],
[0.35442, 0.34267, 0.33288, 0.32374, 0.32245, 0.31474, 0.30838, 0.30283],
[0.35384, 0.34286, 0.33386, 0.32507, 0.3246, 0.31745, 0.31135, 0.306],
[0.35338, 0.343, 0.33464, 0.32614, 0.3263, 0.31961, 0.31371, 0.30852],
[0.35301, 0.34312, 0.33526, 0.32698, 0.32766, 0.32132, 0.31558, 0.31052],
[0.35272, 0.34322, 0.33574, 0.32765, 0.32873, 0.32267, 0.31705, 0.31209],
[0.35246, 0.3433, 0.33617, 0.32822, 0.32965, 0.32383, 0.31831, 0.31344],
[0.35226, 0.34336, 0.33651, 0.32869, 0.3304, 0.32477, 0.31934, 0.31453],
[0.35207, 0.34342, 0.33681, 0.32911, 0.33106, 0.32561, 0.32025, 0.3155],
[0.35171, 0.34327, 0.33679, 0.32931, 0.3319, 0.32665, 0.32139, 0.31675],
[0.35128, 0.343, 0.33658, 0.32937, 0.33276, 0.32769, 0.32255, 0.31802],
[0.35086, 0.34274, 0.33637, 0.32943, 0.3336, 0.32872, 0.32368, 0.31927],
[0.35049, 0.34252, 0.33618, 0.32948, 0.33432, 0.32959, 0.32465, 0.32034],
[0.35016, 0.34231, 0.33602, 0.32953, 0.33498, 0.3304, 0.32554, 0.32132],
[0.34986, 0.34213, 0.33587, 0.32957, 0.33556, 0.3311, 0.32631, 0.32217],
[0.34959, 0.34196, 0.33573, 0.32961, 0.3361, 0.33176, 0.32704, 0.32296],
[0.34934, 0.34181, 0.33561, 0.32964, 0.33658, 0.33235, 0.32769, 0.32368],
[0.34912, 0.34167, 0.3355, 0.32967, 0.33701, 0.33288, 0.32827, 0.32432],
[0.34891, 0.34154, 0.33539, 0.3297, 0.33742, 0.33337, 0.32881, 0.32492]]

Implied Volatility Surface

Each row in data is a different expiration time, and each column corresponds to various strikes
as given in strikes. We load all this data into the QuantLib Matrix object. This can then be used
seamlessly in the various surface construction routines. The variable implied_vols holds the above
data in a Matrix format. One unusual bit of info that one needs to pay attention to is the ordering of
the rows and columns in the Matrix object. The implied volatilities in the QuantLib context needs
to have strikes along the row dimension and expiries in the column dimension. This is transpose of
the way the data was constructed above. All of this detail is taken care by swapping the i and j
variables below. Pay attention to the line:
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implied_vols[i][j] = data[j][i]

in the cell below.

In [4]: implied_vols = Matrix(len(strikes), len(expiration_dates))
for i in range(implied_vols.rows()):

for j in range(implied_vols.columns()):
implied_vols[i][j] = data[j][i]

Now the Black volatility surface can be constructed using the BlackVarianceSurface method.

In [5]: black_var_surface = BlackVarianceSurface(
calculation_date, calendar,
expiration_dates, strikes,
implied_vols, day_count)

The volatilities for any given strike and expiry pair can be easily obtained using black_var_-
surface shown below.

In [6]: strike = 600.0
expiry = 1.2 # years
black_var_surface.blackVol(expiry, strike)

Out[6]: 0.3352982638587421
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Visualization

In [7]: import numpy as np
import utils
%matplotlib inline
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm

Given an expiry, we can visualize the volatility as a function of the strike.

In [8]: strikes_grid = np.arange(strikes[0], strikes[-1],10)
expiry = 1.0 # years
implied_vols = [black_var_surface.blackVol(expiry, s)

for s in strikes_grid] # can interpolate here
actual_data = data[11] # cherry picked the data for given expiry

fig, ax = utils.plot()
ax.plot(strikes_grid, implied_vols, label="Black Surface")
ax.plot(strikes, actual_data, "o", label="Actual")
ax.set_xlabel("Strikes", size=12)
ax.set_ylabel("Vols", size=12)
ax.legend(loc="upper right");
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The whole volatility surface can also be visualised as shown below.

In [9]: plot_years = np.arange(0, 2, 0.1)
plot_strikes = np.arange(535, 750, 1)
fig = plt.figure(figsize=utils.default_plot_size)
ax = fig.gca(projection='3d')
X, Y = np.meshgrid(plot_strikes, plot_years)
Z = np.array([black_var_surface.blackVol(float(y), float(x))

for xr, yr in zip(X, Y)
for x, y in zip(xr,yr) ]

).reshape(len(X), len(X[0]))

surf = ax.plot_surface(X,Y,Z, rstride=1, cstride=1, cmap=cm.coolwarm,
linewidth=0.1)

fig.colorbar(surf, shrink=0.5, aspect=5);
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One can also construct a local volatility surface (a la Dupire) using the LocalVolSurface. There
are some issues with this as shown below.

In [10]: local_vol_surface = LocalVolSurface(
BlackVolTermStructureHandle(black_var_surface),
flat_ts,
dividend_ts,
spot)

In [11]: plot_years = np.arange(0, 2, 0.1)
plot_strikes = np.arange(535, 750, 1)
fig = plt.figure(figsize=utils.default_plot_size)
ax = fig.gca(projection='3d')
X, Y = np.meshgrid(plot_strikes, plot_years)
Z = np.array([local_vol_surface.localVol(float(y), float(x))

for xr, yr in zip(X, Y)
for x, y in zip(xr,yr) ]

).reshape(len(X), len(X[0]))

surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm,
linewidth=0.1)

fig.colorbar(surf, shrink=0.5, aspect=5);
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The correct pricing of local volatility surface requires an arbitrage free implied volatility surface.
If the input implied volatility surface is not arbitrage free, this can lead to negative transition
probabilities and/or negative local volatilities and can give rise to mispricing. Refer to Fengler’s
arbitrage-free smoothing [1] which QuantLib currently lacks.

When you use an arbitrary smoothing, you will notice that the local volatility surface leads to
undesired negative volatilities. This can lead to errors as shown below.

In [12]: black_var_surface.setInterpolation("bicubic")
local_vol_surface = LocalVolSurface(

BlackVolTermStructureHandle(black_var_surface),
flat_ts,
dividend_ts,
spot)

plot_years = np.arange(0, 2, 0.15)
plot_strikes = np.arange(535, 750, 10)
X, Y = np.meshgrid(plot_strikes, plot_years)
Z = np.array([local_vol_surface.localVol(float(y), float(x))

for xr, yr in zip(X, Y)
for x, y in zip(xr,yr) ]

).reshape(len(X), len(X[0]))
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Out[12]: ---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-12-938d20361f8f> in <module>()

9 X, Y = np.meshgrid(plot_strikes, plot_years)
10 Z = np.array([local_vol_surface.localVol(float(y), float(x))

---> 11 for xr, yr in zip(X, Y)
12 for x, y in zip(xr,yr) ]
13 ).reshape(len(X), len(X[0]))

<ipython-input-12-938d20361f8f> in <listcomp>(.0)
10 Z = np.array([local_vol_surface.localVol(float(y), float(x))
11 for xr, yr in zip(X, Y)

---> 12 for x, y in zip(xr,yr) ]
13 ).reshape(len(X), len(X[0]))

/usr/local/lib/python3.6/dist-packages/QuantLib/QuantLib.py in localVol(self, *args)
8255
8256 def localVol(self, *args):

-> 8257 return _QuantLib.LocalVolTermStructure_localVol(self, *args)
8258
8259 def enableExtrapolation(self):

RuntimeError: negative local vol^2 at strike 655 and time 0.75; the black vol surface\
is not smooth enough

Heston Model Calibration

Heston model is defined by the following stochastic differential equations.

dS(t, S) = µSdt+
√
vSdW1 (22..1)

dv(t, S) = κ(θ − v)dt+ σ
√
vdW2 (22..2)

dW1dW2 = ρdt (22..3)

Here the asset is modeled as a stochastic process that depends on volatility v which is a mean
reverting stochastic process with a constant volatility of volatility σ. The two stochastic processes
have a correlation ρ.

Let us look at how we can calibrate the Heston model to some market quotes. As an example, let’s
say we are interested in trading options with 1 year maturity. So we will calibrate the Heston model
to fit to market volatility quotes with one year maturity. Before we do that, we need to construct the
pricing engine that the calibration routines would need. In order to do that, we start by constructing
the Heston model with some dummy starting parameters as shown below.
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In [13]: # dummy parameters
v0 = 0.01; kappa = 0.2; theta = 0.02; rho = -0.75; sigma = 0.5;

process = HestonProcess(flat_ts, dividend_ts,
QuoteHandle(SimpleQuote(spot)),
v0, kappa, theta, sigma, rho)

model = HestonModel(process)
engine = AnalyticHestonEngine(model)

Now that we have the Heston model and a pricing engine, let us pick the quotes with all strikes and
1 year maturity in order to calibrate the Heston model. We build the Heston model helper which
will be fed into the calibration routines.

In [14]: heston_helpers = []
black_var_surface.setInterpolation("bicubic")
one_year_idx = 11 # 12th row in data is for 1 year expiry
date = expiration_dates[one_year_idx]
for j, s in enumerate(strikes):

t = (date - calculation_date )
p = Period(t, Days)
sigma = data[one_year_idx][j]
#sigma = black_var_surface.blackVol(t/365.25, s)
helper = HestonModelHelper(p, calendar, spot, s,

QuoteHandle(SimpleQuote(sigma)),
flat_ts, dividend_ts)

helper.setPricingEngine(engine)
heston_helpers.append(helper)

In [15]: lm = LevenbergMarquardt(1e-8, 1e-8, 1e-8)
model.calibrate(heston_helpers, lm,

EndCriteria(500, 50, 1.0e-8,1.0e-8, 1.0e-8))
theta, kappa, sigma, rho, v0 = model.params()

In [16]: print("theta = %f, kappa = %f, sigma = %f, rho = %f, v0 = %f" \
% (theta, kappa, sigma, rho, v0))

Out[16]: theta = 0.132329, kappa = 10.980901, sigma = 4.018093, rho = -0.351560, v0 = 0.065672

Let us look at the quality of calibration by pricing the options used in the calibration using the model
and lets get an estimate of the relative error.
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In [17]: avg = 0.0

summary = []
for i, opt in enumerate(heston_helpers):

err = (opt.modelValue()/opt.marketValue() - 1.0)
summary.append((

strikes[i], opt.marketValue(),
opt.modelValue(),
100.0*(opt.modelValue()/opt.marketValue() - 1.0)))

avg += abs(err)
avg = avg*100.0/len(heston_helpers)

In [18]: import pandas as pd

print("Average Abs Error (%%) : %5.3f" % (avg))

pd.DataFrame(
summary,
columns=["Strikes", "Market value", "Model value", "Relative error (%)"],
index=['']*len(summary))

Out[18]: Average Abs Error (%) : 0.633

Out[18]:

Strikes Market value Model value Relative error (%)

527.50 44.678931 44.465565 -0.477555
560.46 55.052769 55.232883 0.327167
593.43 67.371524 67.665921 0.436975
626.40 80.934108 81.828303 1.104843
659.37 98.889639 97.751713 -1.150703
692.34 93.297706 92.551981 -0.799296
725.31 79.649513 79.448640 -0.252195
758.28 67.621458 67.972305 0.518840
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23. Heston model parameter calibration in
QuantLib Python & SciPy

I have discussed parameter calibration using the QuantLib solvers in the earlier chapter. In this
chapter I want to show how you can use QuantLib Python and the Python SciPy library to do
parameter calibration. This exercise opens us to use more robust solvers available in the Python
open source libraries. QuantLib’s strength is all financial models. SciPy’s strength is all the solvers
and numerical methods. So here, I will show you how you can make the best of both worlds. We
will start as usual by importing the modules.

In [1]: from QuantLib import *
from math import pow, sqrt
import numpy as np
from scipy.optimize import root

Let’s construct some of the basic dependencies such as the yield and dividend term structures.

In [2]: day_count = Actual365Fixed()
calendar = UnitedStates()
calculation_date = Date(6, 11, 2015)

spot = 659.37
Settings.instance().evaluationDate = calculation_date

risk_free_rate = 0.01
dividend_rate = 0.0
yield_ts = YieldTermStructureHandle(

FlatForward(calculation_date, risk_free_rate, day_count))
dividend_ts = YieldTermStructureHandle(

FlatForward(calculation_date, dividend_rate, day_count))

Following is a sample grid of volatilities for different expiration and strikes.
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In [3]: expiration_dates = [Date(6,12,2015), Date(6,1,2016), Date(6,2,2016),
Date(6,3,2016), Date(6,4,2016), Date(6,5,2016),
Date(6,6,2016), Date(6,7,2016), Date(6,8,2016),
Date(6,9,2016), Date(6,10,2016), Date(6,11,2016),
Date(6,12,2016), Date(6,1,2017), Date(6,2,2017),
Date(6,3,2017), Date(6,4,2017), Date(6,5,2017),
Date(6,6,2017), Date(6,7,2017), Date(6,8,2017),
Date(6,9,2017), Date(6,10,2017), Date(6,11,2017)]

strikes = [527.50, 560.46, 593.43, 626.40, 659.37, 692.34, 725.31, 758.28]
data = [
[0.37819, 0.34177, 0.30394, 0.27832, 0.26453, 0.25916, 0.25941, 0.26127],
[0.3445, 0.31769, 0.2933, 0.27614, 0.26575, 0.25729, 0.25228, 0.25202],
[0.37419, 0.35372, 0.33729, 0.32492, 0.31601, 0.30883, 0.30036, 0.29568],
[0.37498, 0.35847, 0.34475, 0.33399, 0.32715, 0.31943, 0.31098, 0.30506],
[0.35941, 0.34516, 0.33296, 0.32275, 0.31867, 0.30969, 0.30239, 0.29631],
[0.35521, 0.34242, 0.33154, 0.3219, 0.31948, 0.31096, 0.30424, 0.2984],
[0.35442, 0.34267, 0.33288, 0.32374, 0.32245, 0.31474, 0.30838, 0.30283],
[0.35384, 0.34286, 0.33386, 0.32507, 0.3246, 0.31745, 0.31135, 0.306],
[0.35338, 0.343, 0.33464, 0.32614, 0.3263, 0.31961, 0.31371, 0.30852],
[0.35301, 0.34312, 0.33526, 0.32698, 0.32766, 0.32132, 0.31558, 0.31052],
[0.35272, 0.34322, 0.33574, 0.32765, 0.32873, 0.32267, 0.31705, 0.31209],
[0.35246, 0.3433, 0.33617, 0.32822, 0.32965, 0.32383, 0.31831, 0.31344],
[0.35226, 0.34336, 0.33651, 0.32869, 0.3304, 0.32477, 0.31934, 0.31453],
[0.35207, 0.34342, 0.33681, 0.32911, 0.33106, 0.32561, 0.32025, 0.3155],
[0.35171, 0.34327, 0.33679, 0.32931, 0.3319, 0.32665, 0.32139, 0.31675],
[0.35128, 0.343, 0.33658, 0.32937, 0.33276, 0.32769, 0.32255, 0.31802],
[0.35086, 0.34274, 0.33637, 0.32943, 0.3336, 0.32872, 0.32368, 0.31927],
[0.35049, 0.34252, 0.33618, 0.32948, 0.33432, 0.32959, 0.32465, 0.32034],
[0.35016, 0.34231, 0.33602, 0.32953, 0.33498, 0.3304, 0.32554, 0.32132],
[0.34986, 0.34213, 0.33587, 0.32957, 0.33556, 0.3311, 0.32631, 0.32217],
[0.34959, 0.34196, 0.33573, 0.32961, 0.3361, 0.33176, 0.32704, 0.32296],
[0.34934, 0.34181, 0.33561, 0.32964, 0.33658, 0.33235, 0.32769, 0.32368],
[0.34912, 0.34167, 0.3355, 0.32967, 0.33701, 0.33288, 0.32827, 0.32432],
[0.34891, 0.34154, 0.33539, 0.3297, 0.33742, 0.33337, 0.32881, 0.32492]]

I have abstracted some of the repetitive methods into python functions. The function setup_-
helpers will construct the Heston model helpers and returns an array of these objects. The
cost_function_generator is a method to set the cost function and will be used by the SciPy
modules. The calibration_report lets us evaluate the quality of the fit. The setup_modelmethod
initializes the HestonModel and the AnalyticHestonEngine prior to calibration.
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In [4]: def setup_helpers(engine, expiration_dates, strikes,
data, ref_date, spot, yield_ts,
dividend_ts):

heston_helpers = []
grid_data = []
for i, date in enumerate(expiration_dates):

for j, s in enumerate(strikes):
t = (date - ref_date )
p = Period(t, Days)
vols = data[i][j]
helper = HestonModelHelper(

p, calendar, spot, s,
QuoteHandle(SimpleQuote(vols)),
yield_ts, dividend_ts)

helper.setPricingEngine(engine)
heston_helpers.append(helper)
grid_data.append((date, s))

return heston_helpers, grid_data

def cost_function_generator(model, helpers,norm=False):
def cost_function(params):

params_ = Array(list(params))
model.setParams(params_)
error = [h.calibrationError() for h in helpers]
if norm:

return np.sqrt(np.sum(np.abs(error)))
else:

return error
return cost_function

def calibration_report(helpers, grid_data, detailed=False):
avg = 0.0
if detailed:

print("%15s %25s %15s %15s %20s" % (
"Strikes", "Expiry", "Market Value",
"Model Value", "Relative Error (%)"))

print("="*100)
for i, opt in enumerate(helpers):

err = (opt.modelValue()/opt.marketValue() - 1.0)
date,strike = grid_data[i]
if detailed:

print("%15.2f %25s %14.5f %15.5f %20.7f " % (
strike, str(date), opt.marketValue(),
opt.modelValue(),
100.0*(opt.modelValue()/opt.marketValue() - 1.0)))

avg += abs(err)
avg = avg*100.0/len(helpers)
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if detailed: print("-"*100)
summary = "Average Abs Error (%%) : %5.9f" % (avg)
print(summary)
return avg

def setup_model(_yield_ts, _dividend_ts, _spot,
init_condition=(0.02,0.2,0.5,0.1,0.01)):

theta, kappa, sigma, rho, v0 = init_condition
process = HestonProcess(_yield_ts, _dividend_ts,

QuoteHandle(SimpleQuote(_spot)),
v0, kappa, theta, sigma, rho)

model = HestonModel(process)
engine = AnalyticHestonEngine(model)
return model, engine

summary= []

Comparing Different Calibration Methods

Solvers such as Levenberg-Marquardt find local minima and are very sensitive to the initial
conditions. Depending on the starting conditions for your solver, you could end up with a good set
of parameters with good convergence or not so good set of parameters. We will look at two initial
conditions for different solvers and see how the local minima solvers perform. We will compare this
with differential evolution that looks for global minima.

We will setup the Heston model with two different initial conditions: - theta, kappa, sigma, rho, v0
= (0.02, 0.2, 0.5, 0.1, 0.01) - theta, kappa, sigma, rho, v0 = (0.07, 0.5, 0.1, 0.1, 0.1)

Local Solvers

Using QuantLib Levenberg-Marquardt Solver

As a first step, let’s look at QuantLib’s Levenberg-Marquardt solver. The initial condition considered
is theta, kappa, sigma, rho, v0 = (0.02,0.2,0.5,0.1,0.01)

In [5]: model1, engine1 = setup_model(
yield_ts, dividend_ts, spot,
init_condition=(0.02,0.2,0.5,0.1,0.01))

heston_helpers1, grid_data1 = setup_helpers(
engine1, expiration_dates, strikes, data,
calculation_date, spot, yield_ts, dividend_ts

)
initial_condition = list(model1.params())

In [6]: %%time
lm = LevenbergMarquardt(1e-8, 1e-8, 1e-8)
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model1.calibrate(heston_helpers1, lm,
EndCriteria(500, 300, 1.0e-8,1.0e-8, 1.0e-8))

theta, kappa, sigma, rho, v0 = model1.params()
print("theta = %f, kappa = %f, sigma = %f, rho = %f, v0 = %f" % \

(theta, kappa, sigma, rho, v0))
error = calibration_report(heston_helpers1, grid_data1)
summary.append(["QL LM1", error] + list(model1.params()))

Out[6]: theta = 0.125748, kappa = 7.915000, sigma = 1.887854, rho = -0.364942, v0 = 0.055397
Average Abs Error (%) : 3.015268051
CPU times: user 2.8 s, sys: 0 ns, total: 2.8 s
Wall time: 2.8 s

Methods like Levenberg-Marquardt solve for local minima and do not search for global minima.
The solver is very sensitive to the initial conditions. Let’s set a different set of initial conditions, and
see what happens below. The initial condition considered is theta, kappa, sigma, rho, v0 =
(0.07,0.5,0.1,0.1,0.1)

In [7]: model1, engine1 = setup_model(
yield_ts, dividend_ts, spot,
init_condition=(0.07,0.5,0.1,0.1,0.1))

heston_helpers1, grid_data1 = setup_helpers(
engine1, expiration_dates, strikes, data,
calculation_date, spot, yield_ts, dividend_ts

)
initial_condition = list(model1.params())

In [8]: %%time
lm = LevenbergMarquardt(1e-8, 1e-8, 1e-8)
model1.calibrate(heston_helpers1, lm,

EndCriteria(500, 300, 1.0e-8,1.0e-8, 1.0e-8))
theta, kappa, sigma, rho, v0 = model1.params()
print("theta = %f, kappa = %f, sigma = %f, rho = %f, v0 = %f" % \

(theta, kappa, sigma, rho, v0))
error = calibration_report(heston_helpers1, grid_data1)
summary.append(["QL LM2", error] + list(model1.params()))

Out[8]: theta = 0.084523, kappa = 0.000000, sigma = 0.132289, rho = -0.514278, v0 = 0.099928
Average Abs Error (%) : 11.007433024
CPU times: user 2.91 s, sys: 0 ns, total: 2.91 s
Wall time: 2.89 s

We see that the solver produces a 11% average of absolute error. This is not particularly great.

Using SciPy Levenberg-Marquardt Solver

Here we are going to try the same exercise but using SciPy. SciPy has far more optimization,
minimization and root finding algorithms that are very robust. So by leveraging it, we can take
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advantage of this rich set of options at hand.

In [9]: model2, engine2 = setup_model(
yield_ts, dividend_ts, spot,
init_condition=(0.02,0.2,0.5,0.1,0.01))

heston_helpers2, grid_data2 = setup_helpers(
engine2, expiration_dates, strikes, data,
calculation_date, spot, yield_ts, dividend_ts

)
initial_condition = list(model2.params())

In [10]: %%time
cost_function = cost_function_generator(model2, heston_helpers2)
sol = root(cost_function, initial_condition, method='lm')
theta, kappa, sigma, rho, v0 = model2.params()
print("theta = %f, kappa = %f, sigma = %f, rho = %f, v0 = %f" % \

(theta, kappa, sigma, rho, v0))
error = calibration_report(heston_helpers2, grid_data2)
summary.append(["SciPy LM1", error] + list(model2.params()))

Out[10]: theta = 0.125747, kappa = 7.915687, sigma = 1.887934, rho = -0.364944, v0 = 0.055394
Average Abs Error (%) : 3.015252651
CPU times: user 3.24 s, sys: 20 ms, total: 3.26 s
Wall time: 3.54 s

The solution for this particular case seems to be fairly robust. Both solvers (QuantLib and SciPy)
seem to have landed on more or less the same solution for this particular initial condition. Let’s see
how SciPy does for the second initial condition considered above - theta, kappa, sigma, rho,
v0 = (0.07,0.5,0.1,0.1,0.1)

In [11]: model2, engine2 = setup_model(
yield_ts, dividend_ts, spot,
init_condition=(0.07,0.5,0.1,0.1,0.1))

heston_helpers2, grid_data2 = setup_helpers(
engine2, expiration_dates, strikes, data,
calculation_date, spot, yield_ts, dividend_ts

)
initial_condition = list(model2.params())

In [12]: %%time
cost_function = cost_function_generator(model2, heston_helpers2)
sol = root(cost_function, initial_condition, method='lm')
theta, kappa, sigma, rho, v0 = model2.params()
print("theta = %f, kappa = %f, sigma = %f, rho = %f, v0 = %f" % \

(theta, kappa, sigma, rho, v0))
error = calibration_report(heston_helpers2, grid_data2)
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summary.append(["SciPy LM2", error] + list(model2.params()))

Out[12]: theta = 0.048184, kappa = -0.548903, sigma = 0.197958, rho = -0.999547, v0 = 0.090571
Average Abs Error (%) : 7.019499509
CPU times: user 20.8 s, sys: 20 ms, total: 20.8 s
Wall time: 21.4 s

For this particular case, SciPy solver has performed significantly better. It would be inappropriate to
make loud claims about SciPy’s superiority based on one observation. Perhaps this calls for a more
detailed study for later.

Using Least Squares Method

If you want to use a simpler approach like least squares, you can do that with SciPy. Here is how
you would use it.

In [13]: from scipy.optimize import least_squares

In [14]: model3, engine3 = setup_model(
yield_ts, dividend_ts, spot,
init_condition=(0.02,0.2,0.5,0.1,0.01))

heston_helpers3, grid_data3 = setup_helpers(
engine3, expiration_dates, strikes, data,
calculation_date, spot, yield_ts, dividend_ts

)
initial_condition = list(model3.params())

In [15]: %%time
cost_function = cost_function_generator(model3, heston_helpers3)
sol = least_squares(cost_function, initial_condition)
theta, kappa, sigma, rho, v0 = model3.params()
print("theta = %f, kappa = %f, sigma = %f, rho = %f, v0 = %f" % \

(theta, kappa, sigma, rho, v0))
error = calibration_report(heston_helpers3, grid_data3)
summary.append(["SciPy LS1", error] + list(model3.params()))

Out[15]: theta = 0.125747, kappa = 7.915814, sigma = 1.887949, rho = -0.364944, v0 = 0.055394
Average Abs Error (%) : 3.015251175
CPU times: user 4.59 s, sys: 0 ns, total: 4.59 s
Wall time: 4.63 s

With the second initial condition:
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In [16]: model3, engine3 = setup_model(
yield_ts, dividend_ts, spot,
init_condition=(0.07,0.5,0.1,0.1,0.1))

heston_helpers3, grid_data3 = setup_helpers(
engine3, expiration_dates, strikes, data,
calculation_date, spot, yield_ts, dividend_ts

)
initial_condition = list(model3.params())

In [17]: %%time
cost_function = cost_function_generator(model3, heston_helpers3)
sol = least_squares(cost_function, initial_condition)
theta, kappa, sigma, rho, v0 = model3.params()
print("theta = %f, kappa = %f, sigma = %f, rho = %f, v0 = %f" % \

(theta, kappa, sigma, rho, v0))
error = calibration_report(heston_helpers3, grid_data3)
summary.append(["SciPy LS2", error] + list(model3.params()))

Out[17]: theta = 3.136774, kappa = 0.000005, sigma = -0.000245, rho = -0.000010, v0 = 1.597904
Average Abs Error (%) : 5.096414042
CPU times: user 27.9 s, sys: 80 ms, total: 28 s
Wall time: 29.7 s

Global Solvers

Using Differential Evolution

The above methods are more suited to finding local minima. One method that makes an attempt
at searching for global minima is the differential evolution. Both QuantLib and SciPy have
implementations of this method. SciPy however has a lot more bells and whistles to tune and
calibrate the methodology. Let’s take a look at SciPy’s differential_evolution methodology.

In [18]: from scipy.optimize import differential_evolution

In [19]: model4, engine4 = setup_model(yield_ts, dividend_ts, spot)
heston_helpers4, grid_data4 = setup_helpers(

engine4, expiration_dates, strikes, data,
calculation_date, spot, yield_ts, dividend_ts

)
initial_condition = list(model4.params())
bounds = [(0,1),(0.01,15), (0.01,1.), (-1,1), (0,1.0) ]

In [20]: %%time
cost_function = cost_function_generator(

model4, heston_helpers4, norm=True)
sol = differential_evolution(cost_function, bounds, maxiter=100)
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theta, kappa, sigma, rho, v0 = model4.params()
print("theta = %f, kappa = %f, sigma = %f, rho = %f, v0 = %f" % \

(theta, kappa, sigma, rho, v0))
error = calibration_report(heston_helpers4, grid_data4)
summary.append(["SciPy DE1", error] + list(model4.params()))

Out[20]: theta = 0.123607, kappa = 4.718829, sigma = 0.897901, rho = -0.595593, v0 = 0.079324
Average Abs Error (%) : 2.864749340
CPU times: user 1min 28s, sys: 370 ms, total: 1min 28s
Wall time: 1min 30s

In the above example, I am setting the variable maxiter in order to limit the time taken. In
production scenarios, you may want to try a larger number or not provide any value and default to
1000. This can help search a larger area of the parameter space.

In [21]: model4, engine4 = setup_model(yield_ts, dividend_ts, spot)
heston_helpers4, grid_data4 = setup_helpers(

engine4, expiration_dates, strikes, data,
calculation_date, spot, yield_ts, dividend_ts

)
initial_condition = list(model4.params())
bounds = [(0,1),(0.01,15), (0.01,1.), (-1,1), (0,1.0) ]

In [22]: %%time
cost_function = cost_function_generator(

model4, heston_helpers4, norm=True)
sol = differential_evolution(cost_function, bounds, maxiter=100)
theta, kappa, sigma, rho, v0 = model4.params()
print("theta = %f, kappa = %f, sigma = %f, rho = %f, v0 = %f" % \

(theta, kappa, sigma, rho, v0))
error = calibration_report(heston_helpers4, grid_data4)
summary.append(["SciPy DE2", error] + list(model4.params()))

Out[22]: theta = 0.121953, kappa = 4.963114, sigma = 0.813166, rho = -0.650423, v0 = 0.079030
Average Abs Error (%) : 2.882908440
CPU times: user 1min 37s, sys: 380 ms, total: 1min 38s
Wall time: 1min 42s

Basin Hopping Algorithm

Here we will use the Basin Hopping (annealing-like) method to solve for the parameters. A couple
things to make note here. The Basin Hopping method works best when used with a minimizer. Here I
played with various minimizers and finally decided to use something that supports bounds checking.
Without bounds checking, I often ended with nan and did not have a meaningful solution in the
end.
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I have chosen bounds based on a very basic reasoning. One needs careful reasoning to use
appropriate bounds for the problem at hand.

In [23]: from scipy.optimize import basinhopping

In [24]: class MyBounds(object):
def __init__(self, xmin=[0.,0.01,0.01,-1,0], xmax=[1,15,1,1,1.0] ):

self.xmax = np.array(xmax)
self.xmin = np.array(xmin)

def __call__(self, **kwargs):
x = kwargs["x_new"]
tmax = bool(np.all(x <= self.xmax))
tmin = bool(np.all(x >= self.xmin))
return tmax and tmin

bounds = [(0,1),(0.01,15), (0.01,1.), (-1,1), (0,1.0) ]

In [25]: model5, engine5 = setup_model(
yield_ts, dividend_ts, spot,
init_condition=(0.02,0.2,0.5,0.1,0.01))

heston_helpers5, grid_data5 = setup_helpers(
engine5, expiration_dates, strikes, data,
calculation_date, spot, yield_ts, dividend_ts

)
initial_condition = list(model5.params())

In [26]: %%time
mybound = MyBounds()
minimizer_kwargs = {"method": "L-BFGS-B", "bounds": bounds }
cost_function = cost_function_generator(

model5, heston_helpers5, norm=True)
sol = basinhopping(cost_function, initial_condition, niter=5,

minimizer_kwargs=minimizer_kwargs,
stepsize=0.005,
accept_test=mybound,
interval=10)

theta, kappa, sigma, rho, v0 = model5.params()
print("theta = %f, kappa = %f, sigma = %f, rho = %f, v0 = %f" % \

(theta, kappa, sigma, rho, v0))
error = calibration_report(heston_helpers5, grid_data5)
summary.append(["SciPy BH1", error] + list(model5.params()))

Out[26]: theta = 0.123462, kappa = 5.069027, sigma = 0.998750, rho = -0.564407, v0 = 0.079309
Average Abs Error (%) : 2.850721046
CPU times: user 1min 54s, sys: 170 ms, total: 1min 54s
Wall time: 1min 54s

In [27]: model5, engine5 = setup_model(
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yield_ts, dividend_ts, spot,
init_condition=(0.07,0.5,0.1,0.1,0.1))

heston_helpers5, grid_data5 = setup_helpers(
engine5, expiration_dates, strikes, data,
calculation_date, spot, yield_ts, dividend_ts

)
initial_condition = list(model5.params())

In [28]: %%time
mybound = MyBounds()
minimizer_kwargs = {"method": "L-BFGS-B", "bounds": bounds}
cost_function = cost_function_generator(

model5, heston_helpers5, norm=True)
sol = basinhopping(cost_function, initial_condition, niter=5,

minimizer_kwargs=minimizer_kwargs,
stepsize=0.005,
accept_test=mybound,
interval=10)

theta, kappa, sigma, rho, v0 = model5.params()
print("theta = %f, kappa = %f, sigma = %f, rho = %f, v0 = %f" % \

(theta, kappa, sigma, rho, v0))
error = calibration_report(heston_helpers5, grid_data5)
summary.append(["SciPy BH2", error] + list(model5.params()))

Out[28]: theta = 0.123144, kappa = 5.171826, sigma = 0.999454, rho = -0.565149, v0 = 0.079094
Average Abs Error (%) : 2.850452127
CPU times: user 1min 43s, sys: 70 ms, total: 1min 44s
Wall time: 1min 44s

Summary

Here is a summary of all the results with the calibration error overall, and the respective parameters.
All the local minima methods give parameters that are very different based on the initial condition
that we start with. This is different in contrary with the global minimization methods that all end
up in more or less the same proximity of each other.

The global solvers such as Differential Evolution and Basin Hopping are capable of finding the global
minima and it is sometimes a question of computation resources. Here, I have lower “iterations” set
for these routines for faster solving. Even with such a short threshold, we get fairly good solution set.
I think it is premature to compare the effectiveness of different global solvers just based on the results
here. The scipy optimize¹ package has detailed documentation with various tuning parameters. I
haven’t exploited the nuances much, and is left as an exercise for the reader.

¹http://docs.scipy.org/doc/scipy/reference/optimize.html

http://docs.scipy.org/doc/scipy/reference/optimize.html
http://docs.scipy.org/doc/scipy/reference/optimize.html
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In [29]: from pandas import DataFrame
DataFrame(

summary,
columns=["Name", "Avg Abs Error","Theta", "Kappa", "Sigma", "Rho", "V0"],
index=['']*len(summary))

Out[29]:

Name Avg Abs Error Theta Kappa Sigma Rho V0

QL LM1 3.015268 0.125748 7.915000e+00 1.887854 -0.364942 0.055397
QL LM2 11.007433 0.084523 1.625740e-08 0.132289 -0.514278 0.099928
SciPy LM1 3.015253 0.125747 7.915687e+00 1.887934 -0.364944 0.055394
SciPy LM2 7.019500 0.048184 -5.489029e-01 0.197958 -0.999547 0.090571
SciPy LS1 3.015251 0.125747 7.915814e+00 1.887949 -0.364944 0.055394
SciPy LS2 5.096414 3.136774 4.896844e-06 -0.000245 -0.000010 1.597904
SciPy DE1 2.864749 0.123607 4.718829e+00 0.897901 -0.595593 0.079324
SciPy DE2 2.882908 0.121953 4.963114e+00 0.813166 -0.650423 0.079030
SciPy BH1 2.850721 0.123462 5.069027e+00 0.998750 -0.564407 0.079309
SciPy BH2 2.850452 0.123144 5.171826e+00 0.999454 -0.565149 0.079094



24. Valuing European and American
options

I have written about option pricing earlier. The introduction to option pricing¹ gave an overview of
the theory behind option pricing. The post on introduction to binomial trees² outlined the binomial
tree method to price options.

In this post, we will use QuantLib and the Python extension to illustrate a simple example. Here we
are going to price a European option using the Black-Scholes-Merton formula. We will price them
again using the Binomial tree and understand the agreement between the two.

In [1]: from QuantLib import *
import utils
%matplotlib inline

European Option

Let us consider a European call option for AAPL with a strike price of 130 maturing on 15th Jan,
2016. Let the spot price be 127.62. The volatility of the underlying stock is know to be 20%, and has
a dividend yield of 1.63%. Let’s value this option as of 8th May, 2015.

In [2]: maturity_date = Date(15, 1, 2016)
spot_price = 127.62
strike_price = 130
volatility = 0.20 # the historical vols for a year
dividend_rate = 0.0163
option_type = Option.Call

risk_free_rate = 0.001
day_count = Actual365Fixed()
calendar = UnitedStates()

calculation_date = Date(8, 5, 2015)
Settings.instance().evaluationDate = calculation_date

We construct the European option here.

¹http://gouthamanbalaraman.com/blog/option-model-handbook-part-I-introduction-to-option-models.html
²http://gouthamanbalaraman.com/blog/option-model-handbook-part-II-introduction-to-binomial-trees.html

http://gouthamanbalaraman.com/blog/option-model-handbook-part-I-introduction-to-option-models.html
http://gouthamanbalaraman.com/blog/option-model-handbook-part-II-introduction-to-binomial-trees.html
http://gouthamanbalaraman.com/blog/option-model-handbook-part-I-introduction-to-option-models.html
http://gouthamanbalaraman.com/blog/option-model-handbook-part-II-introduction-to-binomial-trees.html
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In [3]: payoff = PlainVanillaPayoff(option_type, strike_price)
exercise = EuropeanExercise(maturity_date)
european_option = VanillaOption(payoff, exercise)

The Black-Scholes-Merton process is constructed here.

In [4]: spot_handle = QuoteHandle(
SimpleQuote(spot_price)

)
flat_ts = YieldTermStructureHandle(

FlatForward(calculation_date,
risk_free_rate,
day_count)

)
dividend_yield = YieldTermStructureHandle(

FlatForward(calculation_date,
dividend_rate,
day_count)

)
flat_vol_ts = BlackVolTermStructureHandle(

BlackConstantVol(calculation_date,
calendar,
volatility,
day_count)

)
bsm_process = BlackScholesMertonProcess(spot_handle,

dividend_yield,
flat_ts,
flat_vol_ts)

Lets compute the theoretical price using the AnalyticEuropeanEngine.

In [5]: european_option.setPricingEngine(AnalyticEuropeanEngine(bsm_process))
bs_price = european_option.NPV()
print("The theoretical price is %lf" % bs_price)

Out[5]: The theoretical price is 6.749272

Lets compute the price using the binomial-tree approach.
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In [6]: def binomial_price(option, bsm_process, steps):
binomial_engine = BinomialVanillaEngine(bsm_process, "crr", steps)
option.setPricingEngine(binomial_engine)
return option.NPV()

steps = range(2, 200, 1)
prices = [binomial_price(european_option, bsm_process, step) for step in steps]

In the plot below, we show the convergence of binomial-tree approach by comparing its price with
the BSM price.

In [7]: fig, ax = utils.plot()
ax.plot(steps, prices, label="Binomial Tree Price", lw=2, alpha=0.6)
ax.plot([0,200],[bs_price, bs_price], "--", label="BSM Price", lw=2, alpha=0.6)
ax.set_xlabel("Steps", size=14)
ax.set_ylabel("Price", size=14)
ax.set_title("Binomial Tree Price For Varying Steps", size=14)
ax.legend();
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American Option

The above exercise was pedagogical, and introduces one to pricing using the binomial tree approach
and comparedwith Black-Scholes. As a next step, wewill use the Binomial pricing to value American
options.

The construction of an American option is similar to the construction of European option discussed
above. The one main difference is the use of AmericanExercise instead of EuropeanExercise use
above.

In [8]: payoff = PlainVanillaPayoff(option_type, strike_price)
settlement = calculation_date
am_exercise = AmericanExercise(settlement, maturity_date)
american_option = VanillaOption(payoff, am_exercise)

Once we have constructed the american_option object, we can price them using the Binomial trees
as done above. We use the same function we constructed above.

In [9]: steps = range(2, 200, 1)
prices = [binomial_price(american_option, bsm_process, step) for step in steps]

In [10]: fig, ax = utils.plot()
ax.plot(steps, prices, label="Binomial Tree Price", lw=2, alpha=0.6)
ax.plot([0,200],[bs_price, bs_price], "--", label="BSM Price", lw=2, alpha=0.6)
ax.set_xlabel("Steps", size=14)
ax.set_ylabel("Price", size=14)
ax.set_title("Binomial Tree Price For Varying Steps", size=14)
ax.legend();
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Above, we plot the price of the American option as a function of steps used in the binomial tree,
and compare with that of the Black-Scholes price for the European option with all other variables
remaining the same. The binomial tree converges as the number of steps used in pricing increases.
American option is valued more than the European BSM price because of the fact that it can be
exercised anytime during the course of the option.

Conclusion

In this chapter we learnt about valuing European and American options using the binomial tree
method.



25. Valuing options on commodity futures
using the Black formula

The Black-Scholes equation is the well known model to price equity European options. In the
case of equities, the spot price fluctuates and hence the intuition to model as a stochastic process
makes sense. In the case of commodities, however, the spot price does not fluctuate as much, and
hence cannot be modeled as a stochastic process to value options on commodities. In the 1976
paper [1], Fischer Black addressed this problem by modeling the futures price, which demonstrates
fluctuations, as the lognormal stochastic process.

The futures price at time t, Ft with a is modeled as:

dFt = σtFtdW

where σt is the volatility of the underlying, and dW is the Weiner process.

The value of an option at strike K, maturing at T , risk free rate r with volatility σ of the underlying
is given by the closed form expression:

c = e−rT [FN(d1)−KN(d2)] (25..1)

p = e−rT [KN(−d2)− FN(−d1)] (25..2)

where

d1 =
ln(F/K) + (σ2/2)T

σ
√
T

d2 =
ln(F/K)− (σ2/2)T

σ
√
T

= d1 − σ
√
T (25..3)

This formula can be easily used to price caps, swaptions, futures options contract. Here we will use
QuantLib to price the options on commodity futures.
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In [1]: from QuantLib import *
import math

In [2]: calendar = UnitedStates()
business_convention = ModifiedFollowing
settlement_days = 0
day_count = ActualActual()

Option on Treasury Futures Contract

Options on treasury futures (10 Yr Note TYF6C 119) can be valued using the Black formula. Let us
value a Call option maturing on December 24, 2015, with a strike of 119. The current futures price is
126.95, and the volatility is 11.567%. The risk free rate as of December 1, 2015 is 0.105%. Let us value
this Call option as of December 1, 2015.

In [3]: interest_rate = 0.00105
calc_date = Date(1,12,2015)
yield_curve = FlatForward(calc_date,

interest_rate,
day_count,
Compounded,
Continuous)

In [4]:
Settings.instance().evaluationDate = calc_date
option_maturity_date = Date(24,12,2015)
strike = 119
spot = 126.953# futures price
volatility = 11.567/100.
flavor = Option.Call

discount = yield_curve.discount(option_maturity_date)
strikepayoff = PlainVanillaPayoff(flavor, strike)
T = yield_curve.dayCounter().yearFraction(calc_date,

option_maturity_date)
stddev = volatility*math.sqrt(T)

black = BlackCalculator(strikepayoff,
spot,
stddev,
discount)

In [5]: print("%-20s: %4.4f" %("Option Price", black.value()))
print("%-20s: %4.4f" %("Delta", black.delta(spot)))
print("%-20s: %4.4f" %("Gamma", black.gamma(spot)))
print("%-20s: %4.4f" %("Theta", black.theta(spot, T)))
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print("%-20s: %4.4f" %("Vega", black.vega(T)))
print("%-20s: %4.4f" %("Rho", black.rho(T)))

Out[5]: Option Price : 7.9686
Delta : 0.9875
Gamma : 0.0088
Theta : -0.9356
Vega : 1.0285
Rho : 7.3974

Natural Gas Futures Option

I saw this¹ question on the QuantLib users group. Thought I will add this example as well.

Call option with a 3.5 strike, spot 2.919, volatility 0.4251. The interest rate is 0.15%.

In [6]: interest_rate = 0.0015
calc_date = Date(23,9,2015)
yield_curve = FlatForward(calc_date,

interest_rate,
day_count,
Compounded,
Continuous)

In [7]: Settings.instance().evaluationDate = calc_date
T = 96.12/365.

strike = 3.5
spot = 2.919
volatility = 0.4251
flavor = Option.Call

discount = yield_curve.discount(T)
strikepayoff = PlainVanillaPayoff(flavor, strike)
stddev = volatility*math.sqrt(T)

strikepayoff = PlainVanillaPayoff(flavor, strike)
black = BlackCalculator(strikepayoff, spot, stddev, discount)

In [8]: print("%-20s: %4.4f" %("Option Price", black.value()))
print("%-20s: %4.4f" %("Delta", black.delta(spot)))
print("%-20s: %4.4f" %("Gamma", black.gamma(spot)))
print("%-20s: %4.4f" %("Theta", black.theta(spot, T)))
print("%-20s: %4.4f" %("Vega", black.vega(T)))
print("%-20s: %4.4f" %("Rho", black.rho(T)))

¹http://quantlib.10058.n7.nabble.com/Quantlib-methods-for-option-pricing-td17018.html

http://quantlib.10058.n7.nabble.com/Quantlib-methods-for-option-pricing-td17018.html
http://quantlib.10058.n7.nabble.com/Quantlib-methods-for-option-pricing-td17018.html
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Out[8]: Option Price : 0.0789
Delta : 0.2347
Gamma : 0.4822
Theta : -0.3711
Vega : 0.4600
Rho : 0.1597

Conclusion

In this notebook, I demonstrated how Black formula can be used to value options on commodity
futures. It is worth pointing out that different vendors usually have different scaling conventions
when it comes to reporting Greeks. One would needs to take that into account when comparing the
values shown by QuantLib with that of other vendors.

References

[1] Fischer Black, The pricing of commodity contracts, Journal of Financial Economics, (3) 167-179
(1976)



26. Defining rho for the Black process
(Based on a question by DPaulino on the QuantLib mailing list. Thanks!)

In [1]: from QuantLib import *

In [2]: today = Date(24,12,2016)
Settings.instance().evaluationDate = today

The dangers of generalization

QuantLib provides a few classes to represent specific cases of the Black-Scholes-Merton process;
for instance, the BlackScholesProcess class assumes that there are no dividends, and the
BlackProcess class that the cost of carry is equal to 0. It is the latter, or rather a glitch in it, that is
the subject of this notebook.

All such classes inherit from a base GeneralizedBlackScholesProcess class (I know, we’re not
that good at naming things) that models the more general case in which the underlying stock has
a continuous dividend yield. The specific cases are implemented by inheriting from this class and
setting a constraint on the dividends q(t): for the Black-Scholes process, q(t) = 0; and for the Black
process, q(t) = r(t), which makes the cost of carry b equal 0.

We can check the constraint by creating two instances of such processes. Here are the quotes and
term structures we’ll use to model the dynamics of the underlying:

In [3]: u = SimpleQuote(100.0)
r = SimpleQuote(0.01)
sigma = SimpleQuote(0.20)

risk_free_curve = FlatForward(today, QuoteHandle(r), Actual360())
volatility = BlackConstantVol(today, TARGET(), QuoteHandle(sigma), Actual360())

The constructor of the BlackScholesProcess class doesn’t take a dividend yield, and sets it to 0
internally:
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In [4]: process_1 = BlackScholesProcess(QuoteHandle(u),
YieldTermStructureHandle(risk_free_curve),
BlackVolTermStructureHandle(volatility))

print(process_1.dividendYield().zeroRate(1.0, Continuous))

Out[4]: 0.000000 % Actual/365 (Fixed) continuous compounding

The constructor of the BlackProcess class doesn’t take a dividend yield either, and sets its handle
as a copy of the risk free handle:

In [5]: process_2 = BlackProcess(QuoteHandle(u),
YieldTermStructureHandle(risk_free_curve),
BlackVolTermStructureHandle(volatility))

print(process_2.riskFreeRate().zeroRate(1.0, Continuous))
print(process_2.dividendYield().zeroRate(1.0, Continuous))

Out[5]: 1.000000 % Actual/360 continuous compounding
1.000000 % Actual/360 continuous compounding

Now, the above processes can be used to price options on underlyings behaving accordingly; the
first process describes, e.g., a stock that doesn’t pay any dividends, and the second describes,
e.g., a futures. The classes to use are the same: EuropeanOption for the instrument and Ana-
lyticEuropeanEngine for the pricing engine. The constructor of the engine takes an instance of
GeneralizedBlackScholesProcess, to which both our processes can be converted implicitly.

In [6]: option_1 = EuropeanOption(PlainVanillaPayoff(Option.Call, 100.0),
EuropeanExercise(today+100))

option_1.setPricingEngine(AnalyticEuropeanEngine(process_1))

print(option_1.NPV())

Out[6]: 4.337597216336533

In [7]: option_2 = EuropeanOption(PlainVanillaPayoff(Option.Call, 100.0),
EuropeanExercise(today+100))

option_2.setPricingEngine(AnalyticEuropeanEngine(process_2))

print(option_2.NPV())

Out[7]: 4.191615257389808

So far, so good. However, we can see the glitch when we ask the options for their Greeks. With this
particular engine, they’re able to calculate them by using closed formulas (none other, of course, that
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those expressing the derivatives of the Black-Scholes-Merton formula). As I described in a previous
notebook, we can also calculate the Greeks numerically, by bumping the inputs and repricing the
option. If we compare the two approaches, they should yield approximately the same results.

For convenience, I’ll define a utility function to calculate numerical Greeks. It takes the option, the
quote to change and the amplitude of the bump.

In [8]: def greek(option, quote, dx):
x0 = quote.value()
quote.setValue(x0+dx)
P_u = option.NPV()
quote.setValue(x0-dx)
P_d = option.NPV()
quote.setValue(x0)
return (P_u-P_d)/(2*dx)

By passing different quotes, we can calculate different Greeks. Bumping the underlying value will
give us the delta, which we can compare to the analytic result:

In [9]: print(option_1.delta())
print(greek(option_1, u, 0.01))

Out[9]: 0.5315063340142601
0.531506323010289

In [10]: print(option_2.delta())
print(greek(option_2, u, 0.01))

Out[10]: 0.5195711146255227
0.5195711052036867

Bumping the volatility gives us the vega…

In [11]: print(option_1.vega())
print(greek(option_1, sigma, 0.001))

Out[11]: 20.96050033373808
20.960499909565833

In [12]: print(option_2.vega())
print(greek(option_2, sigma, 0.001))

Out[12]: 20.938677847075486
20.938677605407463

…and bumping the risk-free rate will give us the rho.
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In [13]: print(option_1.rho())
print(greek(option_1, r, 0.001))

Out[13]: 13.559176718080407
13.55917453385036

In [14]: print(option_2.rho())
print(greek(option_2, r, 0.001))

Out[14]: 13.268193390322908
-1.1643375864700545

Whoops. Not what you might have expected.

What’s happening here?

The problem is that the engine works with a generic process, and ρ is calculated as

ρ =
∂

∂r
C(u, r, q, σ)

where C is the Black-Scholes-Merton formula for the value of the call option.

However, not knowing about the specific process type we passed, the engine doesn’t know about the
constraint we set on the underlying variables: in this case, that q = q(r) = r. Therefore, the correct
value for ρ should be

ρ =
d

dr
C(u, r, q(r), σ) =

∂C

∂r
+

∂C

∂q
· ∂q
∂r

=
∂C

∂r
+

∂C

∂q
.

which is the sum of the rho as defined in the engine and the dividend rho. We can verify this by
comparing the above with the numerical Greek:

In [15]: print(option_2.rho() + option_2.dividendRho())
print(greek(option_2, r, 0.001))

Out[15]: -1.1643375714971693
-1.1643375864700545

Now: is this a bug in the engine?

Well, it might be argued. The engine might detect the case of a Black process and change the
calculation of rho accordingly; it’s kind of a hack, and there goes the genericity, but it’s possible
to implement. However, the above might also happen with a usually well-behaved process if we use
the same term structure for r and q:
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In [16]: process_3 = BlackScholesMertonProcess(QuoteHandle(u),
YieldTermStructureHandle(risk_free_curve),
YieldTermStructureHandle(risk_free_curve),
BlackVolTermStructureHandle(volatility))

option_3 = EuropeanOption(PlainVanillaPayoff(Option.Call, 100.0),
EuropeanExercise(today+100))

option_3.setPricingEngine(AnalyticEuropeanEngine(process_3))

In [17]: print(option_3.delta())
print(greek(option_3, u, 0.01))

Out[17]: 0.5195711146255227
0.5195711052036867

In [18]: print(option_3.rho())
print(greek(option_3, r, 0.001))
print(option_3.rho() + option_3.dividendRho())

Out[18]: 13.268193390322908
-1.1643375864700545
-1.1643375714971693

The issue is not even limited to processes. You’re defining a discount curve as the risk-free rate plus
a credit spread? Bumping the risk-free rate will modify both, and your sensitivities will be affected
accordingly (even though in this case the effect is probably what you wanted). In any case, this is
something you should be aware of.



27. Using curves with different day-count
conventions

(Based on a question by Vinod Rajakumar¹ on the QuantLib mailing list. Thanks!)

Like a number of other notebooks, this one describes a glitch in the library that you might want to
be aware of.

The problem

Let’s say we’re pricing an option. We’ve already seen it in other notebooks, so I’ll go through the
setup without much details:

In [1]: from QuantLib import *
import math

In [2]: today = Date(27, July, 2018)
Settings.instance().evaluationDate = today
calendar = UnitedStates(UnitedStates.NYSE)

In [3]: exercise_date = today+Period(3,Months)
strike = 100.0
option = EuropeanOption(PlainVanillaPayoff(Option.Call, strike),

EuropeanExercise(exercise_date))

I’ll set up handles for the needed curves, so we can change them later…

In [4]: u = RelinkableQuoteHandle()
r = RelinkableYieldTermStructureHandle()
sigma = RelinkableBlackVolTermStructureHandle()

In [5]: process = BlackScholesProcess(u, r, sigma)

…and I’ll use the process above to instantiate two different engines: the first uses the analytic Black-
Scholes formula, and the second a finite-difference model.

¹https://sourceforge.net/p/quantlib/mailman/message/36015671/

https://sourceforge.net/p/quantlib/mailman/message/36015671/
https://sourceforge.net/p/quantlib/mailman/message/36015671/
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In [6]: analytic_engine = AnalyticEuropeanEngine(process)

fd_engine = FDEuropeanEngine(process, 1000, 1000)

Now we get to pricing the option. First, I’ll link the risk-free rate and the volatility to two constant
curves with the same day-count convention (in this case, Actual/365 fixed). Let’s say the risk-free
rate is 0% and the volatility is 20%.

In [7]: u.linkTo(SimpleQuote(100.0))
r.linkTo(FlatForward(today, 0.0, Actual365Fixed()))
sigma.linkTo(BlackConstantVol(today, calendar, 0.20, Actual365Fixed()))

With this setup, the two engines give the same result (within numerical error) and everybody is
happy:

In [8]: option.setPricingEngine(analytic_engine)
option.NPV()

Out[8]: 4.004101982740124

In [9]: option.setPricingEngine(fd_engine)
option.NPV()

Out[9]: 4.004154055896805

However, things are not always so simple. For instance, the volatility might have been quoted with
a different day-count convention, as is practice on some markets. Let’s say, for instance, that the
20% volatility was quoted based on the commonly used business/252 convention.

In [10]: sigma.linkTo(BlackConstantVol(today, calendar, 0.20, Business252(calendar)))

In this case, we’re not so lucky; the results from the two engines differ significantly.

In [11]: option.setPricingEngine(analytic_engine)
option.NPV()

Out[11]: 4.050510859367279

In [12]: option.setPricingEngine(fd_engine)
option.NPV()

Out[12]: 4.004154055896805

By looking at the numbers, we can see that analytic engine reacts to the change, while the finite-
differences engine doesn’t.
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What is happening?

This is not something that could be expected; unfortunately, it’s an artifact of the implementation
and could only be deduced by looking at the code. Specifically, the analytic engine is able to include
in the calculation the day-count convention of the volatility curve, while the FD model is forced to
use one single time grid and can’t account for different conventions.

More in detail, what the FD engine does is to ask the curve for the volatility at the exercise date…

In [13]: vol = sigma.blackVol(exercise_date, strike)
vol

Out[13]: 0.2

…and use it on the grid. However, the time grid on which the FD model works uses the day-count
convention of the risk-free rates, resulting in a time tomaturity that is inconsistent with the volatility
quote…

In [14]: T_vol = sigma.dayCounter().yearFraction(today, exercise_date)
T_vol

Out[14]: 0.25793650793650796

In [15]: T_grid = r.dayCounter().yearFraction(today, exercise_date)
T_grid

Out[15]: 0.25205479452054796

…and therefore the wrong value for the variance of the stock price:

In [16]: vol*vol*T_grid

Out[16]: 0.01008219178082192

In [17]: var = sigma.blackVariance(exercise_date, strike)
var

Out[17]: 0.01031746031746032

An attempt at a solution

In this case, and having assessed the problem, we can work around the problem; that is, we can
find the volatility that, together with the day-count convention used on the grid, gives the correct
variance.
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In [18]: vol = math.sqrt(var/T_grid)
vol

Out[18]: 0.20232004929429467

This synthetic value can be used to build a volatility curve with the same day-count convention as
the rate. This allows the FD engine to return a more correct value.

In [19]: sigma.linkTo(BlackConstantVol(today, calendar, vol, Actual365Fixed()))

In [20]: option.setPricingEngine(analytic_engine)
option.NPV()

Out[20]: 4.050510859367279

In [21]: option.setPricingEngine(fd_engine)
option.NPV()

Out[21]: 4.050563403337715

Of course, this is more cumbersome if the volatility is not flat; you might have to convert multiple
values if you’re interpolating them, or sample multiple values and then convert them if the curve is
of some other kind.

On the whole, it is unfortunate that the implementation is leaking into the use of the engine. We still
don’t have a solution, though. What I can suggest is, when possible, to perform sanity checks like
the previous comparison between engine results. This will give you information on the underlying
implementation and the precautions you’ll have to take when a comparison is not possible (such as,
for instance, when the option is American and there’s no corresponding analytic engine).



Bonds



28. Modeling fixed rate bonds
In this chapter we will consider a simple example to model fixed rate bonds. Let’s consider a
hypothetical bond with a par value of 100, that pays 6% coupon semi-annually issued on January
15th, 2015 and set to mature on January 15th, 2016. The bond will pay a coupon on July 15th, 2015
and January 15th, 2016. The par amount of 100 will also be paid on the January 15th, 2016.

To make things simpler, lets assume that we know the spot rates of the treasury as of January 15th,
2015. The annualized spot rates are 0.5% for 6 months and 0.7% for 1 year point. Lets calculate the
net present value of the cash flows directly as shown below.

In [1]: 3/pow(1+0.005, 0.5) + (100 + 3)/(1+0.007)

Out[1]: 105.27653992490681

Here, we discounted the coupon and par payments with the appropriate spot rates. Now we will
replicate this calculation using the QuantLib framework. Let’s start by importing the QuantLib
module.

In [2]: from QuantLib import *

As a first step, we need to construct a yield curve with the given spot rates. This is done using the
ZeroCurve class as discussed in an earlier chapter.

In [3]: calc_date = Date(15, 1, 2015)
Settings.instance().evaluationDate = calc_date
spot_dates = [Date(15, 1, 2015), Date(15, 7, 2015), Date(15, 1, 2016)]
spot_rates = [0.0, 0.005, 0.007]
day_count = Thirty360()
calendar = UnitedStates()
interpolation = Linear()
compounding = Compounded
compounding_frequency = Annual
spot_curve = ZeroCurve(spot_dates, spot_rates, day_count, calendar,

interpolation, compounding, compounding_frequency)
spot_curve_handle = YieldTermStructureHandle(spot_curve)

As a next step, we are going to build a fixed rate bond object. In order to construct the FixedRate-
Bond object, we will create a schedule for the coupon payments. Creation of Schedule object was
discussed in an earlier chapter.
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In [4]: issue_date = Date(15, 1, 2015)
maturity_date = Date(15, 1, 2016)
tenor = Period(Semiannual)
calendar = UnitedStates()
business_convention = Unadjusted
date_generation = DateGeneration.Backward
month_end = False
schedule = Schedule (issue_date, maturity_date, tenor,

calendar, business_convention,
business_convention , date_generation,
month_end)

Let us print the schedule to check if it is in agreement with what we expect it to be.

In [5]: list(schedule)

Out[5]: [Date(15,1,2015), Date(15,7,2015), Date(15,1,2016)]

Now that we have the schedule, we can create the FixedRateBond object. The FixedRateBond
constructor has the following signature.

FixedRateBond(Natural settlementDays,
Real faceAmount,
const Schedule& schedule,
const std::vector<Rate>& coupons,
const DayCounter& accrualDayCounter,
BusinessDayConvention paymentConvention = Following,
Real redemption = 100.0,
const Date& issueDate = Date(),
const Calendar& paymentCalendar = Calendar(),
const Period& exCouponPeriod = Period(),
const Calendar& exCouponCalendar = Calendar(),
const BusinessDayConvention exCouponConvention = Unadjusted,
bool exCouponEndOfMonth = false)

Let us create the FixedRateBond object below.
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In [6]: coupon_rate = .06
coupons = [coupon_rate]
settlement_days = 0
face_value = 100

fixed_rate_bond = FixedRateBond(settlement_days,
face_value,
schedule,
coupons,
day_count)

Now the we have the fixed rate bond instrument, we need a valuation engine in order to price this
bond. The fixed rate bond can be priced using a DiscountingBondEngine. The DiscountingBon-
dEngine takes the yield curve object as an argument in its constructor. The setPricingEngine
method in the fixed rate bond instrument is used to set the pricing engine.

In [7]: bond_engine = DiscountingBondEngine(spot_curve_handle)
fixed_rate_bond.setPricingEngine(bond_engine)

Now, the net present value of the bond can be extracted using the NPV method.

In [8]: fixed_rate_bond.NPV()

Out[8]: 105.27653992490683

In [9]: fixed_rate_bond.cleanPrice()

Out[9]: 105.27653992490683

We can also obtain various other analytics for the bond.

In [10]: fixed_rate_bond.accruedAmount()

Out[10]: 0.0

In [11]: fixed_rate_bond.dirtyPrice()

Out[11]: 105.27653992490683

In [12]: fixed_rate_bond.bondYield(day_count,
compounding,
compounding_frequency)

Out[12]: 0.006971154634952549



29. Building irregular bonds
(Based on a question¹ by Stack Exchange user user7922, another² by user Lisa Ann, and yet another³
asked by Anthony Calleja on the QuantLib mailing list. Thanks!)

In [1]: from QuantLib import *
from datetime import date
from pandas import DataFrame
import utils

Let me just define a small helper function before starting. It’s just for visualization, nothing to write
about.

In [2]: def rate_if_available(c):
c = as_coupon(c)
return utils.format_rate(c.rate()) if c else ''

The first question

user7922 had to price a bond that, curiously, had a last coupon date before the maturity date; e.g.,
the last coupon date is April 20th, 2020 and maturity date is April 20th, 2021. Yes, it’s strange, but
who are we to judge?

There’s no way to express this directly in QuantLib, but we can get it with some work. In case of a
fixed-rate bond, and if we want to do the simplest thing that can possibly work, we can cancel the
last coupon by giving it a rate of 0%.

In [3]: today = Date(8, October, 2014)
Settings.instance().evaluationDate = today

In [4]: issueDate = today+7
maturityDate = issueDate+Period(10,Years)

schedule = Schedule(issueDate, maturityDate,
Period(Annual), TARGET(), Following, Following,
DateGeneration.Backward, False)

The schedule we just built gives us the correct maturity date, as well as the date where we want the
last real coupon. Now for the bond:

¹http://quant.stackexchange.com/questions/11090/
²http://quant.stackexchange.com/questions/9080/
³https://sourceforge.net/p/quantlib/mailman/message/36170786/

http://quant.stackexchange.com/questions/11090/
http://quant.stackexchange.com/questions/9080/
https://sourceforge.net/p/quantlib/mailman/message/36170786/
http://quant.stackexchange.com/questions/11090/
http://quant.stackexchange.com/questions/9080/
https://sourceforge.net/p/quantlib/mailman/message/36170786/
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In [5]: settlementDays = 3
faceAmount = 100
paymentDayCounter = Thirty360()

coupon_rate = 0.02
N = len(schedule)-1 # number of coupons
coupons = [coupon_rate]*(N-1) + [0.0]

bond = FixedRateBond(settlementDays,
faceAmount,
schedule,
coupons,
paymentDayCounter)

In [6]: DataFrame([ (c.date(), rate_if_available(c), c.amount())
for c in bond.cashflows() ],

columns = ('date', 'rate', 'amount'),
index=['']*len(bond.cashflows()))

Out[6]:

date rate amount

October 15th, 2015 2.00 % 2.000000
October 17th, 2016 2.00 % 2.011111
October 16th, 2017 2.00 % 1.994444
October 15th, 2018 2.00 % 1.994444
October 15th, 2019 2.00 % 2.000000
October 15th, 2020 2.00 % 2.000000
October 15th, 2021 2.00 % 2.000000
October 17th, 2022 2.00 % 2.011111
October 16th, 2023 2.00 % 1.994444
October 15th, 2024 0.00 % 0.000000
October 15th, 2024 100.000000

The same trick also works for floating-rate coupons, if we use a null gearing for the last coupon:
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In [7]: euribor_curve = FlatForward(0, TARGET(), 0.002, Actual360())
index = Euribor1Y(YieldTermStructureHandle(euribor_curve))
N = len(schedule)-1 # number of coupons
gearings = [1.0]*(N-1) + [0.0]
bond = FloatingRateBond(settlementDays = 3,

faceAmount = 100,
schedule = schedule,
index = index,
paymentDayCounter = Thirty360(),
paymentConvention = Following,
fixingDays = index.fixingDays(),
gearings = gearings,
spreads = [],
caps= [],
floors = [],
inArrears = False,
redemption = 100.0,
issueDate = issueDate)

In [8]: DataFrame([ (c.date(), rate_if_available(c), c.amount())
for c in bond.cashflows() ],

columns = ('date', 'rate', 'amount'),
index=['']*len(bond.cashflows()))

Out[8]:

date rate amount

October 15th, 2015 0.20 % 0.200203
October 17th, 2016 0.20 % 0.201317
October 16th, 2017 0.20 % 0.199646
October 15th, 2018 0.20 % 0.199646
October 15th, 2019 0.20 % 0.200203
October 15th, 2020 0.20 % 0.200203
October 15th, 2021 0.20 % 0.200203
October 17th, 2022 0.20 % 0.201316
October 16th, 2023 0.20 % 0.199646
October 15th, 2024 0.00 % 0.000000
October 15th, 2024 100.000000

However, that’s a bit sloppy. The coupon paying a null rate looks strange, and might confuse cash-
flow analysis. It’s better, even if it takes a bit more work, to remove the coupon altogether. We can
get the cash flows from the bond we created…

In [9]: cashflows = list(bond.cashflows())

…delete the ones we don’t want to keep, that is, the one before the last (the last being the
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redemption)…

In [10]: del cashflows[-2]

…and use the cleaned-up cash flows to create a new bond:

In [11]: bond = Bond(3, TARGET(), 100.0,
maturityDate, issueDate,
cashflows)

This gives us the coupons we wanted:

In [12]: DataFrame([ (c.date(), rate_if_available(c), c.amount())
for c in bond.cashflows() ],

columns = ('date', 'rate', 'amount'),
index=['']*len(bond.cashflows()))

Out[12]:

date rate amount

October 15th, 2015 0.20 % 0.200203
October 17th, 2016 0.20 % 0.201317
October 16th, 2017 0.20 % 0.199646
October 15th, 2018 0.20 % 0.199646
October 15th, 2019 0.20 % 0.200203
October 15th, 2020 0.20 % 0.200203
October 15th, 2021 0.20 % 0.200203
October 17th, 2022 0.20 % 0.201316
October 16th, 2023 0.20 % 0.199646
October 15th, 2024 100.000000

The second question

Lisa Ann had to price a more common instrument (namely, a fixed-to-floater) for which, however,
there’s no specific class in the library. In this case, too, we can create the required bond by
manipulating coupons; and in this case, too, we can choose how much work to do.

Let’s say the bond pays three fixed-rate coupon first and then seven floating-rate coupons. Wemight
create the fixed-rate coupons…
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In [13]: schedule = Schedule(issueDate, issueDate+Period(3,Years),
Period(Annual), TARGET(), Following, Following,
DateGeneration.Backward, False)

fixed = FixedRateLeg(schedule = schedule,
dayCount = Actual360(),
nominals = [100.0],
couponRates = [0.02])

…then the floating-rate coupons…

In [14]: schedule = Schedule(issueDate+Period(3,Years), maturityDate,
Period(Annual), TARGET(), Following, Following,
DateGeneration.Backward, False)

floating = IborLeg(nominals = [100.0],
schedule = schedule,
index = index,
spreads = [0.001])

…and finally put them together, add the redemption, and build a custom bond:

In [15]: bond = Bond(3, TARGET(), 100.0,
maturityDate, issueDate,
fixed + floating + (Redemption(100.0, maturityDate),))

In [16]: DataFrame([ (c.date(), rate_if_available(c), c.amount())
for c in bond.cashflows() ],

columns = ('date', 'rate', 'amount'),
index=['']*len(bond.cashflows()))

Out[16]:

date rate amount

October 15th, 2015 2.00 % 2.027778
October 17th, 2016 2.00 % 2.044444
October 16th, 2017 2.00 % 2.022222
October 15th, 2018 0.30 % 0.303538
October 15th, 2019 0.30 % 0.304372
October 15th, 2020 0.30 % 0.305207
October 15th, 2021 0.30 % 0.304372
October 17th, 2022 0.30 % 0.306041
October 16th, 2023 0.30 % 0.303538
October 15th, 2024 0.30 % 0.304372
October 15th, 2024 100.000000
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However, I’m not very comfortable with building the coupons with two half-schedules; I haven’t
looked very hard for a counter-example, but I suspect that some combination of holidays and
business-day conventions might cause the coupon dates to be off.

A safer alternative would be to build both fixed and floating coupons over the full bond schedule,
and just keep those we need:

In [17]: schedule = Schedule(issueDate, maturityDate,
Period(Annual), TARGET(), Following, Following,
DateGeneration.Backward, False)

fixed = FixedRateLeg(schedule = schedule,
dayCount = Actual360(),
nominals = [100.0],
couponRates = [0.02])

floating = IborLeg(nominals = [100.0],
schedule = schedule,
index = index,
spreads = [0.001])

cashflows = fixed[:3] + floating[3:] + (Redemption(100.0, maturityDate),)

In [18]: bond = Bond(3, TARGET(), 100.0,
maturityDate, issueDate, cashflows)

In [19]: DataFrame([ (c.date(), rate_if_available(c), c.amount())
for c in bond.cashflows() ],

columns = ('date', 'rate', 'amount'),
index=['']*len(bond.cashflows()))

Out[19]:

date rate amount

October 15th, 2015 2.00 % 2.027778
October 17th, 2016 2.00 % 2.044444
October 16th, 2017 2.00 % 2.022222
October 15th, 2018 0.30 % 0.303538
October 15th, 2019 0.30 % 0.304372
October 15th, 2020 0.30 % 0.305207
October 15th, 2021 0.30 % 0.304372
October 17th, 2022 0.30 % 0.306041
October 16th, 2023 0.30 % 0.303538
October 15th, 2024 0.30 % 0.304372
October 15th, 2024 100.000000
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Also, in a pinch (for instance, if you’re using the QuantLib Excel module and can’t create custom
bonds easily) a fixed-rate coupon can be approximated by a floating-rate coupon with a null gearing
and a spread equal to the desired rate, so you might get the same result this way:

In [20]: schedule = Schedule(issueDate, maturityDate,
Period(Annual), TARGET(), Following, Following,
DateGeneration.Backward, False)

gearings = [0.0]*3 + [1.0]*7
spreads = [0.02]*3 + [0.001]*7

bond = FloatingRateBond(settlementDays = 3,
faceAmount = 100,
schedule = schedule,
index = index,
paymentDayCounter = Actual360(),
paymentConvention = Following,
fixingDays = index.fixingDays(),
gearings = gearings,
spreads = spreads,
caps= [],
floors = [],
inArrears = False,
redemption = 100.0,
issueDate = issueDate)

In [21]: DataFrame([ (c.date(), rate_if_available(c), c.amount())
for c in bond.cashflows() ],

columns = ('date', 'rate', 'amount'),
index=['']*len(bond.cashflows()))

Out[21]:

date rate amount

October 15th, 2015 2.00 % 2.027778
October 17th, 2016 2.00 % 2.044444
October 16th, 2017 2.00 % 2.022222
October 15th, 2018 0.30 % 0.303538
October 15th, 2019 0.30 % 0.304372
October 15th, 2020 0.30 % 0.305207
October 15th, 2021 0.30 % 0.304372
October 17th, 2022 0.30 % 0.306041
October 16th, 2023 0.30 % 0.303538
October 15th, 2024 0.30 % 0.304372
October 15th, 2024 100.000000
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However, I don’t suggest doing this if you can get actual fixed- and floating-rate coupons.

The third question

This one requires a bit more work (and involved a swap, instead of a bond, but it doesn’t matter;
you can build custom swaps with the Swap class). Anthony needed a floating leg paying 6-months
Euribor, but with a short initial stub paying the fixing of 3-months Euribor instead. In a vanilla leg,
even with the correct schedule, the first coupon would pay the 6-months fixing instead:

In [22]: euribor_curve_3m = FlatForward(0, TARGET(), 0.0015, Actual360())
index_3m = Euribor3M(YieldTermStructureHandle(euribor_curve_3m))

euribor_curve_6m = FlatForward(0, TARGET(), 0.0020, Actual360())
index_6m = Euribor6M(YieldTermStructureHandle(euribor_curve_6m))

In [23]: startDate = today + 7
endDate = startDate + Period(3,Months) + Period(5,Years)
schedule = Schedule(startDate, endDate,

Period(Semiannual), TARGET(), Following, Following,
DateGeneration.Backward, False)

cashflows = IborLeg(nominals = [100.0],
schedule = schedule,
index = index_6m)

In [24]: DataFrame([ (c.date(),
as_coupon(c).accrualStartDate(), as_coupon(c).accrualEndDate(),
utils.format_rate(as_coupon(c).rate()), c.amount())
for c in cashflows ],

columns = ('payment date', 'start date', 'end date',
'rate', 'amount'),

index=['']*len(cashflows))

Out[24]:

payment date start date end date rate amount

January 15th, 2015 October 15th, 2014 January 15th, 2015 0.20 % 0.051124
July 15th, 2015 January 15th, 2015 July 15th, 2015 0.20 % 0.100606
January 15th, 2016 July 15th, 2015 January 15th, 2016 0.20 % 0.102274
July 15th, 2016 January 15th, 2016 July 15th, 2016 0.20 % 0.101162
January 16th, 2017 July 15th, 2016 January 16th, 2017 0.20 % 0.102831
July 17th, 2017 January 16th, 2017 July 17th, 2017 0.20 % 0.101162
January 15th, 2018 July 17th, 2017 January 15th, 2018 0.20 % 0.101162
July 16th, 2018 January 15th, 2018 July 16th, 2018 0.20 % 0.101162
January 15th, 2019 July 16th, 2018 January 15th, 2019 0.20 % 0.101718
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payment date start date end date rate amount

July 15th, 2019 January 15th, 2019 July 15th, 2019 0.20 % 0.100606
January 15th, 2020 July 15th, 2019 January 15th, 2020 0.20 % 0.102274

The first coupon has the correct dates, but the rate is wrong. To use the right one, we have to build
a custom first coupon with the correct index and use it instead of the current one. We also need to
set it a pricer (which is usually done for us by IborLeg).

In [25]: first = as_floating_rate_coupon(cashflows[0])
coupon3m = IborCoupon(first.date(), first.nominal(),

first.accrualStartDate(), first.accrualEndDate(),
first.fixingDays(), index_3m)

coupon3m.setPricer(BlackIborCouponPricer())

cashflows = (coupon3m,) + cashflows[1:]

In [26]: DataFrame([ (c.date(),
as_coupon(c).accrualStartDate(), as_coupon(c).accrualEndDate(),
utils.format_rate(as_coupon(c).rate()), c.amount())
for c in cashflows ],

columns = ('payment date', 'start date', 'end date',
'rate', 'amount'),

index=['']*len(cashflows))

Out[26]:

payment date start date end date rate amount

January 15th, 2015 October 15th, 2014 January 15th, 2015 0.15 % 0.038341
July 15th, 2015 January 15th, 2015 July 15th, 2015 0.20 % 0.100606
January 15th, 2016 July 15th, 2015 January 15th, 2016 0.20 % 0.102274
July 15th, 2016 January 15th, 2016 July 15th, 2016 0.20 % 0.101162
January 16th, 2017 July 15th, 2016 January 16th, 2017 0.20 % 0.102831
July 17th, 2017 January 16th, 2017 July 17th, 2017 0.20 % 0.101162
January 15th, 2018 July 17th, 2017 January 15th, 2018 0.20 % 0.101162
July 16th, 2018 January 15th, 2018 July 16th, 2018 0.20 % 0.101162
January 15th, 2019 July 16th, 2018 January 15th, 2019 0.20 % 0.101718
July 15th, 2019 January 15th, 2019 July 15th, 2019 0.20 % 0.100606
January 15th, 2020 July 15th, 2019 January 15th, 2020 0.20 % 0.102274

As before, the resulting cash flows can be used to instantiate a bond or a swap.



30. Valuation of bonds with credit spreads
In an earlier example on pricing fixed rate bonds, I demonstrated how to construct and value bonds
using the given yield curve. In this example, let us take a look at valuing bonds with credit spreads.
We will show how to add credit spreads to the give yield curve using different approaches.

As usual, let us start by importing the QuantLib library and pick a valuation date and set the
calculation instance evaluation date.

In [1]: from QuantLib import *
calc_date = Date(26, 7, 2016)
Settings.instance().evaluationDate = calc_date

For simplicity, let us imagine that the treasury yield curve is flat. This makes it easier to construct
the yield curve easily. This also allows us to directly shock the yield curve, and provides a validation
for the more general treatment of shocks on yield curve.

In [2]: flat_rate = SimpleQuote(0.0015)
rate_handle = QuoteHandle(flat_rate)
day_count = Actual360()
calendar = UnitedStates()
ts_yield = FlatForward(calc_date, rate_handle, day_count)
ts_handle = YieldTermStructureHandle(ts_yield)

Now let us construct the bond itself. We do that by first constructing the schedule, and then passing
the schedule into the bond.

In [3]: issue_date = Date(15, 7, 2016)
maturity_date = Date(15, 7, 2021)
tenor = Period(Semiannual)
calendar = UnitedStates()
bussiness_convention = Unadjusted
date_generation = DateGeneration.Backward
month_end = False
schedule = Schedule (issue_date, maturity_date,

tenor, calendar,
bussiness_convention,
bussiness_convention,
date_generation,
month_end)
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In [4]: settlement_days = 2
day_count = Thirty360()
coupon_rate = .03
coupons = [coupon_rate]

# Now lets construct the FixedRateBond
settlement_days = 0
face_value = 100
fixed_rate_bond = FixedRateBond(

settlement_days,
face_value,
schedule,
coupons,
day_count)

Now that we have the fixed_rate_bond object, we can create a DiscountingBondEngine and
value the bond.

In [5]: bond_engine = DiscountingBondEngine(ts_handle)
fixed_rate_bond.setPricingEngine(bond_engine)
fixed_rate_bond.NPV()

Out[5]: 114.18461651948999

So far, we have valued the bond under the treasury yield curve and have not incorporated the credit
spreads. Let us assume that the market prices this bond with a 50BP spread on top of the treasury
yield curve. Now we can, in this case, directly shock the flat_rate used in the yield term structure.
Let us see what the value is:

In [6]: flat_rate.setValue(0.0065)
fixed_rate_bond.NPV()

Out[6]: 111.5097766266561

Above we shocked the flat_rate and since the yield term structure is an Observer observing the
Observable flat_rate, we could just shock the rate, and QuantLib behind the scenes recalculates
all the Observers. Though, this approach is not always viable, in cases such as a bootstrapped bond
curve. So let us look at two different approaches that can be used. Before we do that, we need to
reset the flat_rate back to what it was.
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In [7]: flat_rate.setValue(0.0015)
fixed_rate_bond.NPV()

Out[7]: 114.18461651948999

Parallel Shift of the Yield Curve

The whole yield curve can be shifted up and down, and the bond revalued with the help of the
ZeroSpreadedTermStructure. The constructor takes the yield curve and the spread as argument.

In [8]: spread1 = SimpleQuote(0.0050)
spread_handle1 = QuoteHandle(spread1)
ts_spreaded1 = ZeroSpreadedTermStructure(ts_handle, spread_handle1)
ts_spreaded_handle1 = YieldTermStructureHandle(ts_spreaded1)

bond_engine = DiscountingBondEngine(ts_spreaded_handle1)
fixed_rate_bond.setPricingEngine(bond_engine)

# Finally the price
fixed_rate_bond.NPV()

Out[8]: 111.50977662665609

Once we have constructed the spreaded term structure, it is rather easy to value for other spreads.
All we need to do is change the SimpleQuote object spread1 here.

In [9]: spread1.setValue(0.01)
fixed_rate_bond.NPV()

Out[9]: 108.89999943320038

Non-Parallel Shift of the Yield Curve

The above method allows only for parallel shift of the yield curve. The SpreadedLinearZeroIn-
terpolatedTermStructure class allows for non parallel shock. First, let us mimic a parallel shift
using this class. For the constructor, we need to pass the yield term structure that we wish to shift,
and the a list of spreads and a list of the corresponding dates.
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In [10]: spread21 = SimpleQuote(0.0050)
spread22 = SimpleQuote(0.0050)
start_date = calc_date
end_date = calendar.advance(start_date, Period(50, Years))
ts_spreaded2 = SpreadedLinearZeroInterpolatedTermStructure(

ts_handle,
[QuoteHandle(spread21), QuoteHandle(spread22)],
[start_date, end_date]

)
ts_spreaded_handle2 = YieldTermStructureHandle(ts_spreaded2)

bond_engine = DiscountingBondEngine(ts_spreaded_handle2)
fixed_rate_bond.setPricingEngine(bond_engine)

# Finally the price
fixed_rate_bond.NPV()

Out[10]: 111.50977662665609

Here, once again we can change the value of spread2 to value for other shocks.

In [11]: spread21.setValue(0.01)
spread22.setValue(0.01)
fixed_rate_bond.NPV()

Out[11]: 108.89999943320038

We can easily do non-parallel shifts just by shocking one end.

In [12]: spread21.setValue(0.005)
spread22.setValue(0.01)
fixed_rate_bond.NPV()

Out[12]: 111.25358792334083

The SpreadedLinearZeroInterpolatedTermStructure is a powerful class and can be used to
implement key-rate duration calculations.



31. Modeling callable bonds
In this chapter, lets take a look at valuing callable bonds in QuantLib Python. The approach to
construct a callable bond is lot similar to modeling a fixed rate bond in QuantLib. The one additional
input that we need to provide here is the details on the call or put schedule. If you follow the fixed
rate bond example already, this should be fairly straight forward.

As always, we will start with some initializations and imports.

In [1]: from QuantLib import *
import numpy as np
import utils
%matplotlib inline
calc_date = Date(16,8,2016)
Settings.instance().evaluationDate = calc_date

For simplicity, let us assume that the interest rate term structure is a flat yield curve at 3.5%. You
can refer to constructing yield curves for more details on constructing yield curves.

In [2]: day_count = ActualActual(ActualActual.Bond)
rate = 0.035
ts = FlatForward(calc_date, rate,

day_count, Compounded,
Semiannual)

ts_handle = YieldTermStructureHandle(ts)

The call and put schedules for the callable bond is created as shown below. We create a container
for holding all the call and put dates using the CallabilitySchedule class. You can add each call
using Callability class and noting as Callability.Call or Callability.Put for either a call
or put.

In [3]: callability_schedule = CallabilitySchedule()
call_price = 100.0
call_date = Date(15,September,2016);
null_calendar = NullCalendar();
for i in range(0,24):

callability_price = CallabilityPrice(
call_price, CallabilityPrice.Clean)

callability_schedule.append(
Callability(callability_price,

Callability.Call,
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call_date))

call_date = null_calendar.advance(call_date, 3,
Months)

What follows next is similar to the Schedule that we created in the vanilla fixed rate bond valuation.

In [4]: issue_date = Date(16,September,2014)
maturity_date = Date(15,September,2022)
calendar = UnitedStates(UnitedStates.GovernmentBond)
tenor = Period(Quarterly)
accrual_convention = Unadjusted

schedule = Schedule(issue_date, maturity_date, tenor,
calendar, accrual_convention,
accrual_convention,
DateGeneration.Backward, False)

The callable bond is instantiated using the CallableFixedRateBond class, which accepts the bond
inputs and the call or put schedule.

In [5]: settlement_days = 3
face_amount = 100
accrual_daycount = ActualActual(ActualActual.Bond)
coupon = 0.025

bond = CallableFixedRateBond(
settlement_days, face_amount,
schedule, [coupon], accrual_daycount,
Following, face_amount, issue_date,
callability_schedule)

In order to value the bond, we need an interest rate model to model the fact that the bond will get
called or not in the future depending on where the future interest rates are at. The TreeCallable-
FixedRateBondEngine can be used to value the callable bond. Below, the value_bond function
prices the callable bond based on the Hull-White model parameter for mean reversion and volatility.

In [6]: def value_bond(a, s, grid_points, bond):
model = HullWhite(ts_handle, a, s)
engine = TreeCallableFixedRateBondEngine(model, grid_points)
bond.setPricingEngine(engine)
return bond

The callable bond value for a 3% mean reversion and 12% volatility is shown below.



Modeling callable bonds 236

In [7]: value_bond(0.03, 0.12, 40, bond)
print("Bond price: %lf" % bond.cleanPrice())

Out[7]: Bond price: 68.376965

The price sensitivity of callable bonds to that of volatility parameter is shown below. As volatility
increases, there is a higher chance of it being callable. Hence the value of the bond decreases.

In [8]: sigmas = np.arange(0.001, 0.15, 0.001)
prices = [value_bond(0.03, s, 40, bond).cleanPrice()

for s in sigmas]

In [9]: _, ax = utils.plot()
ax.plot(sigmas, prices)
ax.set_xlabel("Sigma", size=12)
ax.set_ylabel("Price", size=12);

The static cash flows can be accessed using the cashflows accessor.
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In [10]: from pandas import DataFrame
DataFrame(

[(cf.date(), cf.amount()) for cf in bond.cashflows()],
columns=["Date", "Amount"],
index=range(1, len(bond.cashflows())+1))

Out[10]:

Date Amount

1 December 15th, 2014 0.618132
2 March 16th, 2015 0.625000
3 June 15th, 2015 0.625000
4 September 15th, 2015 0.625000
5 December 15th, 2015 0.625000
6 March 15th, 2016 0.625000
7 June 15th, 2016 0.625000
8 September 15th, 2016 0.625000
9 December 15th, 2016 0.625000
10 March 15th, 2017 0.625000
11 June 15th, 2017 0.625000
12 September 15th, 2017 0.625000
13 December 15th, 2017 0.625000
14 March 15th, 2018 0.625000
15 June 15th, 2018 0.625000
16 September 17th, 2018 0.625000
17 December 17th, 2018 0.625000
18 March 15th, 2019 0.625000
19 June 17th, 2019 0.625000
20 September 16th, 2019 0.625000
21 December 16th, 2019 0.625000
22 March 16th, 2020 0.625000
23 June 15th, 2020 0.625000
24 September 15th, 2020 0.625000
25 December 15th, 2020 0.625000
26 March 15th, 2021 0.625000
27 June 15th, 2021 0.625000
28 September 15th, 2021 0.625000
29 December 15th, 2021 0.625000
30 March 15th, 2022 0.625000
31 June 15th, 2022 0.625000
32 September 15th, 2022 0.625000
33 September 15th, 2022 100.000000
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Conclusion

Here we explored a minimal example on pricing a callable bond.



32. Discount margin calculation
(Based on two¹ questions² by Stack Exchange users HookahBoy and Kyle. Thanks!)

In [1]: from QuantLib import *

In [2]: today = Date(8, October, 2014)
Settings.instance().evaluationDate = today

The question

Given a floating-rate bond price, we want to find the corresponding discount margin. This is one
in a class of similar problems: we have a calculation which is not immediate to do directly, but is
straightforward to do in the opposite direction; in this case, find the price of a bondwhen discounting
its coupons at a spread over LIBOR.

The general idea is to implement the inverse calculation (DM to price) and then to use a solver to
determine the correct input given the result. First, we build the bond.

In [3]: forecast_curve = RelinkableYieldTermStructureHandle()
discount_curve = RelinkableYieldTermStructureHandle()

In [4]: index = Euribor6M(forecast_curve)

In [5]: issueDate = Date(13,October,2014)
maturityDate = Date(13,October,2024)

schedule = Schedule(issueDate, maturityDate,
Period(Semiannual), TARGET(), Following, Following,
DateGeneration.Backward, False)

In [6]: bond = FloatingRateBond(settlementDays = 3,
faceAmount = 100,
schedule = schedule,
index = index,
paymentDayCounter = Actual360(),
paymentConvention = Following,
fixingDays = index.fixingDays(),
gearings = [],

¹http://quant.stackexchange.com/questions/8965/
²https://quant.stackexchange.com/questions/37705/

http://quant.stackexchange.com/questions/8965/
https://quant.stackexchange.com/questions/37705/
http://quant.stackexchange.com/questions/8965/
https://quant.stackexchange.com/questions/37705/
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spreads = [],
caps= [],
floors = [],
inArrears = False,
redemption = 100.0,
issueDate = issueDate)

bond.setPricingEngine(DiscountingBondEngine(discount_curve))

Now we link the forecast curve to the current Euribor curve (whatever that is; I’m using a flat one
as an example, but it could as well be a real one)…

In [7]: forecast_curve.linkTo(FlatForward(0, TARGET(), 0.002, Actual360()))

…and the discount curve to the Euribor curve plus the discount margin.

In [8]: DM = SimpleQuote(0.0)
discount_curve.linkTo(ZeroSpreadedTermStructure(forecast_curve,

QuoteHandle(DM)))

Setting a value to the DM quote will affect the bond price: this gives us the knob to manipulate in
order to find the solution of our problem.

In [9]: print(bond.cleanPrice())

Out[9]: 100.00000000000001

In [10]: DM.setValue(0.001)
print(bond.cleanPrice())

Out[10]: 98.99979030764418

To invert the calculation, we encapsulate the above into a function. The Python language makes
it easier to write it in a general way; the function below takes the target price, and returns
another function that takes a value for the discount margin and returns the difference between
the corresponding price and the target. In C++, we would create a function object taking the target
price in its constructor and returning the difference from its operator().
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In [11]: def F(price):
def _f(s):

DM.setValue(s)
return bond.cleanPrice() - price

return _f

In [12]: f = F(98.9997903076)
print(f(0.0))
print(f(0.002))

Out[12]: 1.00020969240002
-0.9901429992548856

We want to find the value of the discount margin that causes the calculated price to equal the target
price, that is, that causes the error to be 0; and for that, we can use a solver.

In [13]: margin = Brent().solve(F(99.6), 1e-8, 0.0, 1e-4)
print(margin)

Out[13]: 0.00039870328652332745

We can verify that this works by setting the margin to the returned value and checking that the
bond price equals the input:

In [14]: DM.setValue(margin)
print(bond.cleanPrice())

Out[14]: 99.59999988275108

However, note that the spread above is continuously compounded. You might want to see the
discount margin in the same units as the index fixings:

In [15]: value_date = index.valueDate(today)
maturity_date = index.maturityDate(value_date)
print(InterestRate(margin, discount_curve.dayCounter(),

Continuous, NoFrequency)
.equivalentRate(index.dayCounter(),

Simple, index.tenor().frequency(),
value_date, maturity_date))

Out[15]: 0.039874 % Actual/360 simple compounding

Not just for bonds

The approach I described can be generalized to any problem in this class. Here I’ll use it to get the
implied volatility of an Asian option: first I’ll create the instrument…
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In [16]: exerciseDate = today + Period(1,Years)
fixingDates = [ today + Period(n,Months) for n in range(1,12) ]
option = DiscreteAveragingAsianOption(Average.Arithmetic,

0.0, 0,
fixingDates,
PlainVanillaPayoff(Option.Call, 100.0),
EuropeanExercise(exerciseDate))

…and an engine, taking care of writing the input volatility as a quote.

In [17]: sigma = SimpleQuote(0.20)

riskFreeCurve = FlatForward(0, TARGET(), 0.01, Actual360())
volatility = BlackConstantVol(0, TARGET(), QuoteHandle(sigma), Actual360())

process = BlackScholesProcess(QuoteHandle(SimpleQuote(100.0)),
YieldTermStructureHandle(riskFreeCurve),
BlackVolTermStructureHandle(volatility))

In [18]: option.setPricingEngine(MCDiscreteArithmeticAPEngine(process, "pseudorandom",
requiredSamples=1000,
seed=42))

Now we can use the same technique as above: the function below takes a target price and returns a
function from the volatility to the pricing error:

In [19]: def F(price):
def _f(v):

sigma.setValue(v)
return option.NPV() - price

return _f

Using a solver, we can invert it to solve for any price:

In [20]: print(Brent().solve(F(5.0), 1e-8, 0.20, 1e-4))

Out[20]: 0.20081193864526342

In [21]: print(Brent().solve(F(6.0), 1e-8, 0.20, 1e-4))

Out[21]: 0.24362397543255393



33. Duration of floating-rate bonds
(Based on a question by Antonio Savoldi on the QuantLib mailing list. Thanks!)

In [1]: from QuantLib import *
from pandas import DataFrame

In [2]: today = Date(8,October,2014)
Settings.instance().evaluationDate = today

The problem

We want to calculate the modified duration of a floating-rate bond. First, we need an interest-rate
curve to forecast its coupon rates: for illustration’s sake, let’s take a flat curve with a 0.2% rate.

In [3]: forecast_curve = RelinkableYieldTermStructureHandle()
forecast_curve.linkTo(FlatForward(today, 0.002, Actual360(),

Compounded, Semiannual))

Then, we instantiate the index to be used. The bond has semiannual coupons, so we create a
Euribor6M instance and we pass it the forecast curve. Also, we set a past fixing for the current
coupon (which, having fixed in the past, can’t be forecast).

In [4]: index = Euribor6M(forecast_curve)
index.addFixing(Date(6,August,2014), 0.002)

The bond was issued a couple of months before the evaluation date and will run for 5 years with
semiannual coupons.

In [5]: issueDate = Date(8,August,2014)
maturityDate = Date(8,August,2019)

schedule = Schedule(issueDate, maturityDate,
Period(Semiannual), TARGET(), Following, Following,
DateGeneration.Backward, False)

bond = FloatingRateBond(settlementDays = 3,
faceAmount = 100,
schedule = schedule,
index = index,
paymentDayCounter = Actual360())

The cash flows are calculated based on the forecast curve. Here they are, together with their dates.
As expected, they each pay around 0.1% of the notional.
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In [6]: dates = [ c.date() for c in bond.cashflows() ]
cfs = [ c.amount() for c in bond.cashflows() ]
DataFrame(list(zip(dates, cfs)),

columns = ('date','amount'),
index = range(1,len(dates)+1))

Out[6]:

date amount

1 February 9th, 2015 0.102778
2 August 10th, 2015 0.101112
3 February 8th, 2016 0.101112
4 August 8th, 2016 0.101112
5 February 8th, 2017 0.102223
6 August 8th, 2017 0.100556
7 February 8th, 2018 0.102223
8 August 8th, 2018 0.100556
9 February 8th, 2019 0.102223
10 August 8th, 2019 0.100556
11 August 8th, 2019 100.000000

If we try to use the function provided for calculating bond durations, though, we run into a problem.
When we pass it the bond and a 0.2% semiannual yield, the result we get is:

In [7]: y = InterestRate(0.002, Actual360(), Compounded, Semiannual)
print(BondFunctions.duration(bond, y, Duration.Modified))

Out[7]: 4.8609591731332165

which is about the time to maturity. Shouldn’t we get the time to next coupon instead?

What happened?

The function above is too generic. It calculates the modified duration as − 1

P

dP

dy
; however, it doesn’t

know what kind of bond it has been passed and what kind of cash flows are paid, so it can only
consider the yield for discounting and not for forecasting. If you looked into the C++ code, you’d
see that the bond price P above is calculated as the sum of the discounted cash flows, as in the
following:



Duration of floating-rate bonds 245

In [8]: y = SimpleQuote(0.002)
yield_curve = FlatForward(bond.settlementDate(), QuoteHandle(y),

Actual360(), Compounded, Semiannual)

dates = [ c.date() for c in bond.cashflows() ]
cfs = [ c.amount() for c in bond.cashflows() ]
discounts = [ yield_curve.discount(d) for d in dates ]
P = sum(cf*b for cf,b in zip(cfs,discounts))

print(P)

Out[8]: 100.03665363580889

(Incidentally, we can see that this matches the calculation in the dirtyPrice method of the Bond
class.)

In [9]: bond.setPricingEngine(DiscountingBondEngine(YieldTermStructureHandle(yield_curve)))
print(bond.dirtyPrice())

Out[9]: 100.03665363580889

Finally, the derivative dP

dy
in the duration formula in approximated as P (y + dy)− P (y − dy)

2dy
, so that

we get:

In [10]: dy = 1e-5

y.setValue(0.002 + dy)
cfs_p = [ c.amount() for c in bond.cashflows() ]
discounts_p = [ yield_curve.discount(d) for d in dates ]
P_p = sum(cf*b for cf,b in zip(cfs_p,discounts_p))
print(P_p)

y.setValue(0.002 - dy)
cfs_m = [ c.amount() for c in bond.cashflows() ]
discounts_m = [ yield_curve.discount(d) for d in dates ]
P_m = sum(cf*b for cf,b in zip(cfs_m,discounts_m))
print(P_m)

y.setValue(0.002)

Out[10]: 100.03179102561501
100.0415165074028

In [11]: print(-(1/P)*(P_p - P_m)/(2*dy))

Out[11]: 4.8609591756253225
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which is the same figure returned by BondFunctions.duration.

The problem is that the above doesn’t use the yield curve for forecasting, so it’s not really considering
the bond as a floating-rate bond. It’s using it as a fixed-rate bond, whose coupon rates happen to
equal the current forecasts for the Euribor 6M fixings. This is clear if we look at the coupon amounts
and discounts we stored during the calculation:

In [12]: DataFrame(list(zip(dates, cfs, discounts,
cfs_p, discounts_p, cfs_m, discounts_m)),

columns = ('date','amount','discounts',
'amount (+)','discounts (+)','amount (-)','discounts (-)',),

index = range(1,len(dates)+1))

Out[12]:

date amount discounts amount (+) discounts (+) amount (-) discounts (-)

1 February 9th,
2015

0.102778 0.999339 0.102778 0.999336 0.102778 0.999343

2 August 10th,
2015

0.101112 0.998330 0.101112 0.998322 0.101112 0.998338

3 February 8th,
2016

0.101112 0.997322 0.101112 0.997308 0.101112 0.997335

4 August 8th,
2016

0.101112 0.996314 0.101112 0.996296 0.101112 0.996333

5 February 8th,
2017

0.102223 0.995297 0.102223 0.995273 0.102223 0.995320

6 August 8th,
2017

0.100556 0.994297 0.100556 0.994269 0.100556 0.994325

7 February 8th,
2018

0.102223 0.993282 0.102223 0.993248 0.102223 0.993315

8 August 8th,
2018

0.100556 0.992284 0.100556 0.992245 0.100556 0.992322

9 February 8th,
2019

0.102223 0.991270 0.102223 0.991227 0.102223 0.991314

10 August 8th,
2019

0.100556 0.990275 0.100556 0.990226 0.100556 0.990323

11 August 8th,
2019

100.000000 0.990275 100.000000 0.990226 100.000000 0.990323

where you can see how the discount factors changed when the yield was modified, but the coupon
amounts stayed the same.

The solution

Unfortunately, there’s no easy way to fix the BondFunctions.durationmethod so that it does the
right thing. What we can do, instead, is to repeat the calculation above while setting up the bond
and the curves so that the yield is used correctly. In particular, we have to link the forecast curve to
the flat yield curve being modified…
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In [13]: forecast_curve.linkTo(yield_curve)

…so that changing the yield will also affect the forecast rate of the coupons.

In [14]: y.setValue(0.002 + dy)
P_p = bond.dirtyPrice()
cfs_p = [ c.amount() for c in bond.cashflows() ]
discounts_p = [ yield_curve.discount(d) for d in dates ]
print(P_p)

y.setValue(0.002 - dy)
P_m = bond.dirtyPrice()
cfs_m = [ c.amount() for c in bond.cashflows() ]
discounts_m = [ yield_curve.discount(d) for d in dates ]
print(P_m)

y.setValue(0.002)

Out[14]: 100.03632329080955
100.03698398354918

Now the coupon amounts change with the yield (except, of course, the first coupon, whose amount
was already fixed)…

In [15]: DataFrame(list(zip(dates, cfs, discounts, cfs_p,
discounts_p, cfs_m, discounts_m)),

columns = ('date','amount','discounts',
'amount (+)','discounts (+)','amount (-)','discounts (-)',),

index = range(1,len(dates)+1))

Out[15]:

date amount discounts amount (+) discounts (+) amount (-) discounts (-)

1 February 9th,
2015

0.102778 0.999339 0.102778 0.999336 0.102778 0.999343

2 August 10th,
2015

0.101112 0.998330 0.101617 0.998322 0.100606 0.998338

3 February 8th,
2016

0.101112 0.997322 0.101617 0.997308 0.100606 0.997335

4 August 8th,
2016

0.101112 0.996314 0.101617 0.996296 0.100606 0.996333

5 February 8th,
2017

0.102223 0.995297 0.102734 0.995273 0.101712 0.995320

6 August 8th,
2017

0.100556 0.994297 0.101059 0.994269 0.100053 0.994325

7 February 8th,
2018

0.102223 0.993282 0.102734 0.993248 0.101712 0.993315
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date amount discounts amount (+) discounts (+) amount (-) discounts (-)

8 August 8th,
2018

0.100556 0.992284 0.101059 0.992245 0.100053 0.992322

9 February 8th,
2019

0.102223 0.991270 0.102734 0.991227 0.101712 0.991314

10 August 8th,
2019

0.100556 0.990275 0.101059 0.990226 0.100053 0.990323

11 August 8th,
2019

100.000000 0.990275 100.000000 0.990226 100.000000 0.990323

…and the duration is calculated correctly, thus approximating the four months to the next coupon.

In [16]: print(-(1/P)*(P_p - P_m)/(2*dy))

Out[16]: 0.33022533022465994

This also holds if the discounting curve is dependent, but not the same as the forecast curve; e.g., as
in the case of an added credit spread:

In [17]: discount_curve = ZeroSpreadedTermStructure(forecast_curve,
QuoteHandle(SimpleQuote(0.001)))

bond.setPricingEngine(DiscountingBondEngine(YieldTermStructureHandle(discount_curve)))

This causes the price to decrease due to the increased discount factors…

In [18]: P = bond.dirtyPrice()
cfs = [ c.amount() for c in bond.cashflows() ]
discounts = [ discount_curve.discount(d) for d in dates ]
print(P)

Out[18]: 99.55107926688962

…but the coupon amounts are still the same.

In [19]: DataFrame(list(zip(dates, cfs, discounts)),
columns = ('date','amount','discount'),
index = range(1,len(dates)+1))

Out[19]:
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date amount discount

1 February 9th, 2015 0.102778 0.999009
2 August 10th, 2015 0.101112 0.997496
3 February 8th, 2016 0.101112 0.995984
4 August 8th, 2016 0.101112 0.994475
5 February 8th, 2017 0.102223 0.992952
6 August 8th, 2017 0.100556 0.991456
7 February 8th, 2018 0.102223 0.989938
8 August 8th, 2018 0.100556 0.988446
9 February 8th, 2019 0.102223 0.986932
10 August 8th, 2019 0.100556 0.985445
11 August 8th, 2019 100.000000 0.985445

The price derivative is calculated in the same way as above…

In [20]: y.setValue(0.002 + dy)
P_p = bond.dirtyPrice()
print(P_p)

y.setValue(0.002 - dy)
P_m = bond.dirtyPrice()
print(P_m)

y.setValue(0.002)

Out[20]: 99.55075966035385
99.55139887578544

In [21]: print(-(1/P)*(P_p - P_m)/(2*dy))

Out[21]: 0.3210489711903113

…and yields a similar result.



34. Treasury futures contracts
In this chapter, we will learn how to value treasury futures contracts using QuantLib. The treasury
futures contract gives the buyer the right to buy the underlying by the time the contract expires.
The underlying is usually delivered from a basket of securities. So in order to properly value the
futures contract, we would need to find the deliverable. Here we start by doing a naive calculation
by constructing a fictional security. We will see what is wrong about this approach. As a next step
we will perform the cheapest to deliver calculation and subsequently use that deliverable to value
the same contract.

In [1]: from QuantLib import *
import math
from pandas import DataFrame

In [2]: calc_date = Date(30,11,2015)
Settings.instance().evaluationDate = calc_date
day_count = ActualActual()
calendar = UnitedStates()
bussiness_convention = Following
end_of_month = False
settlement_days = 0
face_amount = 100
coupon_frequency = Period(Semiannual)

Build Yield Curve

As a first step, we build the treasury curve out of the treasury securities such as T-Bills, T-Notes and
Treasury bonds.

In [3]: prices = [99.9935,99.9576,99.8119,99.5472,99.8867,
100.0664,99.8711,100.0547,100.3047,100.2266]

coupon_rates = [0.0000, 0.0000, 0.0000, 0.0000, 0.00875,
0.0125, 0.01625, 0.02, 0.0225, 0.03]

maturity_dates = [Date(24,12,2015), Date(25,2,2016),
Date(26,5,2016), Date(10,11,2016),
Date(30,11,2017), Date(15,11,2018),
Date(30,11,2020), Date(30,11,2022),
Date(15,11,2025), Date(15,11,2045)]

issue_dates = [Date(25,6,2015), Date(27,8,2015),
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Date(28,5,2015), Date(12,11,2015),
Date(30,11,2015), Date(16,11,2015),
Date(30,11,2015), Date(30,11,2015),
Date(16,11,2015), Date(16,11,2015)]

coupon_frequency = Period(6, Months)

bond_helpers = []
for coupon, issue_date, maturity_date, price \

in zip(coupon_rates, issue_dates, maturity_dates, prices):
schedule = Schedule(calc_date,

maturity_date,
coupon_frequency,
calendar,
bussiness_convention,
bussiness_convention,
DateGeneration.Backward,
False)

helper = FixedRateBondHelper(QuoteHandle(SimpleQuote(price)),
settlement_days,
face_amount,
schedule,
[coupon],
day_count,
bussiness_convention
)

bond_helpers.append(helper)

In [4]: yield_curve = PiecewiseCubicZero(calc_date, bond_helpers, day_count)
yield_curve_handle = YieldTermStructureHandle(yield_curve)
discount_factors = [yield_curve.discount(d) for d in maturity_dates]
DataFrame(list(zip(maturity_dates,discount_factors)),

columns= ["Dates", "Discount Factors"],
index=['']*len(maturity_dates))

Out[4]:
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Dates Discount Factors

December 24th, 2015 0.999935
February 25th, 2016 0.999576
May 26th, 2016 0.998119
November 10th, 2016 0.995472
November 30th, 2017 0.981524
November 15th, 2018 0.964278
November 30th, 2020 0.920306
November 30th, 2022 0.868533
November 15th, 2025 0.799447
November 15th, 2045 0.384829

Treasury Futures

Here we want to understand how to model treasury futures contract. Let us look at the TYZ5, the
treasury futures on the 10 year note for delivery in December 2015. The notional deliverable is a
10-year 6% coupon note. In reality, the seller of the futures contract can deliver from a basket of
securities.

For now, lets assume that the deliverable is actually a 6% coupon 10-year note issued as of the
calculation date. Let us construct a 10 year treasury note and value this security. The futures price
for the TYZ5 is 127.0625.

In [5]: def create_tsy_security(bond_issue_date,
bond_maturity_date,
coupon_rate,
coupon_frequency=Period(6, Months),
day_count=ActualActual(),
calendar=UnitedStates()
):

face_value = 100.
settlement_days = 0

schedule = Schedule(bond_issue_date,
bond_maturity_date,
coupon_frequency,
calendar,
ModifiedFollowing,
ModifiedFollowing,
DateGeneration.Forward,
False)

security = FixedRateBond(settlement_days,
face_value,
schedule,
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[coupon_rate],
day_count
)

return security

In [6]: bond_issue_date = calc_date
delivery_date = Date(1,12,2015)

bond_maturity_date = bond_issue_date + Period(10, Years)
day_count = ActualActual()
coupon_frequency = Period(6, Months)
coupon_rate = 6/100.

deliverable = create_tsy_security(bond_issue_date,
bond_maturity_date,
coupon_rate,
coupon_frequency,
day_count,
calendar
)

bond_engine = DiscountingBondEngine(yield_curve_handle)
deliverable.setPricingEngine(bond_engine)

Lets calculate the Z-Spread for this deliverable. The Z-Spread is the static spread added to the yield
curve to match the price of the security. This spread is a measure of the risk associated with the
security. For a treasury security, you would expect this to be zero.

In [7]: futures_price = 127.0625
clean_price = futures_price*yield_curve.discount(delivery_date)

zspread = BondFunctions.zSpread(deliverable, clean_price,
yield_curve, day_count,
Compounded, Semiannual,
calc_date)*10000

print("Z-Spread =%3.0fbp" % (zspread))

Out[7]: Z-Spread = 71bp

Here we get a spread of 71 basis points. This is unusually high for a treasury futures contract.

Cheapest To Deliver

Above we used a fictional 6% coupon bond as the deliverable. In reality, the deliverable is picked
from a basket of securities based on what is the cheapest to deliver. Cheapest to deliver is not the
cheapest in price. The seller of the futures contract, has to buy the delivery security from the market
and sell it at an adjusted futures price. The adjusted futures price is given as:



Treasury futures contracts 254

Adjusted Futures Price = Futures Price x Conversion Factor

The gain or loss to the seller is given by the basis,

Basis = Cash Price - Adjusted Futures Price

So the cheapest to deliver is expected to be the security with the lowest basis. The conversion factor
for a security is the price of the security with a 6% yield. Let us look at a basket of securities that is
underlying this futures contract to understand this aspect.

In [8]: day_count = ActualActual()
basket = [(1.625, Date(15,8,2022), 97.921875),

(1.625, Date(15,11,2022), 97.671875),
(1.75, Date(30,9,2022), 98.546875),
(1.75, Date(15,5,2023), 97.984375),
(1.875, Date(31,8,2022), 99.375),
(1.875, Date(31,10,2022),99.296875),
(2.0, Date(31,7,2022), 100.265625),
(2.0, Date(15,2,2023), 100.0625),
(2.0, Date(15,2,2025), 98.296875),
(2.0, Date(15,8,2025), 98.09375),
(2.125, Date(30,6,2022), 101.06250),
(2.125, Date(15,5,2025),99.25),
(2.25, Date(15,11,2024),100.546875),
(2.25, Date(15,11,2025),100.375),
(2.375, Date(15,8,2024),101.671875),
(2.5, Date(15,8,2023),103.25),
(2.5, Date(15,5,2024),102.796875),
(2.75, Date(15,11,2023),105.0625),
(2.75, Date(15,2,2024),104.875)
]

securities = []
min_basis = 100; min_basis_index = -1
for i, b in enumerate(basket):

coupon, maturity, price = b
issue = maturity - Period(10, Years)
s = create_tsy_security(issue,maturity, coupon/100.)
bond_engine = DiscountingBondEngine(yield_curve_handle)
s.setPricingEngine(bond_engine)
cf = BondFunctions.cleanPrice(s,0.06,

day_count, Compounded,
Semiannual, calc_date)/100.

adjusted_futures_price = futures_price * cf
basis = price-adjusted_futures_price
if basis< min_basis:

min_basis = basis
min_basis_index = i

securities.append((s,cf))
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ctd_info = basket[min_basis_index]
ctd_bond,ctd_cf = securities[min_basis_index]
ctd_price = ctd_info[2]
print("%-30s = %lf" % ("Minimum Basis", min_basis))
print("%-30s = %lf" % ("Conversion Factor", ctd_cf))
print("%-30s = %lf" % ("Coupon", ctd_info[0]))
print("%-30s = %s" % ("Maturity", ctd_info[1]))
print("%-30s = %lf" % ("Price", ctd_info[2]))

Out[8]: Minimum Basis = 0.450601
Conversion Factor = 0.791830
Coupon = 2.125000
Maturity = June 30th, 2022
Price = 101.062500

The basis is the loss for a notional of 100 that the seller accrues to close this contract. For a single
futures contract (which has a 100000 notional), there is a loss of 450.60.

NOTE: You will need my pull request¹ to execute the FixedRateBondForward class since it is not
exposed in SWIG at the moment.

In [9]: futures_maturity_date = Date(21,12,2015)
futures = FixedRateBondForward(calc_date, futures_maturity_date,

Position.Long, 0.0, settlement_days,
day_count, calendar, bussiness_convention,
ctd_bond, yield_curve_handle, yield_curve_handle)

The valuation of the futures contract and the underlying is shown below:

In [10]: model_futures_price = futures.cleanForwardPrice()/ctd_cf
implied_yield = futures.impliedYield(ctd_price/ctd_cf, futures_price,

calc_date, Compounded, day_count).rate()
z_spread = BondFunctions.zSpread(ctd_bond, ctd_price, yield_curve,

day_count, Compounded, Semiannual,
calc_date)

ytm = BondFunctions.bondYield(ctd_bond, ctd_price, day_count,
Compounded, Semiannual, calc_date)

print("%-30s = %lf" % ("Model Futures Price", model_futures_price))
print("%-30s = %lf" % ("Market Futures Price", futures_price))
print("%-30s = %lf" % ("Model Adjustment", model_futures_price-futures_price))
print("%-30s = %2.3f%%" % ("Implied Yield", implied_yield*100))
print("%-30s = %2.1fbps" % ("Forward Z-Spread", z_spread*10000))
print("%-30s = %2.3f%%" % ("Forward YTM ", ytm*100))

¹https://github.com/lballabio/quantlib-old/pull/370

https://github.com/lballabio/quantlib-old/pull/370
https://github.com/lballabio/quantlib-old/pull/370
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Out[10]: Model Futures Price = 127.610365
Market Futures Price = 127.062500
Model Adjustment = 0.547865
Implied Yield = -7.473%
Forward Z-Spread = 1.6bps
Forward YTM = 1.952%

References

[1] Understanding Treasury Futures², CME Group PDF

Conclusion

In this chapter, we looked into understanding and valuing treasury futures contracts. We used the
QuantLib FixedRateBondForward class in order to model the futures contract. But, we also made
a cheapest to deliver calculation to figure out the deliverable.

²https://www.cmegroup.com/education/files/understanding-treasury-futures.pdf

https://www.cmegroup.com/education/files/understanding-treasury-futures.pdf
https://www.cmegroup.com/education/files/understanding-treasury-futures.pdf


35. Mischievous pricing conventions
(Based on a question¹ by Stack Exchange user ducky. Thanks!)

In [1]: from QuantLib import *
import pandas as pd

The case of the bond off par

Like our user, I’ll instantiate a four-years floating-rate bond with three-months coupons. It’s being
issued on the evaluation date, January 5th 2010, and for simplicity I won’t use any settlement days
or holidays:

In [2]: today = Date(5, January, 2010)
Settings.instance().evaluationDate = today

discounting_curve = RelinkableYieldTermStructureHandle()
forecasting_curve = RelinkableYieldTermStructureHandle()

index = USDLibor(Period(3, Months), forecasting_curve)

settlement_days = 0
calendar = NullCalendar()

face_amount = 100.0
schedule = Schedule(today, today + Period(4, Years),

Period(3, Months), calendar,
Unadjusted, Unadjusted,
DateGeneration.Forward, False)

bond = FloatingRateBond(settlement_days,
face_amount,
schedule,
index,
Thirty360(),
Unadjusted,
fixingDays = 0)

bond.setPricingEngine(DiscountingBondEngine(discounting_curve))

To price it, we use a flat 10% quarterly rate for both forecasting and discounting…

¹http://stackoverflow.com/questions/15273797/

http://stackoverflow.com/questions/15273797/
http://stackoverflow.com/questions/15273797/
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In [3]: flat_rate = FlatForward(today, 0.10, Thirty360(), Compounded, Quarterly)
forecasting_curve.linkTo(flat_rate)
discounting_curve.linkTo(flat_rate)

…so we expect the bond to be at par. Is it?

In [4]: print(bond.cleanPrice())

Out[4]: 99.5433545426823

Hmm.

What is happening here?

We have mismatched a few conventions. The ones with the largest effect are the day-count
conventions used for the curve and the index. Here they are:

In [5]: print(flat_rate.dayCounter())
print(as_coupon(bond.cashflows()[0]).dayCounter())
print(index.dayCounter())

Out[5]: 30/360 (Bond Basis) day counter
30/360 (Bond Basis) day counter
Actual/360 day counter

Thus, the coupons accrue for the expected time (given by their day-count convention); however,
the rates are not the expected 10%. They are calculated from discount factors given by the curve
according to its 30/360 convention and recombined by the index according to its Actual/360
convention, which doesn’t end well.

In [6]: coupons = [ as_coupon(c) for c in bond.cashflows()[:-1] ]
pd.DataFrame([(c.date(), c.rate(), c.accrualPeriod())

for c in coupons ],
columns=('Date', 'Rate', 'Accrual period'),
index=range(1,len(coupons)+1))

Out[6]:
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Date Rate Accrual period

1 April 5th, 2010 0.100014 0.25
2 July 5th, 2010 0.098901 0.25
3 October 5th, 2010 0.097826 0.25
4 January 5th, 2011 0.097826 0.25
5 April 5th, 2011 0.100000 0.25
6 July 5th, 2011 0.098901 0.25
7 October 5th, 2011 0.097826 0.25
8 January 5th, 2012 0.097899 0.25
9 April 5th, 2012 0.098952 0.25
10 July 5th, 2012 0.098849 0.25
11 October 5th, 2012 0.097826 0.25
12 January 5th, 2013 0.097826 0.25
13 April 5th, 2013 0.100014 0.25
14 July 5th, 2013 0.098901 0.25
15 October 5th, 2013 0.097826 0.25
16 January 5th, 2014 0.097826 0.25

The importance of being consistent

In order to reproduce the textbook value, we have to reconcile the different conventions (which are,
well, conveniently glossed over in textbooks). The correct one to choose depends on the terms and
conditions of the bond; it is likely to be the Actual/360 convention used by the USD libor, so we’ll
pass it to both the bond and the curve:

In [7]: bond = FloatingRateBond(settlement_days,
face_amount,
schedule,
index,
Actual360(),
Unadjusted,
fixingDays = 0)

bond.setPricingEngine(DiscountingBondEngine(discounting_curve))

In [8]: flat_rate_2 = FlatForward(today, 0.10, Actual360(), Compounded, Quarterly)
forecasting_curve.linkTo(flat_rate_2)
discounting_curve.linkTo(flat_rate_2)

In [9]: print(bond.cleanPrice())

Out[9]: 100.00117521248728

There’s still a small discrepancy, which is likely due to date adjustments in the underlying USD libor
fixings. The coupon rates are much better overall, so we seem to be on the right track.
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In [10]: coupons = [ as_coupon(c) for c in bond.cashflows()[:-1] ]
pd.DataFrame([(c.date(), c.rate(), c.accrualPeriod())

for c in coupons ],
columns=('Date', 'Rate', 'Accrual period'),
index=range(1,len(coupons)+1))

Out[10]:

Date Rate Accrual period

1 April 5th, 2010 0.100014 0.250000
2 July 5th, 2010 0.100014 0.252778
3 October 5th, 2010 0.100028 0.255556
4 January 5th, 2011 0.100028 0.255556
5 April 5th, 2011 0.100000 0.250000
6 July 5th, 2011 0.100014 0.252778
7 October 5th, 2011 0.100028 0.255556
8 January 5th, 2012 0.100055 0.255556
9 April 5th, 2012 0.100041 0.252778
10 July 5th, 2012 0.099986 0.252778
11 October 5th, 2012 0.100028 0.255556
12 January 5th, 2013 0.100028 0.255556
13 April 5th, 2013 0.100014 0.250000
14 July 5th, 2013 0.100014 0.252778
15 October 5th, 2013 0.100028 0.255556
16 January 5th, 2014 0.100028 0.255556

To get a (theoretical) par bond, we can use a custom index whose conventions match exactly those
of the bond we wanted to use: no fixing days, 30/360 day-count convention, and no holidays. We’ll
use a curve with the same day-count convention, too.

In [11]: index = IborIndex('Mock Libor', Period(3, Months), 0, USDCurrency(),
NullCalendar(), Unadjusted, False, Thirty360(),
forecasting_curve)

bond = FloatingRateBond(settlement_days,
face_amount,
schedule,
index,
Thirty360(),
Unadjusted,
fixingDays = 0)

bond.setPricingEngine(DiscountingBondEngine(discounting_curve))

In [12]: forecasting_curve.linkTo(flat_rate)
discounting_curve.linkTo(flat_rate)
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And now, we finally hit the jackpot:

In [13]: print(bond.cleanPrice())

Out[13]: 100.00000000000001

In [14]: coupons = [ as_coupon(c) for c in bond.cashflows()[:-1] ]
pd.DataFrame([(c.date(), c.rate(), c.accrualPeriod())

for c in coupons ],
columns=('Date', 'Rate', 'Accrual period'),
index=range(1,len(coupons)+1))

Out[14]:

Date Rate Accrual period

1 April 5th, 2010 0.1 0.25
2 July 5th, 2010 0.1 0.25
3 October 5th, 2010 0.1 0.25
4 January 5th, 2011 0.1 0.25
5 April 5th, 2011 0.1 0.25
6 July 5th, 2011 0.1 0.25
7 October 5th, 2011 0.1 0.25
8 January 5th, 2012 0.1 0.25
9 April 5th, 2012 0.1 0.25
10 July 5th, 2012 0.1 0.25
11 October 5th, 2012 0.1 0.25
12 January 5th, 2013 0.1 0.25
13 April 5th, 2013 0.1 0.25
14 July 5th, 2013 0.1 0.25
15 October 5th, 2013 0.1 0.25
16 January 5th, 2014 0.1 0.25



36. More mischievous conventions
(Based on a question¹ by Stack Exchange user nickos556. Thanks!)

In [1]: from QuantLib import *
from pandas import DataFrame

The case of the two slightly different prices

nickos556 instantiated a fixed-rate bond with semiannual payments and tried to deduce its price
from a given yield:

In [2]: today = Date(27, January, 2011)
Settings.instance().evaluationDate = today

In [3]: issueDate = Date(28, January, 2011)
maturity = Date(31, August, 2020)
schedule = Schedule(issueDate, maturity, Period(Semiannual),

UnitedStates(UnitedStates.GovernmentBond),
Unadjusted, Unadjusted,
DateGeneration.Backward, False)

bond = FixedRateBond(1, 100.0, schedule,
[0.03625],
ActualActual(ActualActual.Bond),
Unadjusted,
100.0)

This can be done either by passing the yield directly…

In [4]: bond_yield = 0.034921

P1 = bond.dirtyPrice(bond_yield, bond.dayCounter(), Compounded, Semiannual)

…or by first setting an engine that uses a corresponding flat term structure.

¹http://quant.stackexchange.com/questions/12707/

http://quant.stackexchange.com/questions/12707/
http://quant.stackexchange.com/questions/12707/
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In [5]: flat_curve = FlatForward(bond.settlementDate(), bond_yield,
ActualActual(ActualActual.Bond),
Compounded, Semiannual)

engine = DiscountingBondEngine(YieldTermStructureHandle(flat_curve))
bond.setPricingEngine(engine)
P2 = bond.dirtyPrice()

Surprisingly, the results were different:

In [6]: DataFrame([(P1,P2)], columns=['with yield', 'with curve'], index=[''])

Out[6]:

with yield with curve

101.076816 101.079986

What happened?

Mischievous conventions again. The bond uses the Actual/Actual(Bond) convention, which has a
requirement: in the case of short or long coupons, we also need to pass a reference start and end
date that determine the regular underlying period. Case in point: this bond has a short first coupon.

In [7]: DataFrame([(as_coupon(c).accrualStartDate(), as_coupon(c).accrualEndDate())
for c in bond.cashflows()[:-1]],

columns = ('start date','end date'),
index = range(1, len(bond.cashflows())))

Out[7]:

start date end date

1 January 28th, 2011 February 28th, 2011
2 February 28th, 2011 August 31st, 2011
3 August 31st, 2011 February 29th, 2012
4 February 29th, 2012 August 31st, 2012
5 August 31st, 2012 February 28th, 2013
6 February 28th, 2013 August 31st, 2013
7 August 31st, 2013 February 28th, 2014
8 February 28th, 2014 August 31st, 2014
9 August 31st, 2014 February 28th, 2015
10 February 28th, 2015 August 31st, 2015
11 August 31st, 2015 February 29th, 2016
12 February 29th, 2016 August 31st, 2016
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start date end date

13 August 31st, 2016 February 28th, 2017
14 February 28th, 2017 August 31st, 2017
15 August 31st, 2017 February 28th, 2018
16 February 28th, 2018 August 31st, 2018
17 August 31st, 2018 February 28th, 2019
18 February 28th, 2019 August 31st, 2019
19 August 31st, 2019 February 29th, 2020
20 February 29th, 2020 August 31st, 2020

The accrual time for the coupon, starting January 27th 2011 and ending February 28th 2011, must
be calculated as:

In [8]: dayCounter = ActualActual(ActualActual.Bond)

T = dayCounter.yearFraction(Date(28, January, 2011), Date(28, February, 2011),
Date(28,August,2010), Date(28,February,2011))

print(T)

Out[8]: 0.08423913043478261

If the coupon were annual, it would be:

In [9]: print(dayCounter.yearFraction(Date(28, January, 2011), Date(28, February, 2011),
Date(28,February,2010), Date(28,February,2011)))

Out[9]: 0.08493150684931507

The corresponding discount factor given the yield is as follows:

In [10]: y = InterestRate(bond_yield, dayCounter, Compounded, Semiannual)
print(y.discountFactor(T))

Out[10]: 0.997087920498809

Yield-based calculation

The yield-based calculation uses the above to discount the first coupon, and combines it with
discount factors corresponding to the regular coupon times to discount the others. We can write
down the full computation:
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In [11]: data = []
for i, c in enumerate(bond.cashflows()[:-1]):

c = as_coupon(c)
A = c.amount()
T = c.accrualPeriod()
D = y.discountFactor(T)
D_cumulative = D if i == 0 else D * data[-1][3]
A_discounted = A*D_cumulative
data.append((A,T,D,D_cumulative,A_discounted))

data.append((100,'','',D_cumulative,100*D_cumulative))
data = DataFrame(data,

columns = ('amount', 'T', 'discount', 'discount (cum.)', 'amount (di\
sc.)'),

index = ['']*len(data))
data

Out[11]:

amount T discount discount (cum.) amount (disc.)

0.305367 0.0842391 0.997088 0.997088 0.304478
1.812500 0.5 0.982839 0.979977 1.776208
1.812500 0.5 0.982839 0.963160 1.745727
1.812500 0.5 0.982839 0.946631 1.715769
1.812500 0.5 0.982839 0.930386 1.686325
1.812500 0.5 0.982839 0.914420 1.657386
1.812500 0.5 0.982839 0.898728 1.628944
1.812500 0.5 0.982839 0.883305 1.600990
1.812500 0.5 0.982839 0.868146 1.573515
1.812500 0.5 0.982839 0.853248 1.546513
1.812500 0.5 0.982839 0.838606 1.519973
1.812500 0.5 0.982839 0.824215 1.493889
1.812500 0.5 0.982839 0.810070 1.468253
1.812500 0.5 0.982839 0.796169 1.443056
1.812500 0.5 0.982839 0.782506 1.418292
1.812500 0.5 0.982839 0.769077 1.393953
1.812500 0.5 0.982839 0.755879 1.370031
1.812500 0.5 0.982839 0.742908 1.346521
1.812500 0.5 0.982839 0.730159 1.323413
1.812500 0.5 0.982839 0.717629 1.300702
100.000000 0.717629 71.762879

The bond price is the sum of the discounted amounts…
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In [12]: print(sum(data['amount (disc.)']))

Out[12]: 101.07681646503603

…and, not surprisingly, equals the yield-based bond price.

In [13]: print(bond.dirtyPrice(bond_yield, bond.dayCounter(), Compounded, Semiannual))

Out[13]: 101.07681646503603

Curve-based calculation

Long story short: the bond engine gets the first discount wrong. Given the curve interface, all it can
do is ask for the discounts at the coupon dates, as follows:

In [14]: data = []
for c in bond.cashflows()[:-1]:

A = c.amount()
D = flat_curve.discount(c.date())
A_discounted = A*D
data.append((A,D,A_discounted))

data.append((100.0,D,100.0*D))
data = DataFrame(data,

columns = ('amount', 'discount', 'amount (disc.)'),
index = ['']*len(data))

data

Out[14]:

amount discount amount (disc.)

0.305367 0.997119 0.304487
1.812500 0.980008 1.776264
1.812500 0.963190 1.745782
1.812500 0.946661 1.715823
1.812500 0.930415 1.686378
1.812500 0.914449 1.657438
1.812500 0.898756 1.628995
1.812500 0.883332 1.601040
1.812500 0.868174 1.573565
1.812500 0.853275 1.546561
1.812500 0.838632 1.520021
1.812500 0.824240 1.493936
1.812500 0.810096 1.468299
1.812500 0.796194 1.443101
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amount discount amount (disc.)

1.812500 0.782530 1.418336
1.812500 0.769102 1.393997
1.812500 0.755903 1.370074
1.812500 0.742931 1.346563
1.812500 0.730182 1.323455
1.812500 0.717651 1.300743
100.000000 0.717651 71.765129

The result equals the curve-based price.

In [15]: print(sum(data['amount (disc.)']))

Out[15]: 101.0799861183387

In [16]: print(bond.dirtyPrice())

Out[16]: 101.0799861183387

The problem is that the first call to the discount method, that is,

In [17]: flat_curve.discount(Date(28, February, 2011))

Out[17]: 0.9971191880350325

results in a call to:

In [18]: print(dayCounter.yearFraction(Date(28, January, 2011), Date(28, February, 2011)))

Out[18]: 0.08333333333333333

Compare this to the correct one:

In [19]: T = dayCounter.yearFraction(Date(28, January, 2011), Date(28, February, 2011),
Date(28,August,2010), Date(28,February,2011))

print(T)

Out[19]: 0.08423913043478261

Does this account for the difference in price? Yes, it does. The two prices can be reconciled as follows:
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In [20]: P_y = bond.dirtyPrice(bond_yield, bond.dayCounter(), Compounded, Semiannual)
D_y = y.discountFactor(T)

P_c = bond.dirtyPrice()
D_c = flat_curve.discount(Date(28, February, 2011))

print(P_y)
print(P_c*(D_y/D_c))

Out[20]: 101.07681646503603
101.0768164650361



Appendix



Translating QuantLib Python examples to
C++
It’s easy enough to translate the Python code shown in this book into the corresponding C++ code.
As an example, I’ll go through a bit of code from the notebook on instruments and pricing engines.

In [1]: from QuantLib import *

This line imports the QuantLib module and adds the classes and functions it contains to the global
namespace. The C++ equivalent would be:

#include <ql/quantlib.hpp>

using namespace QuantLib;

Of course, the above is for illustration purposes. In production code, you’re not forced (or even
advised) to use the using directory; you can keep the names in their namespace and qualify
them when you use them. It’s also possible to include more specific headers, instead of the global
quantlib.hpp.

In [2]: today = Date(7, March, 2014)
Settings.instance().evaluationDate = today

The code above has a couple of caveats. The first line is easy enough to translate; you’ll have to
declare the type to the variable (or use auto if you’re compiling in C++11 mode). The second line is
trickier. To begin with, the syntax to call static methods differs in Python and C++, so you’ll have to
replace the first dot by a double colon. Then, evaluationDate is a property in Python but a method
in C++; it was changed in the Pythonmodule to be more idiomatic, since it’s not that usual in Python
to assign to the result of a method. Luckily, you won’t find many such cases. The translated code is:

Date today(7, March, 2014);
Settings::instance().evaluationDate() = today;

Next:
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In [3]: option = EuropeanOption(PlainVanillaPayoff(Option.Call, 100.0),
EuropeanExercise(Date(7, June, 2014)))

Again, you’ll have to declare the type of the variable. Furthermore, the constructor of EuropeanOp-
tion takes its arguments by pointer, or more precisely, by boost::shared_ptr. This is hidden
in Python, since there’s no concept of pointer in the language; the SWIG wrappers take care of
exporting boost::shared_ptr<T> simply as T. The corresponding C++ code:

EuropeanOption option(
boost::make_shared<PlainVanillaPayoff>(Option.Call, 100.0),
boost::make_shared<EuropeanExercise(Date(7, June, 2014)));

(A note: in the remainder of the example, I’ll omit the boost:: namespace for brevity.)

In [4]: u = SimpleQuote(100.0)
r = SimpleQuote(0.01)
sigma = SimpleQuote(0.20)

Quotes, too, are stored and passed around as shared_ptr instances; this is the case for most
polymorphic classes (when in doubt, you can look at the C++ headers and check the signatures
of the functions you want to call). The above becomes:

shared_ptr<SimpleQuote> u = make_shared<SimpleQuote>(100.0);
shared_ptr<SimpleQuote> r = make_shared<SimpleQuote>(0.01);
shared_ptr<SimpleQuote> sigma = make_shared<SimpleQuote>(0.20);

Depending on what you need to do with them, the variables might also be declared as shared_-
ptr<Quote>. I used the above, since I’ll need to call a method of SimpleQuote in a later part of the
code.

In [5]: riskFreeCurve = FlatForward(0, TARGET(),
QuoteHandle(r), Actual360())

volatility = BlackConstantVol(0, TARGET(),
QuoteHandle(sigma), Actual360())

The Handle template class couldn’t be exported as such, because Python doesn’t have templates.
Thus, the SWIG wrappers have to declare separate classes QuoteHandle, YieldTermStructure-
Handle and so on. In C++, you can go back to the original syntax.
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shared_ptr<YieldTermStructure> riskFreeCurve =
make_shared<FlatForward>(0, TARGET(),

Handle<Quote>(r), Actual360());
shared_ptr<BlackVolTermStructure> volatility =

make_shared<BlackConstantVol>(0, TARGET(),
Handle<Quote>(sigma), Actual360());

Next,

In [6]: process = BlackScholesProcess(QuoteHandle(u),
YieldTermStructureHandle(riskFreeCurve),
BlackVolTermStructureHandle(volatility))

turns into

shared_ptr<BlackScholesProcess> process =
make_shared<BlackConstantVol>(

Handle<Quote>(u),
Handle<YieldTermStructure>(riskFreeCurve),
Handle<BlackVolTermStructure>(volatility));

and

In [7]: engine = AnalyticEuropeanEngine(process)

into

shared_ptr<PricingEngine> engine =
make_shared<AnalyticEuropeanEngine>(process);

So far, we’ve been calling constructors. Method invocation works the same in Python and C++,
except that in C++ we might be calling methods through a pointer. Therefore,

In [8]: option.setPricingEngine(engine)

In [9]: print(option.NPV())

In [10]: print(option.delta())
print(option.gamma())
print(option.vega())

becomes
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option.setPricingEngine(engine);

cout << option.NPV() << endl;

cout << option.delta() << endl;
cout << option.gamma() << endl;
cout << option.vega() << endl;

whereas

In [11]: u.setValue(105.0)

turns into

u->setValue(105.0);

Of course, the direct translation I’ve been doing only applies to the QuantLib code; I’m not able to
point you to libraries that replace the graphing functionality in matplotlib, or the data-analysis
facilities in pandas, or the parallel math functions in numpy. However, I hope that the above can
still enable you to extract value from this cookbook, even if you’re programming in C++.
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